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Abstract 

The evolution of the early universe is a challenging topic for students in research clubs or similar 

learning groups. Here we study sub curvature length scales. For these small lengths a novel 

equivalence principle becomes valid. This principle can be successfully applied to the cosmic in-

flation, dark energy and dark matter. The first two applications are worked out in full detail here so 

that they can be directly used in a learning group. 
 

1. Introduction 

The universe has always been interesting to humans 

(Hoskin 1999). Accordingly students like to take 

part in astronomy clubs or they choose astrophysical 

projects in a research club. These interests provide 

chances for scientific education. Here I outline a 

corresponding project, and I report about experienc-

es with teaching it. 

1.1. Early universe: a lab for quantum gravity  

In the early universe, the density was very high, and 

so gravity was the dominating interaction. Moreo-

ver, distances were very small, and so quantum 

physics is essential. Additionally, there are many 

corresponding observations. So the early universe is 

an ideal lab for the combination (Bronstein 1936) of 

gravity and quantum physics. 

1.2. Challenging questions 

In the early universe, there occurred a very rapid 

increase of distances in the so-called era of cosmic 

inflation (Guth 1981), the dark matter (Zwicky 

1933) formed, and the dark energy emerged (Ein-

stein 1917; Perlmutter et al. 1998; Riess et al. 2000; 

Smoot 2007). The explanation of these phenomena 

is possible in the framework of quantum gravity 

(Carmesin 2017, Carmesin 2018a-d, Carmesin 

2019). So this is an interesting actual topic for a 

research club. 

1.3. Analogies 

In order to obtain a smooth learning process, we 

introduce and investigate the concepts of the har-

monic oscillator and of the waves in crystals. Pro-

gressively we develop novel concepts by using anal-

ogies to these basic two concepts. Additionally we 

use the Heisenberg uncertainty relation, the 

Schwarzschild radius and the Friedmann Lemaitre 

equation, FLE, as basic concepts (Carmesin 2014).  

2. Students 

The present project has been tested in a research 

club with students in classes 9 to 12. The students 

also attend an astronomy club and apply computers. 

3. Observable States 

Physical states can only be observed, if the Heisen-

berg uncertainty relation is fulfilled (Heisenberg, 

1927):  

Δx∙Δp ≥ ½ ∙ h    {1} 

Hereby h denotes the reduced Planck constant h/2π, 

x the coordinate and p the momentum.  Furthermore, 

only a spatial physical structure r outside the 

Schwarzschild radius RS can be observed (Michell 

1784; Schwarzschild, 1916): 

 r ≥ RS = 2∙G∙m/c
2
   {2} 

Hereby G denotes the gravitational constant, m the 

mass and c the velocity of light. Consequently, only 

states in the dark shaded area in figure (1) can be 

observed.  

Accordingly, we introduce the concept of a region 

without observable internal spatial structure. Such a 

region is called elementary region ER. There are two 

ERs at a fixed density (see figure 1): Each mass m is 

surrounded by a ball with radius RS, and this ball is 

an ER (see upper triangle in figure 1, we denote that 

radius by b). For each point in space, we derive the 

best spatial resolution. Best resolution is achieved 

according to the uncertainty relation (equation 1) 

with the equality sign and with relativistic radiation 

with Δp = E/c. We express this equation in Planck 

units (Planck 1899). So we get: 

Δx = 1/(2∙E)    {3} 

In Planck units, the energy E is equal to the corre-

sponding mass M. Accordingly, we denote the 

above uncertainty by aM:  

2∙aM = 1/E = 1/M   {4} 

The ball with that radius aM is the other ER at the 

considered fixed density, see full triangle in figure 1. 

When the density increases, then the two elementary 

regions, the b – ER and the aM – ER approach each 

other in figure (1), and they merge at the smallest 

possible ER (see full circle in figure 1). Hereby the 

radius is the Planck length LP, the energy is half the 

Planck energy EP , the ρ density is half the Planck 
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density ρP , and that density ρ is the highest achieva-

ble density (see Carmesin 2017, 2018a-d, 2019). 

 

 

Fig.1: Planck Scale: Planck units: bold face. Distance: r. 

Energy: E. Circle: Planck length LP. Triangles: elementary 

regions ER. Light shaded: observable according to uncer-

tainty relation. Medium shaded: observable according to 

Schwarzschild radius RS. Dark shaded: observable. Dash-

dotted: fixed density. Dotted: lower fixed density. 

4. Model 

In order to combine gravity and quantum physics, it 

is essential to determine the microscopic objects that 

should be described. It is natural to model the ERs 

microscopically. This is worked out next. 

5. Microscopic part of the model 

We model a b – ER and a neighboring aM – ER in a 

microscopic part of the model. Next we investigate 

the properties of that model.  

5.1. Isotropy 

These two ERs are at a distance a = aM + b. That 

distance is characterized by a wave function. Since 

gravity is very large, everything tends ‘to fall down’, 

and so we model ground states here. Corresponding-

ly, we model that distance with an isotropic wave 

function. 

5.2. Dynamics 

According to the isotropy, we apply an isotropic 

version of general relativity. The corresponding 

cosmological dynamics is described by the Fried-

mann Lemaitre equation, FLE (Friedmann 1922, 

Lemaitre 1927):  

[a’(t)/a(t)]
2
 = 8πG∙ρ/3 – k∙c

2
/a

2
    {5} 

Hereby, k describes the curvature of the isotropic 

space, and it is called the curvature parameter. 

5.3. Mathematical equivalence 

The students can easily derive that the FLE is math-

ematically equivalent to the following equation: 

E = ½ ∙ m ∙ v
2
 – G∙M∙m/a  {6} 

Thereby, M describes the equivalent mass of the  aM 

- ER, m denotes the mass of the b – ER, v describes 

a’(t), and E describes the curvature parameter as 

follows: 

E = – m∙c
2
∙k/2    {7} 

5.4. Novel equivalence principle 

The FLE describes curved space in general. Howev-

er, the mathematically equivalent equation {6} does 

not include the curvature parameter explicitly. Ac-

cordingly, we investigate the possible physical 

equivalence. Thereby, we call two systems physical-

ly equivalent, if no difference can be observed. In a 

system consisting of two neighboring ERs, no curva-

ture can be observed geometrically, since the curva-

ture can only be observed with at least three ERs 

(Lee 1997). This corresponds to the fact that two 

points determine a straight line, whereas three points 

determine a radius of curvature. As a consequence, 

the curvature parameter cannot be observed geomet-

rically in the microscopic part of the system. Conse-

quently, the FLE and the dynamics of equation {6} 

are mathematically and physically equivalent at the 

small length scale of the microscopic part of the 

model.  

5.5. Analogy 

The microscopic part of the model includes the phe-

nomenon of the curvature of space, though it is not 

included explicitly in equation {6}. Similarly, the 

motion of molecules in a gas may be described by 

Newtonian mechanics without an explicit force of 

friction, and as a result, that description provides an 

effective force of friction (see for instance Carmesin 

2019). 

5.6. Quantization 

The dynamic equation {6} is quantized by the usual 

rules of quantum physics (see Schrödinger 1926 or 

for instance Ballentine 1998). Accordingly, the ob-

servable quantities are replaced by operators. There-

by the observable quantities in equation {6} are the 

coordinate a with the corresponding momentum p = 

m∙a’(t), and the variable E is identified with the 

energy according to the form of equation {6}. The 

Schrödinger equation with the operator of E de-

scribes the dynamics. That quantization is uniquely 

determined, as there occur no products with different 

operators. 

5.7. First method of investigation 

First we investigate solutions of the stationary 

Schrödinger equation. In particular we determine 

ground states first. Hereby we consider the limit of 

high density and small distances first. In that limit, 

the wave functions are Gaussian wave packets and 

the expectation value of the potential energy is a 

harmonic potential (see Carmesin 2019). In order to 

obtain a low barrier of learning, we determine ex-

pectation values. So we investigate the harmonic 

oscillator first. 
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Fig.2: A swing is an example for a harmonic oscillator. 

6. Ground state of harmonic oscillator 

First we investigate the harmonic oscillator, as it is 

essential here, and as it is interesting by itself (see 

figure 2). The students formulate the energy term: 

E = p
2
/(2m) + ½  κ ∙ x

2
   {8} 

Hereby, κ denotes Hooke’s constant. 

6.1. Derivation of ground state 

We apply the expectation values: 

< E > = < p
2
 >/(2m) + ½  κ ∙ < x

2
 >  {9} 

Here the students easily apply the mathematical 

identity 

 < x
2
 > = < x >

2
 + (Δx)

2
,   {10} 

whereby the square of the uncertainty (Δx)
2
 denotes  

< (x – < x >)
2
 >. So they get: 

< E > = < p >
2
 /(2m) + ½ κ ∙ < x >

2
 + EQ {11} 

Hereby EQ is the additional quantum term: 

EQ = (Δp)
2
 /(2m) + ½ κ ∙ (Δx)

2
  {12} 

For Gaussian wave functions, the students verify 

with help of a working sheet that the uncertainty 

relation achieves the minimal uncertainty: 

Δx∙Δp = ½ ∙ h    {13} 

With it they derive (see equation {12}): 

EQ = h
2
 /[8m(Δx)

2
 ] + ½ κ ∙ (Δx)

2
  {14} 

Here the students determine the quantum fluctua-

tions q = (Δx)
2
 by application of the variational 

method. So they derive the value of q that minimizes 

the above term for the quantum energy EQ. So they 

get: 

(Δx)
2
 = q = h /[4m κ]

0,5
   {15} 

They insert this term into the above term for EQ. So 

they obtain the ground state energy of the harmonic 

oscillator: 

EQ = ½ ∙ h ∙ ω     {16} 

Thereby ω denotes the familiar angular frequency:  

ω = [κ/m]
0.5

      {17} 

While the classical ground state energy is zero, the 

quantum energy is nonzero (equation {16}). Such a 

nonzero ground state energy is called zero-point 

energy, ZPE, and its oscillation is called zero-point 

oscillation, ZPO (see equation {15}).  Our result is 

in full accordance with quantum theory (Ballentine 

1998). But can ZPOs be observed? 

6.2. ZPO observed in a crystal 

An atom in a crystal is at the minimum of the poten-

tial. That minimum can be locally approximated by a 

quadratic function of the coordinate (Fornasini and 

Grisenti 2015). So it represents a harmonic oscilla-

tor, and it should exhibit the quantum fluctuations 

(Δx)
2
 of the ZPO presented in equation {15}. In fact, 

this can be observed (see figure 3). 

 

Fig.3: ZPO in a Cu crystal: The mean square relative 

displacement MSRD corresponds to the squared uncertain-

ty. It is a function of the absolute temperature T (sketch on 

the basis of Fornasini and Grisenti 2015). The MSRD at 

zero K represents the ZPO. Diamonds: experiment. 

6.3. Oscillators in crystals are coupled 

The above oscillators in a crystal are coupled. This 

can be modeled by a partner swing (see figure 4). A 

partner swing exhibits two stable collective oscilla-

tions: the two oscillators can swing with the same 

phase and low frequency or with opposite phase and 

high frequency. If more swings are coupled, then 

these swings can form waves that oscillate at specif-

ic angular frequencies ω and corresponding energies 

hω. The analogous waves in crystals are called pho-

nons. Can these phonons be observed? 

 

Fig.4: A partner swing: The oscillators oscillate in phase 

at the left and with opposite phase at the right. 

6.4. Phonons observed in crystals 

In a rhodium crystal, different phonons have been 

observed (see figure 5). Thereby, the phonons are 

marked on the horizontal axis, and the correspond-

ing ZPEs are shown at the vertical axis. The theoret-

ical calculations are presented by the lines and the 

corresponding measurements are presented by dia-

monds. The figure shows precise accordance of the 

modeled and observed ZPEs. This clearly confirms 

the concept of the ZPOs and ZPEs of waves. 

Of course, there are also excited states correspond-

ing to the ground states shown in figure (5). 

 

Fig.5: ZPEs of waves, so-called phonons, in a rhodium 

crystal (sketch on the basis of Heid, Bohnen and Reichardt 

1999). Line: theory. Diamonds: measurement. Horizontal 

axis: phonons with typical notation of solid state physics. 

Vertical axis: ZPE in milli-eV. 
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7. Ground state of microscopic part 

Next we apply the methods that we used for the 

harmonic oscillator. So we analyze the microscopic 

part of the model. Accordingly we get: 

< E > = < p
2
 >/(2m) – G∙M∙m ∙ < a

-1 
> {18} 

Here we apply the identity a
-1

 = (a
2
)

-0.5
. Furthermore 

we use the approximation < (a
2
)

-0.5 
> ≈ (< a

2 
>)

-0.5
. 

And again we utilize equation {10}. So we get: 

< E > = < p >
2
 / (2m) + (Δp)

2
 /(2m) 

  – G∙M∙m ∙ (< a
 
>

2
 + (Δa)

2 
)

-0.5
 

Here we expand in linear order in (Δa)
2
/< a

 
>

2
. So 

we obtain: 

< E > = < p >
2
 /(2m) + Ecl,G + EQ  {19} 

Hereby Ecl,G is the non-quantum gravity term 

Ecl,G = – G∙M∙m/< a 
 
>  {20} 

and  EQ is the additional quantum term: 

EQ = (Δp)
2
/(2m) + ½ G∙M∙m ∙(Δa)

2
/< a

 
>

3
  {21} 

Again we use equation {13}. So we get: 

EQ = h
2
/[8m∙(Δa)

2
] + ½ G∙M∙m ∙(Δa)

2
/< a >

3
 {22} 

7.1. Higher dimension 

At high density, gravity is very strong and tends to 

make objects very compact. Examples are white 

dwarfs, neutron stars and black holes. Another ex-

ample for a very compact object is a parachute: in 

the unfolded state it is practically two dimensional 

and large, while in the folded state it is three dimen-

sional and small. This example shows that compact 

objects can be generated by an increase of the di-

mension. Have dimensions larger than three been 

observed experimentally? Yes, four dimensional 

states have been observed in two different experi-

ments that realize the four – dimensional quantum 

Hall effect (Lohse et al. 2018; Zilberberg 2018 et 

al.). Accordingly, we generalize our model to di-

mensions D ≥ 3. For it, the potential energy term 

Epot = – G∙M∙m / < a
 
>   {23} 

is replaced by the following term: 

Epot = – G∙ LP
D-3

 ∙M∙m / < a
D-2 

>  {24}    

The exponent D – 2 is a consequence of Gaussian 

gravity (Gauss 1813; Bures 2011), and the factor 

LP
D-3

 can be derived by using the concept of the 

Schwarzschild radius (see Carmesin 2017, Carmesin 

2019). With it we generalize equation {20}: 

ED,cl,G = – G∙LP
D-3

∙M∙m/ < a
 
>

 D-2
 {25} 

Here and in the following, we mark the dependence 

of the energy on D by a subscript. In D dimensional 

isotropic space, the uncertainty relation {13} be-

comes: 

Δx∙Δp = ½ ∙ D ∙ h    {26} 

So the quantum term is generalized as follows: 

ED,Q = D
2
h

2
/[8m∙(Δa)

2
] 

+ ½ ∙ (D – 2)∙G∙LP
D-3

∙M∙m∙(Δa)
2
/< a

 
>

 D
  {27} 

 

7.2. Planck units 

In order to simplify the above equations, we use 

Planck units, we use the normalized energy E = 

E/(m∙c
2
), and we apply equation {4}. So we get: 

ED,cl,G = – 1/(2∙< aM > ∙ < a
 
>

 D – 2  
) {28} 

Similarly we obtain: 

ED,Q = D
2
/[8m

2
 ∙(Δa)

2
] 

+ (D – 2)∙(Δa)
2
/(4∙< aM > ∙ < a

 
>

 D 
)   {29} 

7.3. Quantum fluctuations 

Here we investigate the case in which small particles 

have not yet formed. Then the distance a is approx-

imately equal to b. Again the students determine the 

quantum fluctuations q = (Δb)
2
 by application of the 

variational method. So they derive the value of q 

that minimizes the above term for the quantum ener-

gy ED,Q. So they get: 

(Δb)
4
 = D

2
 ∙< aM >∙< b >

 D 
/[2(D – 2)∙m

2
]  {30} 

They insert this term into the above term for EQ. So 

they obtain the ground state quantum energy: 

ED,Q = D ∙ [(D – 2) / [8∙< aM > ∙ m
2 
∙ < b >

D 
] 

1/2
 {31} 

7.4. Density 

Next we express the above two energies in terms of 

the density ρD in D dimensions. In isotropic Planck 

units (here the volume of a ball or hyperball is used, 

see Carmesin 2018a-d), the volume of a ball with a 

radius b is V = b
D
, and the density is the mass per 

volume: 

ρD  = m/b
D
     {32} 

The Schwarzschild radius b can be derived accord-

ing to the concept of Michell (see Michell 1784). So 

one gets (Carmesin 2017, Carmesin 2019): 

b = (2∙ ρD)
-0.5

    {33} 

According to equations {4} and {32}, we derive the 

radius aM as a function of ρD. So we get: 

< aM > = (2∙ ρD) 
– 1 / ( D + 1 )

  {33} 

We express EQ (see equation {31}) in terms of ρD  

by using the above three relations. So we get: 

ED,Q = ρD 
  ( 3 D ∙  D – D – 2 ) / ( 4 D + 4 )

  

∙ 2 
( 3 D ∙ D – 3 D – 4 ) / ( 4 D + 4 )

 ∙ D ∙ (D – 2)
1 / 2 

 {34} 

Analogously we derive the classical gravity term 

(see equation {28}). So we obtain: 

ED,cl,G = – ρD 
 ( D ∙ D – D ) / ( 2 D + 2 )

  

∙ 2 
( D ∙ D – 3 D – 2 ) / (2 D + 2 )

   {35} 

7.5. Adiabatic separation 

The term < p >
2
 /(2m)  in equation {19} describes 

the term a’(t)
2
. So it is the basis for the quantum 

physical generalization of the dynamics of the FLE 

(see Carmesin 2017, Carmesin 2018a-d). The other 

two terms in equation {19} characterize the faster 

dynamics of the formation of the wave function. We 

call the sum of these the reduced normalized energy 

ED,loc. So we get: 

ED,loc = ED,Q + ED,cl,G   {36} 
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Fig.6: Energy ED,loc  as a function of the scaled density ρD 

for dimensions 3 (solid line), 4 (dotted), 5 (dashdotted), 6 

(dashed) and 7 (densely dotted). Arrows: dimensional 

transitions at critical densities ρD,c. 

8. Dimensional transitions 

According to the variational method, the energy ED  

(see equations {34} – {36}) is minimized by varia-

tion of the dimension D. The students achieve this 

graphically (see figure 6) and numerically (Sprenger 

2018). As a result, three dimensional space is stable 

at densities below ρD=3,c = 0.0476. In the course of 

the expansion of the universe, the density decreased 

according to the FLE. Accordingly, when that densi-

ty was reached, then there occurred a transition from 

five dimensional to three dimensional space. Simi-

larly, five dimensional space formed from six di-

mensional space at the critical density ρD=5,c = 0.053. 

 

Fig.7: Enlargement illustrated by an analogy: Each mag-

netic ball corresponds to an ER. A dimensional transition 

from D = 3 to D = 2 is modeled. Note, the smallest possi-

ble dimension achieved by the present model is 3 (see 

Carmesin 2018a-d, Carmesin 2019). 

9. Enlargement 

At a dimensional transition from a higher dimension 

D+s to a lower dimension D, the space is enlarged 

by a factor ZD+s 


 D. This factor is derived by using a 

cubic or hypercubic model (see figure 7). At dimen-

sion D+s, there are n balls at an edge. Here we use 

the diameter as the unit. So we obtain the length LD+s 

of that edge:    

LD+s = n    {37} 

By definition we get: 

LD = n ∙ ZD+s 


 D   {38} 

At the transition, the number of balls is invariant. So 

we obtain: 

LD
D
 = (n ∙ ZD+s 


 D)

D
 = n

D+s
  {39} 

We solve for ZD+s 


 D. So we get: 

ZD+s 


 D = n
s/D

    {40} 

10. Dimensional horizon 

The space enclosed by the actual light horizon rlh 

was smaller at earlier times according to the FLE. At 

the density ρD=3,c = 0.0476, the corresponding vol-

ume consisted of 2
301

 ERs. If we analyze the dynam-

ics backwards in time, then we realize that these ERs 

were folded to higher dimensions, and ultimately 

there were two ERs in each dimensional direction at 

the dimension 301. This dimension is called the 

dimensional horizon Dmax. So we get: 

Dmax = 301    {41} 

11. Time evolution 

The whole time evolution from the dimensional 

horizon until today can be calculated. For it we de-

rived the dynamics at the transition by using Fermi’s 

golden rule (Carmesin 2018a-d, Carmesin 2019). 

The elaboration of this is not in the scope of the 

present report. However, we summarize the results 

of that time evolution here. The evolution of the 

radius is shown in figure (5). That time evolution is 

based on three numerical inputs only (see Carmesin 

2017, Carmesin 2018a-d, Carmesin 2019): the three 

universal constants G, c and h. Moreover, that time 

evolution solves problems of the cosmic inflation: 

horizon problem, flatness problem, reheating prob-

lem, fine-tuning problem (see Carmesin 2017, Car-

mesin 2018a-d, Carmesin 2019).   

 

Fig.8: Time evolution of the actual light horizon (see 

Carmesin 2018a-d, Carmesin 2019): Triangle: today. 

Cross: density of radiation was equal to density of matter. 

Square: first quarks formed. Full circle: three dimensional 

space formed. Other circles: other dimensional transitions.  

Derived enlargement factor is in accordance to observa-

tions (Guth 1981; Broy 2016).  
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12. Model of the vacuum 

The vacuum has a density (Einstein 1917; Perlmutter 

et al. 1998; Riess et al. 2000; Smoot 2007). This is 

modeled in this section. The model has been intro-

duced in three different manners earlier (see Carme-

sin 2018a-d, Carmesin 2019). Here we introduce the 

model by developing an analogy to the phonons. 

Additionally we work out limitations of that analo-

gy.    

12.1. Waves 

The density ρv of the vacuum is a property of space, 

properties of space are dominated by gravity (see 

Einstein 1915), and gravity should be generated by 

quantized gravitational waves in a quantum field 

theory. Also a phonon is a quantized wave. So there 

is an analogy. 

12.2. Ground state 

The density ρv of the vacuum exists even without 

any additional excitation. So ρv should be the density 

of a ZPO of a gravitational wave. Analogously, the 

phonons in figure (5) are ZPOs of waves.  

12.3. Microscopic objects 

The atoms exist together with the phonons, and the 

atoms are the basic oscillators that form the waves. 

Analogously, the ERs form microscopic objects that 

exist together with the quantized gravitational 

waves. Thereby the ERs are the basis of the space 

dimensions at which the waves form. 

12.4. Boundary 

Each phonon is within the boundaries of its crystal, 

and these boundaries determine the longest wave 

length of the phonons. Analogously, the quantized 

gravitational waves, that can have any influence 

upon us, are within the light horizon rlh, and the 

longest wave length is determined by rlh. There is a 

difference here: there are waves and wavelengths 

even beyond the light horizon. 

12.5. Surrounding versus evolving structure 

The phonon exists in a stable crystal, and the crystal 

exists in a stable space. Both structures have formed 

before the phonon can form. In particular, the oscil-

lators of the phonon form in the potential that is 

formed by the crystal. Altogether a phonon forms in 

a structure that has formed before. 

In contrast, the density ρv of the vacuum forms the 

space. There are only two structures in which the 

ZPO can form: The dimension D is formed accord-

ing to the dimensional transitions based on the den-

sity of the ERs, and the light horizon is the boundary 

of causal influence upon us. So ρv is based on ZPOs 

that evolve in the course of time. These ZPOs are 

called evolving ZPOs, EZPOs. 

12.6. Origin of EZPOs within light horizon 

The EZPOs within the light horizon formed at the 

time of the dimensional horizon, as the earliest ob-

servable waves formed at that time. At Dmax, the 

scaled density was ρD ≈ ½ in a very good approxi-

mation (see figure 1). Here we use this approxima-

tion, for more precise calculations see (Carmesin 

2018b-c, Carmesin 2019). Correspondingly, the 

energy of a single mode was: 

Ev (Dmax) = ½    {42} 

Moreover, the scaled length of that mode was: 

L (Dmax) = 1;   V = L
D
 = 1  {43} 

At each dimension D, gravitational waves exhibit D 

modes of directions of propagation and np = D – 1 

modes of transverse polarization. However, the 

maximal possible scaled density is ½, and at the 

scaled length L = 1, the scaled density cannot be 

smaller than ½ (see figure 1). So the scaled density 

is ½. Correspondingly, this density is an average or 

linear combination of the single modes, and the 

averaged density is ½: 

      < ρv > (Dmax) = ½;  np = D – 1  {44} 

12.7. Relativistic EZPOs 

The EZPOs are fully relativistic. So they propagate 

at the velocity of light. Accordingly, many EZPOs 

propagate through the length L = 1 at Dmax. Corre-

spondingly, the occupation number of the EZPOs 

need not be one like in the case of phonons. Instead 

the occupation number of the EZPO is determined 

by the time evolution starting at Dmax. 

12.8. EZPOs at a dimensional transition 

At a dimensional transition from dimension D+s to a 

dimension D, the length is enlarged by the factor 

ZD+s 


 D: 

L (D) =  L (D+s) ∙ ZD+s 


 D   {45} 

This enlarged length is available for the EZPOs, so 

the wavelength increases by that factor. Analogous-

ly, the longest wavelength of the phonons in a crys-

tal increases by a factor Z, if the size of the crystal 

increases by that factor. So the EZPO experiences a 

redshift, and its ZPE decreases correspondingly. So 

the energy of a single mode is as follows: 

Ev (D) =  Ev (D+s) / ZD+s 


 D  {46} 

Moreover, the number np of transverse polarization 

modes is reduced to D – 1: 

np = D – 1       {47} 

The energy of the directions of propagation is not 

lost, as the waves can propagate into a lower dimen-

sional structure (see figure 9).  

 
Fig.9: Propagation of waves at the ear: The three dimen-

sional waves (loosely dotted) propagate into the effective-

ly one dimensional auditory canal, without loss of energy.   
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12.9. Why is there no short-wave EZPO? 

In a crystal, each atom oscillates around a fixed 

position in the crystal. As a consequence, each wave 

of coupled oscillators (each phonon) in a crystal is 

related to the periodic fixed positions of its atomic 

oscillators. As a result, there are many modes of 

harmonic oscillators and of phonons, and each such 

mode has its own ZPO and the corresponding ZPE. 

In contrast, the EZPOs are fully relativistic and 

propagating with full freedom. So there occur no 

such fixed points with fixed potentials, and there is 

no corresponding additional EZPO with a shorter 

wavelength and corresponding smaller EZPE than 

that presented in equation {46}. 

Note that any ZPO that forms later can be distin-

guished from the EZPOs of the vacuum density. 

12.10. EZPOs at D = 3 

At three dimensions, the energy of a single mode is 

(see equations {42} and {46}): 

Ev (D=3) = 0.5/ ZDmax 


 D=3    {47} 

The length and volume of an EZPO are (see equa-

tions {43} and {45}): 

L(D=3) = ZDmax 


 D=3 ;  

V(D=3) = ZDmax 


 D=3
3
     {48} 

12.11. Density of EZPOs at D = 3 

The scaled density of a mode is the scaled energy 

divided by the scaled length. The average scaled 

density experienced an additional decrease by the 

factor (D – 1)/(Dmax – 1), according to the loss of 

transverse modes (see equation {44}). So we get: 

< ρv > (D=3) = 2∙Ev(D=3)/[ V(D=3)∙(Dmax – 1)] 

We insert equations {46} and {48}. So we obtain: 

< ρv > (D=3)  

= 2∙< ρv > (Dmax)/[ ZDmax 


 D=3
4 

∙ (Dmax – 1)]  {49} 

This equation describes the density of the vacuum at 

the time tf of the formation of three dimensional 

space. How does that density ρv evolve after that 

time tf? 

12.12. EZPOs during expansion via FLE 

At times after tf, the EZPOs do not change, as there 

is no physical basis for a change of the EZPO, and 

since the invariance with respect to time is a defin-

ing criterion for the vacuum density. 

As a consequence, the expansion of space is a result 

of an increase of the number of EZPOs. Thereby, the 

number of EZPOs increases according to the FLE 

(see Carmesin 2018a-d, Carmesin 2019 for details). 

12.13. Calculation of the vacuum density 

The density of the vacuum can easily be calculated. 

The light horizon is (see Planck 2018; Gott et al. 

2005): 

rlh = 4.16 ∙ 10
25

 m or rlh = 2.58 ∙ 10
61

 {50} 

The space expanded (according to the FLE) from the 

time of Dmax at the scaled density (of radiation) ρDmax 

= 0.5 until today at the scaled density of radiation ρr, 

today = 6.41 ∙ 10
-127

  (Planck 2018). Thereby the scale 

factor kDmax 


 D=3 caused a decrease of the energy of 

radiation according to the redshift by the factor 

1/kDmax 


 D=3 and an increase of the volume by the 

factor (kDmax 


 D=3)
3
. So the density decreased by the 

factor 1/(kDmax 


 D=3)
4
. So we get the scale factor: 

kDmax 


 D=3 = (ρDmax/ ρr, today)
1/4

 = 2.97 ∙ 10
31

   {51} 

By definition, the original length L = 1 at Dmax in-

creased to the scaled light horizon rlh by the two 

factors: the enlargement factor ZDmax 


 D=3 and the 

scale factor kDmax 


 D=3. So we get: 

rlh = kDmax 


 D=3 ∙ ZDmax 


 D=3   {52} 

We solve this equation for ZDmax 


 D=3: 

ZDmax 


 D=3 = rlh / kDmax 


 D=3 = 8.69 ∙ 10
29

  {53} 

We calculate the density of the vacuum by using 

equation {49} and by inserting equation {53}, and 

<ρv> = ½ (see equation {44}), as well as Dmax  = 301 

(see equation {41}). So we get: 

< ρv > = 5.84 ∙ 10
-123

    {54} 

The observed scaled density of the vacuum is 

(Planck 2018): 

ρv,obs  = 4.78 ∙ 10
-123

     {55} 

The difference between the modeled and the ob-

served density amounts to 22 %. This accordance is 

already good, as that density varies by 123 orders of 

magnitude, and it can be improved as follows.  

13. Outlook: polychromatic vacuum 

In section 12 the density of the vacuum has been 

modeled with one EZPO and one corresponding 

EZPE only. However, in the course of the expansion 

of space, the dimensional horizon varies slightly. As 

a consequence the forming EZPOs vary slightly in 

the course of time. So the actual vacuum is a mixture 

of EZPOs, so it is a polychromatic vacuum. The 

average density of the actual polychromatic vacuum 

is (see Carmesin 2018a-d, Carmesin 2019):  

< ρv,polychromatic >  = 4.7426 ∙ 10
-123

   {56} 

This amounts to a difference between the modeled 

and the observed density of 0.038 % only. 

14. Outlook: dark matter 

In order to see the scope of the present approach, it 

is mentioned here that the dark matter is obtained as 

a particular local minimum of the energy term ED,loc 

(see equations {34} - {36}). 

15. Experience with teaching 

The students were especially interested in the topic 

and attended many additional meetings. They per-

formed related observations at our school observato-

ry (see Helmcke et al. 2018). It was possible to per-

form the method of problem solving in these lessons. 

Thereby we made transparent the goal, planned the 

solution in the plenum, solved it in groups and pre-

sented the results in the plenum. Hereby the micro-

scopic part of the model including cosmic inflation 
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was treated in 18 lessons of 90 min each, while in 

seven lessons we arrived at the model of the vacuum 

density, and in 14 lessons we modeled the dark mat-

ter. In all lessons the students actively developed 

their ‘process related competences’ of ‘problem 

solving’ and ‘modeling’ (Kultusministerium, 2017). 

By such problem solving, the students practice a 

particularly efficient method for learning (Hattie, 

2009). When the students investigate the model, then 

they apply the essential hypothetic deductive method 

(Kircher, 2001; Popper 1974). Furthermore the stu-

dents developed challenging ‘content related compe-

tences’ in astronomy, physics and mathematics. 

Some students developed projects about these topics 

and won prizes at Jugend forscht competitions. The 

students appreciated that the whole project is con-

ceptually only based on the combination of general 

relativity and quantum physics, and it is numerically 

based on three inputs only: the three universal con-

stants G, c and h. All students presented the project 

in public astronomy evenings in the assembly hall of 

our school. Thereby also a Socratic dialogue was 

used (see Carmesin 2018c). The assembly hall was 

filled with guests and many visitors discussed the 

topic with the students during the break. 

16. Discussion 

The essence of the combination of general relativity 

and quantum physics is worked out here: According 

to the uncertainty relation and to the Schwarzschild 

radius, there are elementary regions without observ-

able internal structure, and on the small length scale 

of two such regions, we arrive at a sub curvature 

length scale. This is characterized by the novel 

equivalence principle.  

In order to derive the consequences of that principle, 

a simple analogous structure is used here: the har-

monic oscillator and coupled harmonic oscillators. 

With it, three fundamental results can be obtained: 

the era of cosmic inflation, the dark energy and the 

dark matter can be explained. The first two results 

are worked out in full detail here, so the project can 

directly be applied in a learning group.   

The present approach provides a smooth learning 

process with the following features: The process is 

based on the two fundamental theories general rela-

tivity and quantum physics only. The process is 

based on three numerical inputs only: the universal 

constants G, c and h, and it arrives at a precise ac-

cordance with observations. The analogy based 

learning process proposed here has three mile 

stones, the equivalence principle, the harmonic os-

cillator and its transfer to the energy term ED,loc (see 

eq. {36}), as well as coupled harmonic oscillators 

and the transfer to the vacuum density or dark ener-

gy. Thereby, the two analogies integrate the new 

knowledge into existing knowledge, and correspond-

ingly, a very high learning efficiency is achieved 

(see Hattie 2009). 
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