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Abstract 

From the Cosmic Microwave Background CMB, the flatness problem and the horizon problem 

arose. An extraordinarily increase of distances in the early universe, the Cosmic Inflation, was 

proposed as a possible solution, whereby suggested mechanisms for such an increase have been 

criticized (Steinhard, 2011). We apply a theory that explains the Cosmic Inflation by an extended 

Friedmann-Lemaitre model combined with an energy term (Carmesin, 2017). We investigate vari-

ous questions by performing computer simulations. We observe a sequence of phase transitions 

that cause an extraordinarily fast increase in distances. Our findings are in excellent quantitative 

agreement with observations of the CMB. Thereby the theory depends only on first principles and 

the fundamental constants G, c and h and we apply no fit in particular. We present the develop-

ment of the project in the framework of a Jugend forscht club. 

1. Introduction

From the Cosmic Microwave Background CMB, the 

flatness problem and the horizon problem arose. To 

describe the expansion of the universe, a Friedmann-

Lemaitre model has been frequently used until now 

(see Karttunen 2007). The Friedmann-Lemaitre 

differential equation 

(
�̇�

𝑎
)

2

=
8𝜋𝐺

3
∙ (𝜌𝑀 + 𝜌𝑉) {1} 

does not solve the two problems arising from the 

Cosmic Microwave Background. One additional 

problem, which is not solved by the Friedmann-

Lemaitre equation is the singularity problem (see 

Kiefer 2008), which considers a singularity as non-

physical. In the Friedmann-Lemaitre equation 𝜌𝑀 is

the matter density and 𝜌𝑉 is the vacuum density. The

vacuum density is constant. The solution of the 

Friedmann-Lemaitre model provides the evolution 

of the scale factor a(t). 

2. Problems

The singularity problem is visible in the solved 

Friedmann-Lemaitre equation, where the density 

tends to infinity, when a(t) and t tends to zero (see 

figure 1). 

Figure 1: Symbolic evolution of the Friedmann-Lemaitre 

equation, numerically solved. With 𝐺 = 1, 𝜌
𝑉

= 1 and

𝑚 = 1. 

The horizon problem and the flatness problem arise 

from the CMB (see figure 2). 

Figure 2: Cosmic Microwave Background (figure: NASA 

WMAP Science Team, 9 year WMAP image of back-

ground radiation). 

3. The horizon problem

The horizon problem arises from the temperature 

fluctuations which amount to 
𝛥𝑇

𝑇
= 0.000024. So the
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full solid angle 4𝜋 covered by the Cosmic Micro-

wave Background has a homogenous temperature 

distribution. The full solid angle is so large that on 

the basis of the Friedmann-Lamaitre equation it 

would be causally disconnected and it would not be 

possible for radiation to distribute the energy homo-

geneously in the time since the big bang. 

4. The flatness problem

The second problem arising from the CMB is the 

flatness problem. The space-time curvature is meas-

ured and indicates a flat space on a large scale. 

Modelled with the Friedmann-Lemaitre equation it 

would have been even more flat in the early universe 

which is highly unlikely. 

5. Possible solution for the problems

To solve the three problems a rapid increase in dis-

tances in the early universe, the Cosmic Inflation, 

was proposed by Allan Guth in 1981 (see Guth 

1981). In many approaches to the problems an in-

flaton field is used, which requires very sensitive fit 

parameters to fit to observations. In this paper, we 

propose a new model without any fit parameters, an 

extended Friedmann-Lemaitre equation, to describe 

the Cosmic Inflation and solve these problems. 

6. The model

The standard Friedmann-Lemaitre equation can be 

derived from a spherical model with a scale factor a, 

a probing mass m and the density 𝜌 of the sphere. 

Figure 3: Model from which the Friedmann-Lemaitre 

equation can be derived. 

From this spherical model, we can derive the Fried-

mann-Lemaitre equation (see Carmesin 2017, Car-

mesin 2018 a,d): 

(
�̇�

𝑎
)

2

=  
8𝜋𝐺

3
∙ (𝜌𝑀 + 𝜌𝑉) {2} 

We extend the model by adding a radius for our 

probing mass in order to describe the density of the 

probing mass, which was not possible in the old 

model based on a point-like mass. 

Figure 4: Model from which the extended Friedmann-

Lemaitre equation can be derived. 

In order to obtain the corresponding dynamics, we 

derive the quantum physical expectation values 〈�̇�〉 
and 〈𝑎〉 and denote these by �̇� and 𝑎 in the following 

(for details see Carmesin 2018 a,d). In the resulting 

extended Friedmann-Lemaitre equation we intro-

duce the scaled density �̃� =
𝜌

𝜌𝑃𝐷
 which is the matter 

density divided by the maximal density, the Planck 

density 𝜌𝑃𝐷. From this new spherical model (see

figure 4), we get the following extended Friedmann-

Lemaitre equation for three dimensions (see equa-

tion {3}). Hereby we introduce the Planck time 𝑡𝑃.

(
�̇�

𝑎
)

2

=  
2

𝑡𝑃
2 ∙ �̃� ∙ [1 − 6 ∙ �̃�

1

2] {3} 

Moreover we generalize this model to spatial dimen-

sions 𝐷 ≥ 3 and obtain the following extended 

Friedmann-Lemaitre equation (see Carmesin 2018 

a,d, see {4}) 

(
�̇�

𝑎
)

2

=
2

𝑡𝑃
2 ∙ �̃� ∙ [1 − √2𝐷−2 ∙ (𝐷 − 1) ∙ 𝐷2 ∙ �̃�

(𝐷−1)2

2(𝐷+1)] 

{4} 

with the corresponding scaled energy term (see 

Carmesin, 2018 a,d, see {5}): 

𝐸𝐷 =  −�̃�
𝐷−1

𝐷+1 + √2𝐷−2 ∙ (𝐷 − 1) ∙ 𝐷2 ∙ �̃�
𝐷−1

2   {5} 

Thereby the scaled energy term 𝐸𝐷 is the quantum

physical expectation value 〈𝐸〉 at the ground state 

divided by 𝑚 ⋅ 𝑐2.

7. Dimensional transitions

The scaled energy 𝐸𝐷 is calculated for each scaled

density �̃� and for any Dimension 𝐷 ≥ 3 (see figure 

5). 
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Figure 5: Scaled energy 𝐸𝐷 as a function of the spatial

dimension 𝐷 at the scaled density  �̃� = 0.009. 

From the table in figure 5 we get the following 

graph. 

Figure 6: Scaled energy as a function of the spatial di-

mension D at the scaled density  �̃� = 0.009. Here the 

ground state energy is at 𝐷 = 4. 

In order to apply the D-dimensional version of the 

extended Friedmann-Lemaitre equation (see equa-

tion {4}), we calculate a critical density  �̃�𝑐𝐷 at

which there occurs a dimensional transition of the 

ground state from 𝐷 + 1 to 𝐷 for each dimension. 

For it we minimize the scaled energy term (see equa-

tion {5}). By applying the variational principle, we 

obtain the following values for the critical scaled 

densities (see figure 7). 

Figure 7: Critical scaled densities for dimensional transi-

tions. 

8. Solving the extended Friedmann-Lemaitre

equation

The extended Friedmann-Lemaitre equation can be 

solved with numerical integration. For it we used the 

Runge-Kutta method of fourth order. 

Figure 8: Solved extended Friedmann-Lemaitre equation: 

Discontinuities arise at dimensional transitions. 

The dimensional transitions take place where the 

graph is not continuous (see figure 8). The graph in 

figure 8 shows symbolically the dimensional transi-

tions with the corresponding increase in the scale 

factor. The exact values can be found in Model for 

the Dynamics of Space (see Carmesin 2018 a,d). 

Our critical density �̃�𝑐3 can be utilized in order to

calculate the observed density of 𝜌𝑀 of the universe.

Our result is in excellent accordance with observa-

tions. Thereby no fit must be applied (see Carmesin 

2017, see Carmesin 2018 a,d). 

9. Summary

We solve the extended Friedmann-Lemaitre equa-

tion generalized for spatial dimensions 𝐷 ≥ 3 nu-

merically (see section 8). So we obtain the scaling 

radius 𝑎 as a function of the time 𝑡 including dimen-

sional transitions at critical densities �̃�𝑐𝐷 (see section

7). Based on this solution the singularity problem 

and the flatness problem can be solved when the 

durations of the dimensional transitions are calculat-

ed with help of Fermi’s golden rule (see Carmesin 

2018 a,d). Furthermore these durations show in full 

detail how the singularity problem is solved by the 

dimensional transistions (see Carmesin 2018 a,d). 
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