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Abstract 
Usually telescope based research on the big bang is performed by the application of huge 
telescopes like the Hubble-Space-Telescope. However, in our work we propose three methods for 
the big bang observation, which are applied with an 11 inch telescope in our school observatory. 
The first method is based on the redshift. We are using the redshift to calculate the velocity of the 
galaxies in the framework of the Doppler effect and more generally the expansion of space. From 
the Hubble-diagram, we then can get the age of the universe by doing a regression. The second 
method we used is based on a comparison of our telescope with the Hubble-Space-Telescope. For 
the third method we use supernovae. Here we are utilizing the brightness of a supernova. The 
results show that the observation of the big bang is also possible with a much smaller telescope 
then e.g. the Hubble-Space-Telescope. 

1. Introduction
After the big bang 13.8 billion years ago 
(Beckmann, 2010), our universe began to expand. 
Based on the measurements on the redshift of 
different galaxies done by Slipher (1915), in 1922 
Carl Wirtz discovered a relation between the redshift 
𝑧𝑧 and the distance 𝑑𝑑 of galaxies (Appenzeller 2009, 
Wirtz 1922). The theoretical explanation was 
provided by Alexander Friedmann (1922) and 
Georges Lemaitre (1927). Later in 1929 Edwin 
Hubble also found a relation between the distance 
and the redshift of a galaxy, he formulated Hubble’s 
law (Hubble, 1929). In our work we provide three 
methods for the observation of the big bang with an 
11 inch telescope. In contrast, observations on the 
big bang are typically based on the usage of large 
telescopes (see for instance Hubble 1929). The 
telescope used throughout our research is the 
Celestron C11 with 2800 mm focal length. We 
capture our images using the ST-402 camera from 
SBIG while we take our spectra utilizing the DSS7-
spectrograph from SBIG. 

2. State of research
There are different methods for determining the age 
of the universe. In the first method the age is 
determined by utilizing the radial or escape velocity 
𝑣𝑣 of galaxies (see Slipher 1915). If the redshift z 
=Δλ/λ is interpreted by the Doppler effect, we get 
𝑣𝑣 = 𝑐𝑐 ⋅ 𝑧𝑧 for the radial velocity 𝑣𝑣 of a galaxy. 
Additionally the distances d of the galaxies are 
observed (see Hubble 1929). At redshifts smaller 
than z ≈ 0.2 the redshift is proportional to the 

distance: 𝑧𝑧 ∼ 𝑑𝑑. This relation is called Hubble law 
and the corresponding factor of proportionality is 
named Hubble constant 𝐻𝐻0 = 𝑣𝑣 ⋅ 𝑑𝑑−1 (Karttunen et 
al. 2007). With it one may calculate the Hubble time 
𝜏𝜏 = 𝐻𝐻0−1. That time is a quite good estimate of the 
age of the universe. However, observations at larger 
redshifts z > 0.2 show deviations from the Hubble 
law. So the Hubble constant 𝐻𝐻0 must be replaced by 
a time dependent Hubble parameter 𝐻𝐻(𝑡𝑡). 

3. Method 1
In our first method we observe the redshift z and the 
flux density S (Karttunen et al. 2007) of the radiation 
emitted by the galaxies. By utilizing the redshift z 
we determine the escape velocity v of the galaxies 
while we determine the distance d of the galaxies by 
utilizing the flux density S. 

Figure 1: Image of the galaxy M66 using a telescope with 
the aperture 11 inch. We utilized the telescope Celestron 
C11 and captured the image through the spectrograph 
DSS7 by using the camera ST-402.   
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4. Method 1 - Redshift
The galaxy M66 is an example for this method. First 
we take an image to focus the telescope on the 
galaxy (see figure 1). 

Figure 2: Spectrum of the galaxy M66 measured with the 
telescope Celestron C11 and with the spectrograph DSS7. 
Horizontal stripe: spectrum of the galaxy. Surrounding 
spectrum: light pollution in Stade.  

We measure the redshift by taking the spectrum of 
the galaxy utilizing the spectrograph (see figure 2). 
Second we capture the spectrum by cutting out the 
horizontal stripe at which the spectrum of the galaxy 
is placed within the image from the spectrograph 
(see figure 2). To get accurate measurements we 
have to calibrate the spectrograph. Calibration is 
done in a process consisting of five steps. First we 
take the spectral image of a neon lamp that contains 
some mercury in addition. Second we use the 
software called “spectra” to sum up the image 
intensities for each column. This gives us a plot of 
the unscaled calibration spectrum (see figure 3). 

Figure 3: Plot of the unscaled spectrum. 

In the third step we find known lines of neon and 
mercury in the plot of the calibration spectrum. 
Fourthly we transfer the wavelength and the 
horizontal position in the unit pixel of the known 
lines to a calibration graph (see figure 4). Fifthly we 
do a linear regression on the points in our calibration 
graph (see figure 4). This gives us the calibration 
equation 𝑦𝑦 = 5.4506𝑥𝑥 + 3971.6 with 𝑥𝑥 as the pixel 
coordinate in horizontal direction and 𝑦𝑦 being the 
corresponding wavelength in Å. After having 
calibrated the spectrograph, we now can measure the 
redshift. For doing so, we first have to identify the 
Hα-line in the captured spectrum. Next we use our 

calibration equation, from the calibration process, to 
get the wavelength 𝜆𝜆′ of the Hα-line in our captured 
spectrum of the galaxy.  

Figure 4: Calibration graph of calibration spectrum. 

Because we know the wavelength 𝜆𝜆 of the Hα-line 
from literature, we can easily calculate the redshift 
𝑧𝑧 = (𝜆𝜆′ − 𝜆𝜆)𝜆𝜆−1 = 𝛥𝛥𝛥𝛥 ⋅ 𝜆𝜆−1 where 𝜆𝜆′ is the Hα-
wavelength from our captured spectrum of the 
galaxy and 𝜆𝜆 the Hα-wavelength from literature. 

5. Method 1 - Distance

Figure 5: Our photo of the galaxy UGC 8058 (small 
image) with overlay (large image): Identification of stars 
that are nearly in the direction of the galaxy UGC8058 
using images of public databases (see Wikisky 2007). 

Next we measure the distance to each observed 
galaxy. For calculating that distance, we are utilizing 
the observed apparent magnitude m of the captured 
galaxy. With the apparent magnitude m we 
determine the flux density S (see Karttunen et al. 
2007). 

Figure 6: Data of starburst galaxies with a regression 
function and the corresponding standard deviation (see 
NASA/IPAC 2018). 
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We estimate an averaged luminosity P for the galaxy 
as follows. We observe galaxies with relatively 
intensive Hα – lines only. Next we measure the 
distance to each observed galaxy. For calculating 
that distance, we are utilizing the observed apparent 
magnitude m of the captured galaxy. With the 
apparent magnitude m we determine the flux density 
S (see Karttunen et al. 2007). We estimate an 
averaged luminosity P for the galaxy as follows. We 
observe galaxies with relatively intensive Hα – lines 
only. Based on the observed flux density 𝑆𝑆 and on 
the luminosity 𝑃𝑃 of similar galaxies we determine 
the distance 𝑑𝑑 of the observed galaxy utilizing the 
following equation: 

𝑑𝑑 = (𝑃𝑃 ⋅ (4𝜋𝜋𝜋𝜋)−1)0.5    {1} 

Before using this equation, we read out the counts 
for each pixel in the image. After the background 
was subtracted, we sum up all counts of all pixels in 
the star or galaxy. By doing so, we get a ratio of the 
number of counts and the flux density S of the stars 
for one image. Based on this ratio, we can now 
calculate the flux density S of the galaxy, by 
summing up all counts of all pixels of the galaxy and 
then multiply the sum with the ratio of the flux 
density and the counts. Here the used luminosity 𝑃𝑃 is 
the average over approximately 100 starburst 
galaxies (see figure 6). This was done by collecting 
a list of distances and flux densities from literature 
(see NASA/IPAC 2018). 
OBJECT z v in Ly/y d in 109 Ly 
EARTH 0 0 0 
M66 0.00234 [14] 0.00234[14] 0.295[2] 
NGC 3516 0.008816[133] 0.008816[133] 0.127[5] 
NGC 1275 0.01756[12] 0.01756[4] 0.203.9[3] 
NGC 2276 0.008062[10] 0.008062[10] 0.120[39] 
NGC 4151 0.003262[67] 0.003262[67] 0.0127[23] 
UGC 8058 0.04147[8] 0.04147[8] 0.593[7] 

Table 1: Data for the Hubble diagram (see NASA/IPAC 
2018). 

Since the redshift is the velocity as part of the speed of 
light, we can also put the redshift on the x-axis. We also 
plot the earth with a redshift of 0 and a distance of 0. The 
table 1 shows literature values for the Hubble diagram. A 
plot of the literature values together with a linear 
regression is shown in figure 6. 

Figure 7: Data for the Hubble diagram (see NASA/IPAC 
2018). 

Now we want to show the process of measuring the 
distance for the galaxy UGC8058 as an example. For it we 
determine the counts Cu , the minimum flux density Smin 
and the maximum flux density Smax of UGC8058. First we 

select several stars in our image, in our example we select 
six stars. Second we get the apparent magnitude of those 
stars from literature. By applying the equation 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
 𝑆𝑆⊙ ⋅ 10−0.4�𝑚𝑚−𝑚𝑚⊙� with 𝑚𝑚⊙ as the apparent magnitude 
of the sun and 𝑆𝑆⊙ as the solar constant, we can calculate 
the flux density of the stars by substituting 𝑚𝑚 with the 
apparent magnitude of the star. Next we calculate the sum 
of counts for the selected stars. This is done by calculating 
the average count 𝑐𝑐𝑆̅𝑆 of a star in a square of size 𝑐𝑐𝑠𝑠 and the 
average count 𝑐𝑐𝑏̅𝑏 of the background near the star. The sum 
of counts for the star can be approximated as 𝑐𝑐𝑆𝑆 =
(𝑐𝑐𝑆̅𝑆 − 𝑐𝑐𝑏̅𝑏) ⋅ 𝑐𝑐𝑠𝑠. Now we get the flux density per count 
𝑆𝑆𝑐𝑐 = 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑐𝑐𝑠𝑠. Before the final step, we calculate the mean 
𝑆𝑆𝑐̅𝑐 and the standard deviation 𝜎𝜎𝑐𝑐 of the flux density per 
count over all of our selected neighbour stars. Then we 
calculate the minimal flux density 𝑆𝑆𝑚̅𝑚𝑚𝑚𝑚𝑚 = 𝐶𝐶𝑢𝑢 ⋅ (𝑆𝑆𝑐̅𝑐 − 𝜎𝜎𝑐𝑐) 
and the maximal flux density 𝑆𝑆𝑚̅𝑚𝑚𝑚𝑚𝑚 = 𝐶𝐶𝑢𝑢 ⋅ (𝑆𝑆𝑐̅𝑐 + 𝜎𝜎𝑐𝑐). 
Finally we use the function (see figure 6) 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 =
8.74653 ∙ 10−6/𝑆𝑆𝑚̅𝑚𝑚𝑚𝑚𝑚

0.5 to calculate  the minimal 
distance and 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 =  0.0000206188/𝑆𝑆𝑚̅𝑚𝑚𝑚𝑚𝑚

0.5 to calculate
the maximal distance, both in Mpc. These functions for 
the distances are derived by utilizing a regression of 
literature values (see figure 6). Since we are restricted to a 
telescope with an aperture of 11’’, we tend to select 
galaxies with an especially high luminosity at distances 
above 150 MLy. So we tend to underestimate the distance 
of galaxies with distances larger than 150 MLy. 
Accordingly we utilize the literature value of the distance 
for the galaxy UGC 8058 (see figure 9). 

6. Method 1 – Hubble diagram
The age of the universe can be determined by using 
the Hubble diagram (Beckmann, 2010). At the y-
axis of the Hubble diagram we mark the distance d 
in  109 light-years (𝐿𝐿𝐿𝐿) and at the x-axis we mark 
the velocity in Ly⋅ 𝑦𝑦−1. First we present the data 
found in the literature (see table 1 and figure 7) in 
order to obtain a basis for comparisons. 

7. Method 1 - Results
The table (see table 2) lists the values for the 
redshift, which we measured, and our measured 
velocities of the galaxies. Additionally the table 
includes the distances that we calculated as well as 
the time at which we made the measurements. 

Object z v in Ly/y d in 109 

Ly Date 

Earth 0 0 0 - 
M66 0.0026 0.0026 0.02 4/26/11 
NGC 3516 0.0104 0.0104 0.075 7/18/15 
NGC 1275 0.01664 0.01664 0.114 1/27/17 
NGC 2276 0.007467 0.007467 0.079 1/28/17 
NGC 4151 0.0006 0.0006 0.068 1/28/17 
NGC 6946 0.000133[10] 0.000133[10] 0.01141 2/6/17 
UGC 8058 0.0427 0.0427 0.593[7] 3/24/17 

Table 2: Our measurements for the Hubble diagram. 

By performing a linear regression, we get an 
equation 𝑦𝑦 = 12.61𝑥𝑥 + 0.0063. Here the gradient of 
the regression function gives us the age of the 
universe in the unit one billion years. Therefore we 
get 12.61 billion years as the age of the universe 

y = 12,974x + 0,0015 
R² = 0,9991 

0
0,1
0,2
0,3
0,4
0,5
0,6

0 0,02 0,04 0,06

d 
in

 b
ill

io
n 

Ly
 

v in Ly/y 

57



Helmcke, Carmesin et al. 

based on our measurements. State of the art 
measurements estimate the age of the universe at 
13.77 billion years (Planck Collaboration 2016). The 
Hubble diagrams based on our measurements with 
our 11 inch telescope are shown in figures (8) and 
(9). 

Figure 8: Hubble diagram with error bars for v and d 
based on our measurements. Because the data point for 
NGC 6946 is calculated from a literature value for the 
redshift, no error bars are shown. 

Figure 9: Hubble diagram based on our measurements 
including the Galaxy UGC 8058, with distance from 
literature of 0.593∙109 Ly. 

8. Method 2
The second method is based on the comparison of 
our telescope with the Hubble Space Telescope 
(HST). The idea is to investigate what the HST 
should observe when the time were not limited by 
the big bang. In particular we determine, in which 
distance the HST should still be able to observe 
objects. Our telescope in Stade has the aperture 
diameter 𝐷𝐷𝐶𝐶11 = 11 𝑖𝑖𝑖𝑖𝑖𝑖ℎ ≈ 0.28𝑚𝑚 and the HST has 
the aperture diameter 𝐷𝐷𝐻𝐻 = 2.4𝑚𝑚 ≈ 8 ⋅ 𝐷𝐷𝐶𝐶11.  

The galaxy with the largest distance 𝑒𝑒 = 12 ⋅ 109𝐿𝐿𝐿𝐿, 
that we have already observed with our 11 inch 
telescope, was APM08279+ 5255 (see figure 10) 
Thereby the light travelled this distance while the 
space expanded already to an even larger distance. 
In this section by distance we mean the distance 
travelled by the light. 

9. Method 2 – constant space
First we test the hypothesis of a universe without a 
big bang and without an expansion of space. 
Accordingly we use the hypothesis that the flux 
density S=P/A decreases with the distance 
proportional to 𝑑𝑑−2. From it we derive the distance 
dH at which the HST should still observe quasars. 

Figure 10: Quasar APM08279+5255 observed with 11’’ 
telescope. Distance: light travelled 12.05 billion Ly. 

Since the diameters are related described by 
𝐷𝐷𝐻𝐻 = 8 ⋅ 𝐷𝐷𝐶𝐶11 the aperture areas are related as 
follows: 𝐴𝐴𝐻𝐻 = 82 ⋅ 𝐴𝐴𝐶𝐶11 . So the flux densities 
required for an observation are related as follows: 
𝑆𝑆𝐻𝐻 = 64−1 ⋅ 𝑆𝑆𝐶𝐶11. According to our hypothesis we 
derived S ~ d-2 and we derive further that the HST 
should be able to observe quasars that are 8 times as 
far away as those that we can observe using our 
telescope C11. Based on the distance of the galaxy 
APM08279+5255 (see figure 10), which is 12.05 
billion Ly, the HST should be able to observe 
quasars at the distance 𝑑𝑑𝐻𝐻 = 𝑑𝑑𝑆𝑆 ⋅ 8 = 12.05 ⋅
109𝐿𝐿𝐿𝐿 ⋅ 8 =  96.4 ⋅ 109𝐿𝐿𝐿𝐿. However, the HST never 
observed a quasar at a  distance larger than 14 ⋅
109𝐿𝐿𝐿𝐿. So we reject the above hypothesis. 

10. Method 2 – expanding space
In our first hypothesis we considered a constant 
space. Now we want to include the expansion of 
space. Accordingly we test the hypothesis of a 
universe without a big bang and with an expansion 
of space. Again we derive the distance dH at which 
the HST should still observe quasars. 

Figure 11: Visualization of the flux propagating through 
an area A at a distance x. 

First we derive the energy density u corresponding 
to the flux density S as follows: The flux density is 
the energy E per area A and time t:  S = E/(A∙t)  (see 
figure 11). Next we expand this fraction by the 
length x that the light travelled during the time t: S = 
E∙x/(A∙x∙t). Here the product A∙x is the volume V 
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filled by the radiation that crossed the area A 
perpendicularly: V = A∙x. Moreover the fraction x/t 
presents the velocity of light c = x/t. We insert these 
terms and obtain the relation between the flux 
density and the energy density  u as follows:  

S = u∙c     {2} 

Second we analyse how an energy density u0 comes 
from a source to a telescope at a distance q. In 
general radiation achieves the distance q by a 
superposition of the velocity of propagation and by 
the expansion. Thereby the expansion can be much 
more effective than the propagation, see for instance 
figure 10. In order to achieve a lower bound for the 
density u at the distance q we omit the propagation. 
Correspondingly the change of the wavelength of a 
photon is λ’ = λ/q. So the energy per photon ε 
changes as follows: ε’ = ε/q. Additionally the 
volume of a portion of energy increases by the factor 
of 𝑞𝑞3, V’ = V∙q3. So the energy density 
corresponding to N photons changes as follows: 

u’ = N∙ε’/V’ = N∙ε/q4   {3} 

We realize that the energy density changes by the 
factor 𝑞𝑞−4. According to equation {2} the flux 
density changes by the same factor:  

S’ = S/q4      {4} 

The HST and our telescope in Stade receive the 
same power of the light for their cameras when the 
following condition holds (see equation {4}): 

S’C11∙AC11 = S’HST∙AHST = SC11/qC11
4 ∙AC11 {5} 

Or  SC11/qC11
4 ∙AC11= SHST/qHST

4 ∙AHST  {5} 

After solving the equation for qHST we get qHST  = 
 √8 ∙ qC11 ≈ 2.8∙ qC11. Now we can calculate the 
distance at which the HST should be able to observe 
quasars: 𝑑𝑑𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑑𝑑𝐶𝐶11 ⋅ √8 = 12 ⋅ 109𝐿𝐿𝐿𝐿 ⋅ √8 ≈ 34 ⋅
109𝐿𝐿𝐿𝐿. However, the HST never observed a quasar 
at a  distance larger than 14 ⋅ 109𝐿𝐿𝐿𝐿. So we reject 
the above hypothesis. 

 
Figure 12: Using our telescope C11 we took an image of 
the supernova SN 2017eaw (red circle) in the fireworks 
galaxy NGC 6946 (center). 

Summarizing the comparison of the C11 and the 
HST based on figure (10) indicates that there has 
been a big bang. 

11. Method 3 
The third method is similar to the first method. 
However here we utilize supernovae to determine 
the distance (see figure 12). To calculate the 
distance, we measure the observed apparent 
magnitude m of a supernova. From it we calculate 
the flux density F of the supernova. Since the 
luminosity of a supernova is well known (see 
Karttunen et al. 2007), we also know the power 
emitted from the supernova. From it we calculate the 
distance of the supernova. So we obtain the distance 
of the corresponding galaxy. By utilizing this 
method we eliminate the missing precise knowledge 
of power emitted by the galaxy (see figure 6). So our 
measurement of the distance of the galaxy becomes 
more accurate than in our first method. 

12. Summary 
Finding out more about the universe was always a 
driving factor in human curiosity, knowledge and 
science. Observations of the big bang are an 
important step for understanding our universe. In our 
research we show three methods for observing the 
big bang, whereby these methods are accessible 
even to pupils. In addition, our methods only require 
a telescope with a diameter of 11 inch. However, 
while the measurement of the wavelength works also 
for large distances, the determination of the distance 
with our first method works accurately only up to 
150 MLy while we can measure also large distances 
accurately by utilizing supernovae.  
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