Modern Linear Algebra: Geometric Algebra with GAALOP

Worksheet 1 , supplement of worksheet 1 , first problems of worksheet 3, worksheets 8 and 9, and last problems of worksheet 21
of the module „Mathematics for Business and Economics" of joint first-year bachelor lessons at Berlin School of Economics and Law/Hochschule für Wirtschaft und Recht Berlin (BSEL/HWR Berlin)

LV-Nr. 200691.01 \& 400691.01

Stand: 07. Jan. 2018

HWR Berlin, Wintersemester 2017/2018
 Mathematics for Business and Economics
 Berlin School of Economics and Law

Worksheet 1 - Exercises

Problem 1:

What is mathematics? Why are mathematical methods effective? Why does it make sense to apply mathematical methods if confronted with problems?

Please read the first part of the paper of physics Nobel prizewinner Eugene P. Wigner "The Unreasonable Effectiveness of Mathematics in the Natural Sciences - What is Mathematics?" and try to find and to identify your own epistemological position.

Problem 2:

What is your answer to the following question of mathematician and philosopher Morris Kline: „Is mathematics a collection of diamonds hidden in the depths of the universe and gradually unearthed, or is it a collection of synthetic stones manufactured by man, yet so brilliant nevertheless that they bedazzle those mathematicians who are already partially blinded by pride in their own creations?" (Quotation from Hal Hellman: Great Feuds in Mathematics. Ten of the Liveliest Disputes Ever. John Wiley \& Sons, Hoboken, New Jersey 2006, p. 203.)

Is mathematics a discovery or a human invention?
Is mathematics natural and an inherent part of nature existing always and for ever, or is mathematics artificial and a construction of the human mind?

Problem 3:

British physics Nobel prizewinner P. A. M. Dirac describes his view with the following words: "One may describe the situation by saying that the mathematician plays a game in which he himself invents the rules..." (Quotation from Paul A. M. Dirac: The Relation Between Mathematics and Physics, James Scott Prize Lecture, Proceedings of the Royal Society (Edinburgh), Vol. 59, 1938-1939, part II, pp. 122-129.

And Mathilde Marcolli, who has won the Sofja Kovalevskaya award in 2001, says: "If intelligent extraterrestrial life exists, they will most probably invent completely different mathematics," simply because "... mathematics can be invented freely, ..." (German quotation „Wenn es außerirdische Lebewesen gäbe, dann würden sie höchstwahrscheinlich auch eine vollkommen andere Mathematik erfinden," weil eben ,... Mathematik frei erfunden werden kann, ..." from Antonia Rötger: Zur Person - Matilde Marcolli, MaxPlanckForschung, Das Wissenschaftsmagazin der Max-Planck-Gesellschaft, Issue $1 / 2005$, pp. 76-80).

As simple example for such a free invention of mathematics, we will compare different solution strategies for the following problem:

What is the size of the area of the parallelogram on the right?

Find the area of the given parallelogram using mathematical methods you have learned at school.

Problem 4:

A mathematician, who invented completely different mathematics, has been the Stettin senior high school teacher (German: „Oberlehrer am Gymnasium") Hermann Grassmann. He was able to find the extensions - or in other words: the areas - of simple geometric objects using his theory of extensions (which he called „Ausdehnungslehre").

Please compare the solution strategy of Grassmann, which you have discussed at the first lesson, with the solution strategy you have learned at school and applied at solving problem 3.

Problem 5:

Find the areas of the following parallelograms by using the solution strategy of Grassmann.

Problem 6:

To take part at this course "Mathematics for Business and Economics" successfully, mathematical basics from primary and secondary school are required. If you do not have a good knowledge of school mathematics, it will be expected that you refurbish your knowledge of school mathematics and that you remove possible deficiencies of school mathematics at your own initiative.

Lengthy repetitions of school mathematics will not be part of this business math course. You are personally responsible for your own mathematical future. Therefore please have a look into your old schoolbooks of mathematics. Please find out whether you have severe mathematical deficiencies (e.g. when calculating fractions or transforming simple equations, etc...). And please develop strategies to close possible gaps in your knowledge of school mathematics autonomously.

Problem 7:

Please get academic textbooks about mathematics for business, economics, and finance in your library, by searching through second-hand internet shops for used books, or at a bookshop.

It is of no great importance, which math books you use and read. Most introductory academic textbooks discuss the topics of the modular description. But it is of very great importance that you solve autonomously as many business math problems as possible. The books should help at and give support to your individual learning process.

As learning processes differ from person to person, you will find different books readable (or unreadable). So please compare different math books to find out which books are a good fit for you.

Problem 8:

Different textbooks use different mathematical notations. Our math course will mainly use the mathematical notations which are common in Germany, e.g. the notation used in the textbooks of Tietze (see modular description of the equivalent German math course "Wirtschaftsmathematik", LV-Nr. 200601.01 - Jürgen Tietze: Einführung in die angewandte Wirtschaftsmathematik, 17. Auflage, Springer Spektrum, Berlin, Heidelberg 2013).

It will be expected from you however, that you will gain the capability to deal with different mathematical notations and mathematical representations within your academic studies. Especially you should then be able to identify identical mathematical descriptions even if they are written in a mathematically totally different style.

Therefore please get several different math books and compare the mathematical styles and notations they are written in. The use of different letters or symbols for the same mathematical variable should not shatter you neither mathematically nor mentally.

Problem 9:

Please always bring your electronic pocket calculator to the lessons. And please practice to do complicated calculations with your pocket calculator. The results of the following calculations should be found by you within less than 20 seconds.

Please round all results to the nearer ten-thousandth (leave four decimal places).
a)

$$
400\left[\frac{1.085^{12}-1}{0.085}\right]
$$

b)
$400\left[\frac{1-\frac{1}{1.085^{12}}}{0.085}\right]$
c)
$\frac{400 \cdot 1.085}{1-\frac{1}{(1+0.085)^{12}}}$
d)

$$
\sqrt[5]{\frac{1.56 \cdot 10^{8}}{34 \cdot(5+\ln 300)}}
$$

e)

f)

$$
-2.95+\log _{10}\left[\frac{1-\frac{3}{5}}{\frac{27}{6}-3}\right]
$$

Short note: At the written exam it is not allowed to use programmable electronic pocket calculators. Therefore please solve all problems with pocket calculators which are not programmable.

Mathematics for Business and Economics
 Berlin School of Economics and Law

Supplement of Worksheet 1 - Exercises

Problem 1:

The following parallelogram with the coordinates given by Nini had been discussed at the first IBMAN math lesson at Oct 12, 2017:

a) Find the area of this parallelogram with the strategy Hayate presented at the lesson.
b) Find the area of this parallelogram with the strategy invented by Grassmann.

Problem 2:

Now we generalize problem 1: The first side vector \mathbf{a} will point a_{x} units of length into the direction of the x-axis and a_{y} units of length into the direction of the y-axis.
The second side vector \mathbf{b} will point b_{x} units of length into the direction of the x -axis and b_{y} units of length into the direction of the y -axis.

Show that the equation of the formula of the area of this generalized parallelogram will be

$$
A_{\text {parallelogram }}=a_{x} b_{y}-a_{y} b_{x}
$$

by generalizing the solution strategy of Hayate.

Mathematics for Business and Economics
 Berlin School of Economics and Law

Worksheet 3 - Exercises

Problem 1:

The following supply and demand functions of a market are given:

$$
\text { Supply: } \mathrm{p}=\mathrm{x}+15 \quad \text { Demand: } \mathrm{p}=-2 \mathrm{x}+60
$$

a) Find the equilibrium price p_{e} and equilibrium quantity x_{e} algebraically.
b) Compare your result with the graphical solution.
c) Transform the supply and demand functions into a system of two linear equations.

Find the two coefficient vectors \mathbf{a} and \mathbf{b} and the resulting vector of constant terms \mathbf{r}. Find the outer products (oriented areas) of the three different parallelograms which can be constructed by Pauli vectors \mathbf{a}, \mathbf{b}, and \mathbf{r}.
Find the equilibrium price p_{e} and equilibrium quantity x_{e} by the strategy of Grassmann, who simply divided the outer products.

Problem 2:

Find the equilibrium price p_{e} and equilibrium quantity x_{e} for each of the following markets algebraically. Compare your results with the graphical solutions.
a) Supply: $p=3 x+40$
b) Supply: $p=3 x+20$
Demand: $\mathrm{p}=-\mathrm{x}+120$
Demand: $\quad \mathrm{p}=-\frac{1}{2} \mathrm{x}+90$
c) Supply: $\quad p=\frac{1}{4} x+400$
d) Supply: $p=750$
Demand: $\mathrm{p}=-\frac{1}{2} \mathrm{x}+1000$
Demand: $\quad \mathrm{p}=-\frac{5}{8} \mathrm{x}+1270$

Problem 3:

Solve problem 2 with Geometric Algebra.

Problem 4:

Find the equilibrium price and the equilibrium quantity for each of the following markets:
a) Supply: $x=\frac{1}{3} p-4$
b) Supply: $x=\frac{2}{5}(p-80)$
Demand: $\mathrm{x}=-2 \mathrm{p}+206$
Demand: $x=319-\frac{5}{7} p$

Problem 5:

Solve problem 4 with Geometric Algebra.
Problems 6-14 have no reference to Geometric Algebra.

Mathematics for Business and Economics Berlin School of Economics and Law

Worksheet 8 - Exercises

Problem 1:

Find the areas of the parallelograms if the two different sides are given by the following vectors and if the two base vectors σ_{x} and σ_{y} have lengths $\left|\sigma_{x}\right|$ and $\left|\sigma_{y}\right|$ of 1 cm . Please also draw a sketch of the parallelograms.
a) $\begin{aligned} \mathbf{a} & =5 \sigma_{x}+2 \sigma_{y} \\ \mathbf{b} & =2 \sigma_{x}+6 \sigma_{y}\end{aligned}$
b) $\mathbf{a}=8 \sigma_{\mathrm{x}}+7 \sigma_{\mathrm{y}}$
$\mathbf{b}=2 \sigma_{\mathrm{x}}+6 \sigma_{\mathrm{y}}$
$\mathbf{b}=2 \sigma_{x}+20 \sigma_{y}$
c) $\begin{aligned} \mathbf{a} & =5 \sigma_{\mathrm{x}}-5 \sigma_{\mathrm{y}} \\ \mathbf{b} & =3 \sigma_{\mathrm{x}}+7 \sigma_{\mathrm{y}}\end{aligned}$
d) $\mathbf{a}=4 \sigma_{\mathrm{x}}+16 \sigma_{\mathrm{y}}$

Problem 2:
Find the areas of the parallelograms if the two different sides are given by the following vectors and if the two base vectors σ_{x} and σ_{y} have lengths $\left|\sigma_{x}\right|$ and $\left|\sigma_{y}\right|$ of 1 cm . Please also draw a sketch of the parallelograms if possible and find the precise names of the given parallelograms.
a) $\mathbf{a}=6 \sigma_{x}+4 \sigma_{y}$
$\mathbf{b}=-4 \sigma_{x}+6 \sigma_{y}$
b) $\mathbf{a}=-4,8 \sigma_{\mathrm{x}}-3,4 \sigma_{\mathrm{y}}$
c) $\mathbf{a}=4 \sigma_{x}+3 \sigma_{y}$
d) $\mathbf{a}=5 \sigma_{x}+20 \sigma_{y}$
$\mathbf{b}=-5.1 \sigma_{x}+7.2 \sigma_{y}$
$\mathbf{b}=12 \sigma_{x}+9 \sigma_{y}$
$\mathbf{b}=-\sigma_{\mathrm{x}}-4 \sigma_{\mathrm{y}}$

Problem 3:

Solve the following systems of linear equations and check your results.
a) $\begin{aligned} 3 x+8 y & =28 \\ 6 x+2 y & =28\end{aligned}$
b) $\begin{aligned} 4 x+9 y & =29 \\ 5 x+6 y & =31\end{aligned}$
c) $\begin{aligned} 6 x+4 y & =6 \\ 2 x+y & =3\end{aligned}$
d) $5 x-2 y=6$
$-2 x-3 y=28$

Problem 4:

A firm manufactures two different final products P_{1} and P_{2}. To produce these products the following quantities of two different raw materials R_{1} and R_{2} are required:

3 units of R_{1}	and	6 units of R_{2}	to produce	1 unit of P_{1}
8 units of R_{1}	and	2 units of R_{2}	to produce	1 unit of P_{2}

Find the quantities of final products P_{1} and P_{2} which will be produced, if exactly 28 units of the first raw material R_{1} and 28 units of the second raw material R_{2} are consumed in the production process.
(Hint: Results of problem 3 can be used.)

Problem 5:

A firm manufactures two different final products P_{1} and P_{2}. To produce these products the following quantities of two different raw materials R_{1} and R_{2} are required:

2 units of R_{1}	and	5 units of R_{2}	to produce	1 unit of P_{1}
7 units of R_{1}	and	1 unit of R_{2}	to produce	1 unit of P_{2}

Find the quantities of final products P_{1} and P_{2} which will be produced, if exactly 2050 units
of the first raw material R_{1} and 1000 units of the second raw material R_{2} are consumed in the production process.

Problem 6:

A firm manufactures two different final products P_{1} and P_{2}. To produce these products the following quantities of two different raw materials R_{1} and R_{2} are required:

4 units of R_{1}	and	1 unit of R_{2}	to produce	1 unit of P_{1}
3 units of R_{1}	and	5 units of R_{2}	to produce	1 unit of P_{2}

In the first quarter of a year exactly 33000 units of the first raw material R_{1} and 38000 units of the second raw material R_{2} are consumed in the production process. In the second quarter exactly 32000 units of the first raw material R_{1} and 25000 units of the second raw material R_{2} are consumed in the production process.

Find the quantities of final products P_{1} and P_{2} which will be produced in the first quarter, and find the quantities of final products P_{1} and P_{2} which will be produced in the second quarter.

Problem 7:

A firm manufactures two different final products P_{1} and P_{2}. To produce these final products two intermediate goods G_{1} and G_{2} are required. The production of the intermediate goods requires two different raw materials R_{1} and R_{2}. The demand of raw materials to produce one unit of the intermediate goods and the total demand of raw materials to produce one unit of the final products is shown in the following tables:

	G_{1}	G_{2}
R_{1}	8	2
R_{2}	4	3

	P_{1}	P_{2}
R_{1}	42	28
R_{2}	23	26

Find the demand matrix of the second production step which shows the demand of intermediate goods to produce one unit of each final product.

Problem 8:

A firm manufactures three different final products $\mathrm{P}_{1}, \mathrm{P}_{2}$, and P_{3}. To produce these final products two intermediate goods G_{1} and G_{2} are required. The production of the intermediate goods requires two different raw materials R_{1} and R_{2}. The demand of raw materials to produce one unit of the intermediate goods and the total demand of raw materials to produce one unit of the final products is shown in the following tables:

	G_{1}	G_{2}
R_{1}	9	3
R_{2}	2	2

	P_{1}	P_{2}	P_{3}
R_{1}	48	21	84
R_{2}	12	14	32

Find the demand matrix of the second production step which shows the demand of intermediate goods to produce one unit of each final product.

Problem 9:

A firm manufactures two different final products P_{1} and P_{2}. To produce these products the following quantities of two different raw materials R_{1} and R_{2} are required:

7 units of R_{1} and 4 units of R_{2} to produce 1 unit of P_{1}
5 units of R_{1} and 3 units of R_{2} to produce 1 unit of P_{2}
Find the quantities of final products P_{1} and P_{2} which would have been produced in theory, if exactly one unit of the first raw material R_{1} had been consumed in the production process.
And find the quantities of final products P_{1} and P_{2} which would have been produced in theory, if exactly one unit of the second raw material R_{2} had been consumed in the production process.

How can these results be understood?
Give an economic interpretation of the results.

Problem 10:

A firm manufactures two different final products P_{1} and P_{2}. To produce these products the following quantities of two different raw materials R_{1} and R_{2} are required:

10 units of R_{1}	and	4 units of R_{2}	to produce	1 unit of P_{1}
12 units of R_{1}	and	5 units of R_{2}	to produce	1 unit of P_{2}

Find the quantities of final products P_{1} and P_{2} which would have been produced in theory, if exactly one unit of the first raw material R_{1} had been consumed in the production process. And find the quantities of final products P_{1} and P_{2} which would have been produced in theory, if exactly one unit of the second raw material R_{2} had been consumed in the production process.

Find the inverse of the demand matrix and check your result.

Problem 11:

Find the inverses of the following matrices and check your results.
a) $\mathbf{A}=\left[\begin{array}{ll}5 & 4 \\ 9 & 7\end{array}\right]$
b) $\mathbf{B}=\left[\begin{array}{ll}10 & 4 \\ 19 & 8\end{array}\right]$
c) $\mathbf{C}=\left[\begin{array}{rr}10 & 6 \\ 20 & 13\end{array}\right]$
d) $\mathbf{D}=\left[\begin{array}{cr}0 & -2.5 \\ 0.2 & 3.4\end{array}\right]$

Mathematics for Business and Economics

Berlin School of Economics and Law

Worksheet 9 - Exercises

Problem 1:

a) Download the "Geometric Algebra Algorithms Optimizer" (GAALOP), which is a software freely available at the internet. The GAALOP homepage can be found at the URL
www.gaalop.de
Activate first the "Download" link to reach the download page at the URL
www.gaalop.de/download
GAALOP can then be downloaded by activating the blue link "download Gaalop".
b) After installing GAALOP can be started by activating the "Start" icon or by starting the java file "java-jar starter-1.0.0.jar" directly, which depends on the configuration and the security adjustments of your computer.

Problem 2:

Please get acquainted with GAALOP by thinking up and then solving simple Geometric Algebra calculations.

Chose Pauli Algebra of three dimensional, Euclidean space as
Algebra to use: , $\mathbf{3 d}$ - vectors in 3d"
on the basis of CluCalc.
For instance enter the three vectors $\mathbf{a}=4 \sigma_{x}+8 \sigma_{y}$
$\mathbf{b}=10 \sigma_{\mathrm{x}}+3 \sigma_{\mathrm{y}}$
$\mathbf{c}=5 \sigma_{x}-5 \sigma_{y}$
into a GAALOP program and determine the following sums or differences:
a) $\mathbf{p}=\mathbf{a}+\mathbf{b}$
b) $\mathbf{q}=4 \mathbf{a}+2 \mathbf{b}$
c) $\mathbf{r}=\mathbf{b}-2 \mathbf{c}$
d) $\mathbf{s}=65 \mathbf{a}-60 \mathbf{b}+68 \mathbf{c}$

Problem 3:

Solve all problems of previous worksheet 8 with the help of GAALOP programs.

The problems of worksheet 8 have been problems about systems of two linear equations with two unknown variables. Such problems can be solved with Geometric Algebra by vectors, which point into only two directions and which thus are situated in the xy -plane.
At the following pages of this worksheet 9 you will now find problems about systems of three linear equations. To solve these problems the mathematics of vectors, which point into three directions and which are situated in three-dimensional space, is required. Thus vectors will now have three components, representing x, y, and z directions.

Problem 4:

a) A firm manufactures two different final products P_{1} and P_{2}. To produce these products the following quantities of three different raw materials $\mathrm{R}_{1}, \mathrm{R}_{2}$, and R_{3} are required:

5 units of $R_{1}, \quad 4$ units of R_{2}, \quad and \quad\begin{tabular}{lll}
3 units of R_{3}

2 units of R_{3}

to produce

to produce
\end{tabular}$\quad 1$ unit of P_{1}

Find (with the help of GAALOP) the quantities of final products P_{1} and P_{2} which will be produced, if exactly 125 units of the first raw material $R_{1}, 100$ units of the second raw material R_{2}, and 145 units of the third raw material R_{3} are consumed in the production process.
b) A firm manufactures two different final products P_{1} and P_{2}. To produce these products the following quantities of three different raw materials $\mathrm{R}_{1}, \mathrm{R}_{2}$, and R_{3} are required:

5 units of $R_{1}, \quad 4$ units of R_{2}, \quad and 3 units of R_{3} to produce 1 unit of P_{1}
6 units of $\mathrm{R}_{1}, \quad 7$ units of R_{2}, \quad and 8 units of R_{3} to produce 1 unit of P_{2}
Find (with the help of GAALOP) the quantities of final products P_{1} and P_{2} which will be produced, if exactly 380 units of the first raw material $\mathrm{R}_{1}, 370$ units of the second raw material R_{2}, and 360 units of the third raw material R_{3} are consumed in the production process.

Please find not only a GAALOP program, but give also detailed calculations of intermediate steps using Geometric Algebra and compare with conventional solution strategies. Finally check your results.

Problem 5:

Find the volume of the parallelepipeds with the help of GAALOP if the three different sides of the parallelepipeds are given by the following vectors and if the base vectors $\sigma_{\mathrm{x}}, \sigma_{\mathrm{y}}$, and σ_{z} have lengths $\left|\sigma_{x}\right|,\left|\sigma_{y}\right|$, and $\left|\sigma_{z}\right|$ of 1 cm .
a) $\mathbf{a}=4 \sigma_{x}+2 \sigma_{y}$
$\mathbf{b}=2 \sigma_{\mathrm{x}}+4 \sigma_{\mathrm{y}}$
$\mathbf{c}=3 \sigma_{z}$
b) $\mathbf{a}=4 \sigma_{x}+2 \sigma_{y}$
$\mathbf{b}=2 \sigma_{x}+4 \sigma_{y}$
$\mathbf{c}=5 \sigma_{\mathrm{y}}+5 \sigma_{\mathrm{z}}$
c) $\mathbf{a}=4 \sigma_{x}+2 \sigma_{y}$
$\mathbf{b}=2 \sigma_{\mathrm{x}}+4 \sigma_{\mathrm{y}}$
$\mathbf{c}=7 \sigma_{\mathrm{x}}+7 \sigma_{\mathrm{y}}+7 \sigma_{\mathrm{z}}$
e) $\mathbf{a}=2 \sigma_{x}+6 \sigma_{y}+10 \sigma_{z}$
$\mathbf{b}=8 \sigma_{x}+3 \sigma_{y}+12 \sigma_{z}$
$\mathbf{c}=7 \sigma_{\mathrm{x}}+9 \sigma_{\mathrm{y}}+4 \sigma_{\mathrm{z}}$
f) $\mathbf{a}=4 \sigma_{x}+8 \sigma_{y}-5 \sigma_{z}$
$\mathbf{b}=3 \sigma_{x}-7 \sigma_{y}+6 \sigma_{z}$
$\mathbf{c}=-2 \sigma_{\mathrm{x}}+9 \sigma_{\mathrm{y}}-\sigma_{\mathrm{z}}$
d) $\mathbf{a}=2 \sigma_{\mathrm{x}}+5 \sigma_{\mathrm{y}}+5 \sigma_{\mathrm{z}}$
$\mathbf{b}=3 \sigma_{x}+3 \sigma_{y}+6 \sigma_{z}$
$\mathbf{c}=4 \sigma_{\mathrm{x}}+4 \sigma_{\mathrm{y}}+4 \sigma_{\mathrm{z}}$

Please also draw a sketch of the parallelepipeds of the first three exercises a), b), and c) and compare all GAALOP results with the results you get by applying the rule of Sarrus to find the determinants of the coefficient matrices.

Problem 6:

Solve the following systems of linear equations with the help of GAALOP either directly or by programming intermediate steps and check your results.
a) $3 x+8 y=28$
b) $8 x+5 y+10 z=396$
c) $3 x-5 y+6 z=41$
$6 x+2 y=28$
$3 x+7 y+12 z=375$
$-2 x+5 y+8 z=111$
$2 x+4 y+2 z=28$
$2 x+6 y+14 z=386$
$7 x+y+9 z=185$
d) $2 / 5 \mathrm{x}+{ }^{7} / 5 \mathrm{y}+9 / 5 \mathrm{z}=210$
$8 / 5 x+1 / 5 y+3 / 5 z=138$
$4 / 5 x+12 / 5 y+6 / 5 z=282$

Problem 7:

A firm manufactures three different final products $\mathrm{P}_{1}, \mathrm{P}_{2}$, and P_{3}. To produce these products the following quantities of three different raw materials $\mathrm{R}_{1}, \mathrm{R}_{2}$, and R_{3} are required:

7 units of R_{1},	3 units of R_{2},	and	4 units of R_{3}	to produce	1 unit of P_{1}
2 units of R_{1},	9 units of R_{2},	and	6 units of R_{3}	to produce	1 unit of P_{2}
5 units of R_{1},		and	8 units of R_{3}	to produce	1 unit of P_{3}

Exactly 500 units of the first raw material $\mathrm{R}_{1}, 780$ units of the second raw material R_{2}, and 880 units of the third raw material R_{3} are consumed in the production process.

Find the output of final products $\mathrm{P}_{1}, \mathrm{P}_{2}$, and P_{3} with the help of GAALOP.

Problem 8:

A firm manufactures three different final products $\mathrm{P}_{1}, \mathrm{P}_{2}$, and P_{3}. To produce these products the following quantities of three different raw materials $\mathrm{R}_{1}, \mathrm{R}_{2}$, and R_{3} are required:

12 units of R_{1},	20 units of R_{2},	and	16 units of R_{3}	to produce	1 unit of P_{1}
30 units of R_{1},	15 units of R_{2},	and	28 units of R_{3}	to produce	1 unit of P_{2}
10 units of R_{1},	8 units of R_{2},	and	25 units of R_{3}	to produce	1 unit of P_{3}

Exactly 12000 units of the first raw material $\mathrm{R}_{1}, 13900$ units of the second raw material R_{2}, and 18300 units of the third raw material R_{3} are consumed in the production process.

Find the output of final products $\mathrm{P}_{1}, \mathrm{P}_{2}$, and P_{3} with the help of GAALOP.

Problem 9:

A firm manufactures three different final products $\mathrm{P}_{1}, \mathrm{P}_{2}$, and P_{3}. To produce these products the following quantities of three different raw materials $\mathrm{R}_{1}, \mathrm{R}_{2}$, and R_{3} are required:

9 units of R_{1},	2 units of R_{2},	and	7 units of R_{3}	to produce	1 unit of P_{1}
3 units of R_{1},	2 units of R_{2},	and	5 units of R_{3}	to produce	1 unit of P_{2}
4 units of R_{1},	3 units of R_{2},	and	2 units of R_{3}	to produce	1 unit of P_{3}

In the first quarter of a year exactly 98 units of the first raw material $R_{1}, 35$ units of the second raw material R_{2}, and 76 units of the third raw material R_{3} are consumed in the production process.
In the second quarter exactly 61 units of the first raw material $R_{1}, 30$ units of the second raw material R_{2}, and 59 units of the third raw material R_{3} are consumed in the production process.

Find the quantities of final products $\mathrm{P}_{1}, \mathrm{P}_{2}$, and P_{3}, which will be produced in the first quarter, and find the quantities of final products $\mathrm{P}_{1}, \mathrm{P}_{2}$, and P_{3}, which will be produced in the second quarter, with the help of GAALOP.

Problem 10:

A firm manufactures two different final products P_{1} and P_{2}. To produce these final products three intermediate goods G_{1}, G_{2}, and G_{3} are required. The production of the intermediate goods requires three different raw materials $\mathrm{R}_{1}, \mathrm{R}_{2}$, and R_{3}. The demand of raw materials to produce one unit of the intermediate goods and the total demand of raw materials to produce one unit of the final products is shown in the following tables:

	G_{1}	G_{2}	G_{3}
R_{1}	10	15	11
R_{2}	17	20	16
R_{3}	12	14	25

	P_{1}	P_{2}
R_{1}	964	814
R_{2}	1409	1184
R_{3}	1320	1093

Find the demand matrix of the second production step, which shows the demand of intermediate goods to produce one unit of each final product, with the help of GAALOP and check your result.

Problem 11:

A firm manufactures three different final products P_{1}, P_{2}, and P_{3}. To produce these final products three intermediate goods $\mathrm{G}_{1}, \mathrm{G}_{2}$, and G_{3} are required. The production of the intermediate goods requires three different raw materials $\mathrm{R}_{1}, \mathrm{R}_{2}$, and R_{3}. The demand of raw materials to produce one unit of the intermediate goods and the total demand of raw materials to produce one unit of the final products is shown in the following tables:

	G_{1}	G_{2}	G_{3}
R_{1}	8	6	6
R_{2}	7	5	7
R_{3}	5	4	0

	P_{1}	P_{2}	P_{3}
R_{1}	228	186	308
R_{2}	214	166	282
R_{3}	108	107	160

Find the demand matrix of the second production step, which shows the demand of intermediate goods to produce one unit of each final product, with the help of GAALOP and check your result.

Problem 12:

A firm manufactures three different final products P_{1}, P_{2}, and P_{3}. To produce these final products three intermediate goods $\mathrm{G}_{1}, \mathrm{G}_{2}$, and G_{3} are required. The production of the intermediate goods requires three different raw materials $\mathrm{R}_{1}, \mathrm{R}_{2}$, and R_{3}. The demand of raw materials to produce one unit of the intermediate goods and the total demand of raw materials to produce one unit of the final products is shown in the following tables:

	G_{1}	G_{2}	G_{3}		P_{1}	P_{2}	P_{3}
R_{1}	82	63	20		R_{1}	4496	5462
R_{2}	44	19	37		4815		
R_{3}	10	52	92	R_{2}	2530	3482	2801
		R_{3}	3224	4062	4646		

Find the demand matrix of the second production step, which shows the demand of intermediate goods to produce one unit of each final product, with the help of GAALOP and check your result.

Problem 13:

A firm manufactures three different final products $\mathrm{P}_{1}, \mathrm{P}_{2}$, and P_{3}. To produce these products the following quantities of three different raw materials $\mathrm{R}_{1}, \mathrm{R}_{2}$, and R_{3} are required:

3 units of R_{1},	2 units of R_{2},	and	8 units of R_{3}	to produce	1 unit of P_{1}
5 units of R_{1},	6 units of R_{2},	and	7 units of R_{3}	to produce	1 unit of P_{2}
4 units of R_{1},	3 units of R_{2},	and	10 units of R_{3}	to produce	1 unit of P_{3}

Find with the help of GAALOP the quantities of final products $\mathrm{P}_{1}, \mathrm{P}_{2}$, and P_{3} which would have been produced in theory, if exactly one unit of the first raw material R_{1} had been consumed in the production process.

Find with the help of GAALOP the quantities of final products $\mathrm{P}_{1}, \mathrm{P}_{2}$, and P_{3} which would have been produced in theory, if exactly one unit of the second raw material R_{2} had been consumed in the production process.

And find with the help of GAALOP the quantities of final products $\mathrm{P}_{1}, \mathrm{P}_{2}$, and P_{3} which would have been produced in theory, if exactly one unit of the third raw material R_{3} had been consumed in the production process.

Use the values just found to construct the inverse of the demand matrix and check your result.

Problem 14:

Find the inverses of the following matrices (if they exist) with the help of GAALOP and check your results.
a) $\mathbf{A}=\left[\begin{array}{lll}1 & 4 & 9 \\ 7 & 2 & 6 \\ 6 & 3 & 8\end{array}\right]$
b) $\mathbf{B}=\left[\begin{array}{lll}0 & 4 & 7 \\ 4 & 5 & 8 \\ 3 & 6 & 9\end{array}\right]$
c) $\mathbf{C}=\left[\begin{array}{lll}1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9\end{array}\right]$
d)

$$
\mathbf{D}=\left[\begin{array}{rrr}
3 & 4 & 8 \\
10 & 5 & 10 \\
10 & 20 & 15
\end{array}\right]
$$

Mathematics for Business and Economics
 Berlin School of Economics and Law

Worksheet 21 - Repetition of Linear Algebra / Exercises

Problem 1:
Problem 2:
Problem 3:
Problem 4: Conventional problems about Linear Algebra, which should be solved without Geometric Algebra.

Problem 8:

a) Find the area of the parallelogram.

b) Find the area of the parallelograms if the two base vectors σ_{x} and σ_{y} have lengths $\left|\sigma_{x}\right|$ and $\left|\sigma_{y}\right|$ of 1 cm .

$$
\begin{aligned}
& \mathbf{a}=18 \sigma_{x}+4 \sigma_{y} \\
& \mathbf{d}=10 \sigma_{x}+12 \sigma_{y}
\end{aligned}
$$

Problem 9:

A firm manufactures two different final products P_{1} and P_{2}. To produce these products the following quantities of two different raw materials R_{1} and R_{2} are required:

$$
\begin{array}{rrrr}
8 \text { units of } \mathrm{R}_{1} & \text { and } & 5 \text { units of } \mathrm{R}_{2} & \text { to produce } \\
10 \text { units of } \mathrm{R}_{1} & \text { and of } \mathrm{P}_{1} \\
15 \text { units of } \mathrm{R}_{2} & \text { to produce } & 1 \text { unit of } \mathrm{P}_{2}
\end{array}
$$

Find the quantities of final products P_{1} and P_{2} which will be produced, if exactly 280 units of the first raw material R_{1} and 280 units of the second raw material R_{2} are consumed in the production process.

Problem 10:

A firm manufactures two different final products P_{1} and P_{2}. To produce these final products two intermediate goods G_{1} and G_{2} are required. The production of the intermediate goods requires two raw materials R_{1} and R_{2}.

The following quantities of raw materials are required in the production process:

7 units of R_{1}	and	8 units of R_{2}	to produce	1 unit of G_{1}
3 units of R_{1}	and	9 units of R_{2}	to produce	1 unit of G_{2}

Total demand of raw materials:

94 units of R_{1}	and	152 units of R_{2}	to produce	1 unit of P_{1}
80 units of R_{1}	and	175 units of R_{2}	to produce	1 unit of P_{2}

Find matrix \mathbf{B} of the second production step which shows the demand of intermediate goods to produce one unit of each final product and check your result.

Problem 11:

A firm manufactures three different final products $\mathrm{P}_{1}, \mathrm{P}_{2}$, and P_{3}. To produce these final products three intermediate goods $\mathrm{G}_{1}, \mathrm{G}_{2}$, and G_{3} are required. The production of the intermediate goods requires three raw materials $\mathrm{R}_{1}, \mathrm{R}_{2}$, and R_{3}.

The following quantities of raw materials are required in the production process:

7 units of R_{1},	6 units of R_{2},	and	5 units of R_{3}	to produce	1 unit of P_{1}
9 units of R_{1},	8 units of R_{2},	and	7 units of R_{3}	to produce	1 unit of P_{2}
5 units of R_{1},	4 units of R_{2},	and	3 units of R_{3}	to produce	1 unit of P_{3}

Exactly 359 units of the first raw material $\mathrm{R}_{1}, 308$ units of the second raw material R_{2}, and 257 units of the third raw material R_{3} will be consumed in the production process.
a) Find the system of simultaneous linear equations which should be solved to find the unknown quantities of final products produced.
b) Give a GAALOP program which solves this system of linear equations at the GAALOP user interface of the next page.
c) The following solution of the system of linear equations will be expected to appear, if the Optimize button is activated: $\quad \mathrm{x}=18$ $\mathrm{y}=17$
$\mathrm{z}=16$. Please check this solution.

d) Now the Optimize button is activated. Unfortunately the compiler result of the GAALOP program states that the solution values x, y, and z are undefined. What is wrong with the GAALOP program?

Give a mathematical reason why it is not possible to find the expected solution values of problem part (c) with the GAALOP program.

Problem 12:

A firm manufactures three different final products $\mathrm{P}_{1}, \mathrm{P}_{2}$, and P_{3}. To produce these final products three intermediate goods $\mathrm{G}_{1}, \mathrm{G}_{2}$, and G_{3} are required. The production of the intermediate goods requires three raw materials $\mathrm{R}_{1}, \mathrm{R}_{2}$, and R_{3}.

The following quantities of raw materials are required in the production process:

7 units of R_{1},	6 units of R_{2},	and	5 units of R_{3}	to produce	1 unit of P_{1}
9 units of R_{1},	8 units of R_{2},	and	7 units of R_{3}	to produce	1 unit of P_{2}
5 units of R_{1},	4 units of R_{2},	and	2 units of R_{3}	to produce	1 unit of P_{3}

Exactly 422 units of the first raw material $R_{1}, 362$ units of the second raw material R_{2}, and 283 units of the third raw material R_{3} will be consumed in the production process.
a) Find the system of simultaneous linear equations which should be solved to find the unknown quantities of final products produced.
b) Give a GAALOP program which solves this system of linear equations at the following GAALOP user interface.

c) Now the Optimize button is activated. The compiler field shows the following results:

$$
\begin{aligned}
& x=21 \\
& y=20 \\
& z=19
\end{aligned}
$$

Please check this solution.

Problem 13:

The following GAALOP program is given:

a) Please state, which mathematical object will be calculated with the given GAALOP program.
b) Are the following results correct results of the GAALOP calculation?

$$
\begin{aligned}
& x=1 \\
& y=10 \\
& z=-4.5
\end{aligned}
$$

Please check these results.

Mathematics for Business and Economics Berlin School of Economics and Law

Worksheet 1 -Answers

Problem 3:

A possible starting point, which you already should have seen in school, can be to place the parallelogram into a great rectangle. This great rectangle will indeed be a great square at this problem 3, because the coordinate sums of both sides are identical: $5+2=4+3=7$ Thus both sides of the rectangle have the same length.

$$
\begin{aligned}
\mathrm{A}_{\text {parallelogram }}= & \mathrm{A}_{\text {square }}-2 \cdot \mathrm{~A}_{\text {rectangle }}-2 \cdot \mathrm{~A}_{\text {large triangle }}-2 \cdot \mathrm{~A}_{\text {smalltriangle }} \\
& =7 \mathrm{~cm} \cdot 7 \mathrm{~cm}-2 \cdot 3 \mathrm{~cm} \cdot 2 \mathrm{~cm}-2 \cdot \frac{1}{2} \cdot 5 \mathrm{~cm} \cdot 3 \mathrm{~cm}-2 \cdot \frac{1}{2} \cdot 4 \mathrm{~cm} \cdot 2 \mathrm{~cm} \\
& =49 \mathrm{~cm}^{2}-2 \cdot 6 \mathrm{~cm}^{2}-2 \cdot 7.5 \mathrm{~cm}^{2}-2 \cdot 4 \mathrm{~cm}^{2} \\
& =49 \mathrm{~cm}^{2}-12 \mathrm{~cm}^{2}-15 \mathrm{~cm}^{2}-8 \mathrm{~cm}^{2} \\
& =14 \mathrm{~cm}^{2}
\end{aligned}
$$

Problem 4:

The solution strategy of Grassmann is based on the commutation relations of the base vectors defined (and thus "invented") by him. Because of historical reasons we will call theses base vectors Pauli vectors, symbolized by the Greek letter "sigma": σ_{x}, σ_{y}, and σ_{z}.
$\sigma_{\mathrm{x}}=$ one step into the direction of the x -axis $=$ base vector of x -direction
$\sigma_{y}=$ one step into the direction of the y-axis $=$ base vector of y-direction
$\sigma_{\mathrm{z}}=$ one step into the direction of the z -axis $=$ base vector of z -direction
Every base vector should have the length of exactly one length unit. Thus they are unit vectors. Therefore Hermann Grassmann (and Wolfgang Pauli later) decided, that the square of their base vectors must be exactly one as important part of the definition (or of the "invention"):

$$
\sigma_{x}^{2}=\sigma_{y}^{2}=\sigma_{z}^{2}=1 \quad \Rightarrow \text { This rule is called normalization. }
$$

Besides that, Hermann Grassmann (and Wolfgang Pauli later) decided to calculate in a totally different way compared to the way we are used to do calculations with real numbers.

The result of a multiplication of two real numbers will not change if the order of the two factors is changed. For example the result of 3 times 7 is perfectly identical to the result of 7 times 3 (which will be 21 in both cases):
$3 \cdot 7=7 \cdot 3 \quad \Rightarrow$ This mathematical behaviour is called commutativity.

But if two Pauli vectors are multiplied, the result will change if the order of two base vectors of a multiplication is changed. An additional minus sign has then to be taken into account:

$$
\begin{aligned}
& \sigma_{x} \sigma_{y}=-\sigma_{y} \sigma_{x} \\
& \sigma_{y} \sigma_{z}=-\sigma_{z} \sigma_{y} \\
& \sigma_{z} \sigma_{x}=-\sigma_{x} \sigma_{z}
\end{aligned}
$$

$$
\sigma_{\mathrm{y}} \sigma_{\mathrm{z}}=-\sigma_{\mathrm{z}} \sigma_{\mathrm{y}} \quad \Rightarrow \text { This mathematical behaviour is }
$$

Hermann Grassmann (and Wolfgang Pauli later) haven chosen (or "invented") these algebraic rules, because they describe the successive walk into different directions mathematically in a pretty good way.

If we first go one step into the direction of the x -axis and if we then go another step into the direction of the y-axis (in a mathematical order of $\sigma_{x} \sigma_{y}$), we will move in an anti-clockwise orientation (like car drivers in a traffic circle on the Continent of Europe, see figure on the left).

But if we first go one step into the direction of the y-axis and if we then go another step into the direction of the x -axis (in a mathematical order of $\sigma_{\mathrm{y}} \sigma_{\mathrm{x}}$), we will move in a clockwise orientation (like car drivers in Britain or ghost-drivers on the Continent in a traffic circle, see figure on the right).

mathematically positive orientation (Continental car driver in a traffic circle)

$$
\sigma_{y} \sigma_{x}
$$

Thus: $\sigma_{\mathrm{x}} \sigma_{\mathrm{y}}=-\sigma_{\mathrm{y}} \sigma_{\mathrm{x}} \quad \Rightarrow$ This is the basic rule of Pauli Algebra. (first invented by Hermann Grassmann)

An additional minus sign thus indicates geometrically a reversal of the direction of rotation (or of the orientation), while an additional minus sign indicates algebraically a change of the order of two neighboring anti-commuting factors.

Now the area of a given parallelogram can be found in a very simple way simply by multiplying both side vectors of the parallelogram:

4 cm

First vector a points simultaneously 4 units of length into x-direction and 2 units of length into y-direction:
$\Rightarrow \mathbf{a}=4 \sigma_{\mathrm{x}}+2 \sigma_{\mathrm{y}}$
Second vector b points simultaneously 3 units of length into x-direction and 5 units of length into y direction:

$$
\Rightarrow \mathbf{b}=3 \sigma_{x}+5 \sigma_{y}
$$

Product of the two side vectors of the parallelogram:

This second part of the product, which contains two base vectors $\sigma_{x} \sigma_{y}$, is called outer product of the two vectors \mathbf{a} and \mathbf{b}. Mathematicians symbolize outer products by a wedge \wedge. This outer product is identical to the oriented area \mathbf{A} of the parallelogram.
The magnitude of the outer product $|\mathbf{a} \wedge \mathbf{b}|$ therefore is identical to the area $|\mathbf{A}|$ of the parallelogram.
$\Rightarrow \mathbf{a} \wedge \mathbf{b}=14 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}$
$\Rightarrow|\mathbf{A}|=14$
\Rightarrow The area of the parallelogram is $14 \mathrm{~cm}^{2}$.
This wedge \wedge and the corresponding algebra are inventions as well. This algebra is called Grassmann Algebra. Calculations which contain only wedge products (outer products) follow this Grassmann Algebra.

Until NOW all this is a repetition of the solution strategy of Grassmann, which we have discussed at the first lesson. Now the solution of worksheet problem 4 will follow.

Comparison of solution strategy
you know from school ...
... with the solution strategy of Grassmann:

It can be shown by parallel displacement that the area of the parallelogram is identical to the difference of the areas of the blue and red rectangles.

\Rightarrow If the red smaller parallelogram of the right figure is subtracted from the blue parallelogram of the left figure, we will get the area of the original parallelogram $|\mathbf{a} \wedge \mathbf{b}|$. Thus the area of the original parallelogram is indeed identical to the difference of the areas of the blue and red rectangles which form the starting point of Grassmann's calculation.

To find out how to split parallelograms with the help of an outer algebra in a mathematical correct and an algebraically consistent way mankind needed over $41 / 2$ thousand years. It all started in Mesopotamia and was a really long mathematical struggle until Hermann Grassmann was finally able to write in 1844, that by applying his theory of extensions algebra will gain a substantially different shape (in German: „Durch diese Anwendung [werde] auch die Algebra eine wesentlich veränderte Gestalt gewinnen." Quotation from Hermann Grassmann: Die Wissenschaft der extensiven Größe oder die Ausdehnungslehre. Erster Theil, die lineale Ausdehnungslehre enthaltend. Verlag von Otto Wigand, Leipzig 1844, p. 71).

Problem 5:

a) $\mathbf{a}=9 \sigma_{\mathrm{x}}$
$\mathbf{b}=3 \sigma_{x}+5 \sigma_{y}$
$\mathbf{a b}=\left(9 \sigma_{\mathrm{x}}\right)\left(3 \sigma_{\mathrm{x}}+5 \sigma_{\mathrm{y}}\right)$
$=27 \sigma_{x}^{2}+45 \sigma_{x} \sigma_{y}$
$=27+45 \sigma_{x} \sigma_{y} \quad \Rightarrow \mathbf{a} \wedge \mathbf{b}=45 \sigma_{x} \sigma_{y}$
$\Rightarrow|\mathbf{A}|=45$
\Rightarrow The area of the parallelogram is $45 \mathrm{~cm}^{2}$.
b) $\mathbf{a}=4.2 \sigma_{\mathrm{x}}+1.6 \sigma_{\mathrm{y}}$
$\mathbf{b}=3.2 \sigma_{\mathrm{x}}+3.9 \sigma_{\mathrm{y}}$

$$
\left.\begin{array}{rl}
\mathbf{a} \mathbf{b} & =\left(4.2 \sigma_{x}+1.6 \sigma_{y}\right)\left(3.2 \sigma_{x}+3.9 \sigma_{y}\right) \\
& =13.44 \sigma_{x}^{2}+16.38 \sigma_{x} \sigma_{y}+5.12 \sigma_{y} \sigma_{x}+6.24 \sigma_{y}^{2} \\
= & 13.44+16.38 \sigma_{x} \sigma_{y}-5.12 \sigma_{x} \sigma_{y}+6.24 \\
& =19.68+11.26 \sigma_{x} \sigma_{y} \quad
\end{array} \quad \Rightarrow \mathbf{a} \wedge \mathbf{b}=11.26 \sigma_{x} \sigma_{y}\right)
$$

\Rightarrow The area of the parallelogram is $11.26 \mathrm{~cm}^{2}$.
c) $\mathbf{a}=6 \sigma_{\mathrm{x}}+3 \sigma_{\mathrm{y}}$
$\mathbf{b}=-5 \sigma_{x}+10 \sigma_{y}$
$\mathbf{a b}=\left(6 \sigma_{x}+3 \sigma_{y}\right)\left(-5 \sigma_{x}+10 \sigma_{y}\right)$ $=-30 \sigma_{x}^{2}+60 \sigma_{x} \sigma_{y}-15 \sigma_{y} \sigma_{x}+30 \sigma_{y}^{2}$
$=-30+60 \sigma_{x} \sigma_{y}+15 \sigma_{x} \sigma_{y}+30$
$=0+75 \sigma_{x} \sigma_{y}$ $=75 \sigma_{x} \sigma_{y} \quad \Rightarrow \mathbf{a} \wedge \mathbf{b}=75 \sigma_{x} \sigma_{y}$
$\Rightarrow|\mathbf{A}|=75$
\Rightarrow The area of the parallelogram (which now is a square) is $75 \mathrm{~cm}^{2}$.
d) $\mathbf{a}=30 \sigma_{x}+15 \sigma_{y}$
$\mathbf{b}=-40 \sigma_{x}+25 \sigma_{y}$
$\mathbf{a} \mathbf{b}=\left(30 \sigma_{\mathrm{x}}+15 \sigma_{\mathrm{y}}\right)\left(-40 \sigma_{\mathrm{x}}+25 \sigma_{\mathrm{y}}\right)$
$=-1200 \sigma_{x}^{2}+750 \sigma_{x} \sigma_{y}-600 \sigma_{y} \sigma_{x}+375 \sigma_{y}^{2}$
$=-1200+750 \sigma_{x} \sigma_{y}+600 \sigma_{x} \sigma_{y}+375$
$=-825+1350 \sigma_{x} \sigma_{y} \quad \Rightarrow \mathbf{a} \wedge \mathbf{b}=1350 \sigma_{x} \sigma_{y}$
$\Rightarrow|\mathbf{A}|=1350$
\Rightarrow The area of the parallelogram is $1350 \mathrm{~cm}^{2}$.

Problem 9:

a) $400\left[\frac{1.085^{12}-1}{0.085}\right]=7819.699917 \approx 7819.6999$

Please use decimal points when writing decimal numbers in English texts.
Decimal commas are only used in German texts.
b)
$400\left[\frac{1-\frac{1}{1.085^{12}}}{0.085}\right]=2937.874428 \approx 2937.8744$
Please write the equation sign (or equality sign) always on level with the main fraction line.
c)
$\frac{400 \cdot 1.085}{1-\frac{1}{(1+0.085)^{12}}}=695.180475 \approx 695.1805$
If the digit to the right of the last digit you are keeping (the digit to the right of the last place-value digit) is 5 or greater than 5, then the last digit (the place-value digit) will be increased by one.
d)
$\sqrt[5]{\frac{1.56 \cdot 10^{8}}{34 \cdot(5+\ln 300)}}=13.378939 \approx 13.3789$
e) $e^{\left(320 \pi-10^{3}\right)}$
$\frac{\mathrm{e}}{\ln \frac{1}{440}}=-33.232583 \approx-33.2326$
f)
$-2.95+\log _{10}\left[\frac{1-\frac{3}{5}}{\frac{27}{6}-3}\right]=-3.524032 \approx-3.5240$
To show that the result is rounded to the nearer (i.e. to the nearest) ten-thousandth, please leave four decimal places and write a zero as last digit.
Thus the result will therefore be written as -3.5240 .
The decimal number -3.524 is inaccurate because then the result is rounded to the nearer (or nearest) thousandth.

Mathematics for Business and Economics

Berlin School of Economics and Law
Supplement of Worksheet 1 - Answers

Problem 1:

a) Strategy of Hayate

If we do not choose the great black square but the smaller red rectangle as starting point, half of the area of the parallelogram can be calculated by subtracting the grey triangle, the blue triangle, the green triangle, and the yellow rectangle from the rectangle in red bold outline.

$$
\begin{aligned}
\frac{1}{2} \mathrm{~A}_{\text {parallelogram }} & =\mathrm{A}_{\text {rectangle in red bold outline }}-\mathrm{A}_{\text {grey triangle }}-\mathrm{A}_{\text {blue triangle }}-\mathrm{A}_{\text {greentriangle }}-\mathrm{A}_{\text {yellow rectangle }} \\
& =6 \mathrm{~cm} \cdot 8 \mathrm{~cm}-\frac{1}{2} \cdot 6 \mathrm{~cm} \cdot 8 \mathrm{~cm}-\frac{1}{2} \cdot 5 \mathrm{~cm} \cdot 3 \mathrm{~cm}-\frac{1}{2} \cdot 1 \mathrm{~cm} \cdot 5 \mathrm{~cm}-1 \mathrm{~cm} \cdot 3 \mathrm{~cm} \\
& =48 \mathrm{~cm}^{2}-24 \mathrm{~cm}^{2}-7.5 \mathrm{~cm}^{2}-2.5 \mathrm{~cm}^{2}-3 \mathrm{~cm}^{2} \\
& =11 \mathrm{~cm}^{2} \\
\Rightarrow \mathrm{~A}_{\text {parallelogram }} & =2 \cdot 11 \mathrm{~cm}^{2}=22 \mathrm{~cm}^{2}
\end{aligned}
$$

b) Strategy of Grassmann:

$$
\begin{aligned}
\mathbf{a} & =5 \sigma_{x}+3 \sigma_{y} \\
\mathbf{b} & =6 \sigma_{x}+8 \sigma_{y} \\
\mathbf{a b} & =\left(5 \sigma_{x}+3 \sigma_{y}\right)\left(6 \sigma_{x}+8 \sigma_{y}\right) \\
& =5 \cdot 6 \sigma_{x}^{2}+5 \cdot 8 \sigma_{x} \sigma_{y}+3 \cdot 6 \sigma_{y} \sigma_{x}+3 \cdot 8 \sigma_{y}^{2} \\
& =30 \sigma_{x}^{2}+40 \sigma_{x} \sigma_{y}+18 \sigma_{y} \sigma_{x}+24 \sigma_{y}^{2} \\
& =30 \cdot 1+40 \sigma_{x} \sigma_{y}+18\left(-\sigma_{x} \sigma_{y}\right)+24 \cdot 1
\end{aligned}
$$

$$
\begin{aligned}
=30+40 \sigma_{x} \sigma_{y}-18 \sigma_{x} \sigma_{y} & +24 \\
=54+22 \sigma_{x} \sigma_{y} & \Rightarrow \mathbf{a} \wedge \mathbf{b}=22 \sigma_{x} \sigma_{y} \\
& \Rightarrow|\mathbf{A}|=|\mathbf{a} \wedge \mathbf{b}|=22 \\
& \Rightarrow \text { The area of the parallelogram is } 22 \mathrm{~cm}^{2}
\end{aligned}
$$

Problem 2:

Generalized parallelogram:

$$
\begin{aligned}
\frac{1}{2} A_{\text {parallelogram }} & =A_{\text {rectangle in red bold outline }}-A_{\text {grey triangle }}-A_{\text {blue triangle }}-A_{\text {greentriangle }}-A_{\text {yellow rectangle }} \\
& =b_{x} b_{y}-\frac{1}{2} b_{x} b_{y}-\frac{1}{2} a_{x} a_{y}-\frac{1}{2} \cdot\left(b_{x}-a_{x}\right)\left(b_{y}-a_{y}\right)-\left(b_{x}-a_{x}\right) a_{y} \\
& =\frac{1}{2} b_{x} b_{y}-\frac{1}{2} a_{x} a_{y}-\frac{1}{2} \cdot\left(b_{x}-a_{x}\right)\left(b_{y}-a_{y}\right)-\left(b_{x}-a_{x}\right) a_{y} \\
\Rightarrow \quad A_{\text {parallelogram }} & =b_{x} b_{y}-a_{x} a_{y}-\left(b_{x}-a_{x}\right)\left(b_{y}-a_{y}\right)-2\left(b_{x}-a_{x}\right) a_{y} \\
& =b_{x} b_{y}-a_{x} a_{y}-\left(b_{x} b_{y}-b_{x} a_{y}-a_{x} b_{y}+a_{x} a_{y}\right)-2 b_{x} a_{y}+2 a_{x} a_{y} \\
& =b_{x} b_{y}-a_{x} a_{y}-b_{x} b_{y}+b_{x} a_{y}+a_{x} b_{y}-a_{x} a_{y}-2 b_{x} a_{y}+2 a_{x} a_{y} \\
& =b_{x} a_{y}+a_{x} b_{y}-2 b_{x} a_{y} \\
& =a_{x} b_{y}-a_{y} b_{x} \quad \text { QED (quod erat demonstrandum) }
\end{aligned}
$$

Mathematics for Business and Economics

Berlin School of Economics and Law
Worksheet 3 - Answers

Problem 1:

a) Equilibrium:
b) Graphical solution:

c) Supply: $p=x+15 \quad \Rightarrow \quad x-p=-15$

Demand: $\mathrm{p}=-2 \mathrm{x}+60 \Rightarrow \underbrace{2 \mathrm{x}+\mathrm{p}=60 \quad \Rightarrow 2 \mathrm{x}+1 \mathrm{p}=60}$
system of two linear equations
Coefficient vectors:

$$
\begin{aligned}
& \mathbf{a}=1 \sigma_{x}+2 \sigma_{y}=\sigma_{x}+2 \sigma_{y} \\
& \mathbf{b}=-\mathbf{1} \sigma_{x}+\mathbf{1} \sigma_{y}=-\sigma_{x}+\sigma_{y}
\end{aligned}
$$

$$
\text { Resulting vector: } \quad \mathbf{r}=-15 \sigma_{x}+60 \sigma_{y}=-15 \sigma_{x}+60 \sigma_{y}
$$

The following system of two linear equations has to be solved: $\quad \mathbf{a x}+\mathbf{b} \mathrm{p}=\mathbf{r}$

$$
\begin{aligned}
& p_{e}=x_{e}+15=-2 x_{e}+60 \\
& 3 x_{e}=45 \\
& \mathrm{x}_{\mathrm{e}}=15 \quad \text { (Equilibrium quantity) } \\
& \begin{array}{lll}
\mathrm{p}_{e}=15+15 & \text { or } & \mathrm{p}_{e}=-2 \cdot 15+60 \\
\mathrm{p}_{e}=30 & & \mathrm{p}_{\mathrm{e}}=-30+60=30
\end{array} \\
& \text { (Equilibrium price) }
\end{aligned}
$$

Outer products: $\mathbf{a} \wedge \mathbf{b}=\sigma_{x} \sigma_{y}-2 \sigma_{y} \sigma_{x}=\sigma_{x} \sigma_{y}+2 \sigma_{x} \sigma_{y}=3 \sigma_{x} \sigma_{y}$
$\mathbf{r} \wedge \mathbf{b}=-15 \sigma_{x} \sigma_{y}-60 \sigma_{y} \sigma_{x}=-15 \sigma_{x} \sigma_{y}+60 \sigma_{x} \sigma_{y}=45 \sigma_{x} \sigma_{y}$
$\mathbf{a} \wedge \mathbf{r}=60 \sigma_{x} \sigma_{y}-30 \sigma_{y} \sigma_{x}=60 \sigma_{x} \sigma_{y}+30 \sigma_{x} \sigma_{y}=90 \sigma_{x} \sigma_{y}$
Solutions: $\quad \mathrm{X}_{\mathrm{e}}=(\mathbf{a} \wedge \mathbf{b})^{-1}(\mathbf{r} \wedge \mathbf{b})=\frac{45}{3}=15 \quad$ (Equilibrium quantity)
$\mathrm{p}_{\mathrm{e}}=(\mathbf{a} \wedge \mathbf{b})^{-1}(\mathbf{a} \wedge \mathbf{r})=\frac{90}{3}=30 \quad$ (Equilibrium price)

Problem 2:

a) Equilibrium: $p_{e}=3 x_{e}+40=-x_{e}+120$

$$
\begin{aligned}
4 x_{e} & =80 \\
x_{e} & =20 \quad \text { (Equilibrium quantity) }
\end{aligned}
$$

$$
\begin{array}{lll}
\mathrm{p}_{\mathrm{e}}=3 \cdot 20+40 \quad \text { or } & \mathrm{p}_{\mathrm{e}}=-20+120 \\
\mathrm{p}_{\mathrm{e}}=60+40=100 & & \mathrm{p}_{\mathrm{e}}=100 \quad \text { (Equilibrium price) }
\end{array}
$$

Graphical solution:

b) Equilibrium: $\quad p_{e}=3 x_{e}+20=-\frac{1}{2} x_{e}+90$

$$
\begin{aligned}
3.5 x_{\mathrm{e}} & =70 \\
\mathrm{x}_{\mathrm{e}} & =20 \quad \text { (Equilibrium quantity) }
\end{aligned}
$$

$$
\begin{array}{lll}
\mathrm{p}_{\mathrm{e}}=3 \cdot 20+20 & \text { or } & \mathrm{p}_{\mathrm{e}}=-\frac{1}{2} \cdot 20+90 \\
\mathrm{p}_{\mathrm{e}}=60+20=80 & & \mathrm{p}_{\mathrm{e}}=-10+90=80
\end{array} \text { (Equilibrium price) }
$$

Graphical solution:

c) Equilibrium: $\quad p_{e}=\frac{1}{4} x_{e}+400=-\frac{1}{2} x_{e}+1000$

$$
0.75 \mathrm{x}_{\mathrm{e}}=600
$$

$$
\mathrm{x}_{\mathrm{e}}=800 \quad \text { (Equilibrium quantity) }
$$

$$
\begin{array}{lll}
\mathrm{p}_{\mathrm{e}}=\frac{1}{4} \cdot 800+400 & \text { or } & \mathrm{p}_{\mathrm{e}}=-\frac{1}{2} \cdot 800+1000 \\
\mathrm{p}_{\mathrm{e}}=200+400=600 & \mathrm{p}_{\mathrm{e}}=-400+1000=600
\end{array}
$$

Graphical solution:

d) Equilibrium: $\quad \mathrm{p}_{\mathrm{e}}=750=-\frac{5}{8} \mathrm{x}_{\mathrm{e}}+1270$

$$
\begin{aligned}
0.625 \mathrm{x}_{\mathrm{e}} & =520 \\
\mathrm{x}_{\mathrm{e}} & =832 \quad \text { (Equilibrium quantity) }
\end{aligned}
$$

$$
\mathrm{p}_{\mathrm{e}}=750 \quad \text { or } \quad \mathrm{p}_{\mathrm{e}}=-\frac{5}{8} \cdot 832+1270=750 \quad \text { (Equilibrium price) }
$$

Graphical solution:

Problem 3:

Supply and demand functions form a system of two linear equations.
(2a) Supply: $\mathrm{p}=3 \mathrm{x}+40 \quad \Rightarrow \quad 3 \mathrm{x}-\mathrm{p}=-40 \quad \Rightarrow \quad 3 \mathrm{x}-1 \mathrm{p}=-40$
Demand: $\mathrm{p}=-\mathrm{x}+120 \quad \Rightarrow \quad \mathrm{x}+\mathrm{p}=120 \quad \Rightarrow \quad 1 \mathrm{x}+1 \mathrm{p}=120$
Pauli vectors: $\quad \mathbf{a}=\mathbf{3} \sigma_{x}+1 \sigma_{y}=3 \sigma_{x}+\sigma_{y}$
$\mathbf{b}=-\mathbf{1} \sigma_{\mathrm{x}}+\mathbf{1} \sigma_{\mathrm{y}}=-\sigma_{\mathrm{x}}+\sigma_{\mathrm{y}}$
$\mathbf{r}=-40 \sigma_{\mathrm{x}}+120 \sigma_{\mathrm{y}}=-40 \sigma_{\mathrm{x}}+120 \sigma_{\mathrm{y}}$
Outer products: $\mathbf{a} \wedge \mathbf{b}=3 \sigma_{x} \sigma_{y}-\sigma_{y} \sigma_{x}=3 \sigma_{x} \sigma_{y}+\sigma_{x} \sigma_{y}=4 \sigma_{x} \sigma_{y}$
$\mathbf{r} \wedge \mathbf{b}=-40 \sigma_{x} \sigma_{y}-120 \sigma_{y} \sigma_{x}=-40 \sigma_{x} \sigma_{y}+120 \sigma_{x} \sigma_{y}=80 \sigma_{x} \sigma_{y}$
$\mathbf{a} \wedge \mathbf{r}=360 \sigma_{x} \sigma_{y}-40 \sigma_{y} \sigma_{x}=360 \sigma_{x} \sigma_{y}+40 \sigma_{x} \sigma_{y}=400 \sigma_{x} \sigma_{y}$
Solutions: $\quad \mathrm{X}_{\mathrm{e}}=(\mathbf{a} \wedge \mathbf{b})^{-1}(\mathbf{r} \wedge \mathbf{b})=\frac{80}{4}=20 \quad$ (Equilibrium quantity)
$\mathrm{p}_{\mathrm{e}}=(\mathbf{a} \wedge \mathbf{b})^{-1}(\mathbf{a} \wedge \mathbf{r})=\frac{400}{4}=100 \quad$ (Equilibrium price)
(2b) Supply: $\mathrm{p}=3 \mathrm{x}+20 \quad \Rightarrow \quad 3 \mathrm{x}-\mathrm{p}=-20 \quad \Rightarrow \quad 3 \mathrm{x}-1 \mathrm{p}=-20$
Demand: $\mathrm{p}=-\frac{1}{2} \mathrm{x}+90 \quad \Rightarrow \quad \frac{1}{2} \mathrm{x}+\mathrm{p}=90 \quad \Rightarrow \quad \frac{1}{2} \mathrm{x}+1 \mathrm{p}=90$
Pauli vectors: $\quad \mathbf{a}=3 \sigma_{x}+0.5 \sigma_{y}$

$$
\mathbf{b}=-\sigma_{x}+\sigma_{y}
$$

$$
\mathbf{r}=-20 \sigma_{x}+90 \sigma_{y}
$$

Outer products: $\mathbf{a} \wedge \mathbf{b}=3 \sigma_{x} \sigma_{y}-0.5 \sigma_{y} \sigma_{x}=3 \sigma_{x} \sigma_{y}+0.5 \sigma_{x} \sigma_{y}=3.5 \sigma_{x} \sigma_{y}$
$\mathbf{r} \wedge \mathbf{b}=-20 \sigma_{x} \sigma_{y}-90 \sigma_{y} \sigma_{x}=-20 \sigma_{x} \sigma_{y}+90 \sigma_{x} \sigma_{y}=70 \sigma_{x} \sigma_{y}$
$\mathbf{a} \wedge \mathbf{r}=270 \sigma_{x} \sigma_{y}-10 \sigma_{y} \sigma_{x}=270 \sigma_{x} \sigma_{y}+10 \sigma_{x} \sigma_{y}=280 \sigma_{x} \sigma_{y}$
Solutions: $\quad \mathrm{x}_{\mathrm{e}}=(\mathbf{a} \wedge \mathbf{b})^{-1}(\mathbf{r} \wedge \mathbf{b})=\frac{70}{3.5}=20 \quad$ (Equilibrium quantity) $\mathrm{p}_{\mathrm{e}}=(\mathbf{a} \wedge \mathbf{b})^{-1}(\mathbf{a} \wedge \mathbf{r})=\frac{280}{3.5}=80 \quad$ (Equilibrium price)
(2c) Supply: $\mathrm{p}=\frac{1}{4} \mathrm{x}+400 \quad \Rightarrow \quad \frac{1}{4} \mathrm{x}-\mathrm{p}=-400 \quad \Rightarrow \quad \frac{1}{4} \mathrm{x}-1 \mathrm{p}=-400$
Demand: $\mathrm{p}=-\frac{1}{2} \mathrm{x}+1000 \Rightarrow \quad \frac{1}{2} \mathrm{x}+\mathrm{p}=1000 \quad \Rightarrow \quad \frac{1}{2} \mathrm{x}+1 \mathrm{p}=1000$
Pauli vectors: $\quad \mathbf{a}=0.25 \sigma_{x}+0.5 \sigma_{y}$
$\mathbf{b}=-\sigma_{x}+\sigma_{y}$
$\mathbf{r}=-400 \sigma_{\mathrm{x}}+1000 \sigma_{\mathrm{y}}$
Outer products: $\mathbf{a} \wedge \mathbf{b}=0.25 \sigma_{x} \sigma_{y}-0.5 \sigma_{y} \sigma_{x}=0.25 \sigma_{x} \sigma_{y}+0.5 \sigma_{x} \sigma_{y}=0.75 \sigma_{x} \sigma_{y}$

$$
\begin{aligned}
& \mathbf{r} \wedge \mathbf{b}=-400 \sigma_{x} \sigma_{y}-1000 \sigma_{y} \sigma_{x}=-400 \sigma_{x} \sigma_{y}+1000 \sigma_{x} \sigma_{y}=600 \sigma_{x} \sigma_{y} \\
& \mathbf{a} \wedge \mathbf{r}=250 \sigma_{x} \sigma_{y}-200 \sigma_{y} \sigma_{x}=250 \sigma_{x} \sigma_{y}+200 \sigma_{x} \sigma_{y}=450 \sigma_{x} \sigma_{y}
\end{aligned}
$$

Solutions: $\quad x_{e}=(\mathbf{a} \wedge \mathbf{b})^{-1}(\mathbf{r} \wedge \mathbf{b})=\frac{600}{0.75}=800 \quad$ (Equilibrium quantity)

$$
\mathrm{p}_{\mathrm{e}}=(\mathbf{a} \wedge \mathbf{b})^{-1}(\mathbf{a} \wedge \mathbf{r})=\frac{450}{0.75}=600 \quad(\text { Equilibrium price })
$$

(2d) Supply: $\mathrm{p}=750 \quad \Rightarrow \quad \mathrm{p}=750 \quad \Rightarrow \quad 0 \mathrm{x}+1 \mathrm{p}=750$
Demand: $\quad \mathrm{p}=-\frac{5}{8} \mathrm{x}+1270 \Rightarrow \quad \frac{5}{8} \mathrm{x}+\mathrm{p}=1270 \quad \Rightarrow \quad \frac{5}{8} \mathrm{x}+1 \mathrm{p}=1270$
Pauli vectors:

$$
\begin{aligned}
& \mathbf{a}=0 \sigma_{x}+0.625 \sigma_{y}=0.625 \sigma_{y} \\
& \mathbf{b}=\sigma_{x}+\sigma_{y} \\
& \mathbf{r}=750 \sigma_{x}+1270 \sigma_{y}
\end{aligned}
$$

Outer products: $\mathbf{a} \wedge \mathbf{b}=0.625 \sigma_{y} \sigma_{x}=-0.625 \sigma_{x} \sigma_{y}$

$$
\mathbf{r} \wedge \mathbf{b}=750 \sigma_{x} \sigma_{y}+1270 \sigma_{y} \sigma_{x}=750 \sigma_{x} \sigma_{y}-1270 \sigma_{x} \sigma_{y}=-520 \sigma_{x} \sigma_{y}
$$

$$
\mathbf{a} \wedge \mathbf{r}=468.75 \sigma_{y} \sigma_{x}=-468.75 \sigma_{x} \sigma_{y}
$$

$\begin{array}{lll}\text { Solutions: } & \mathrm{x}_{\mathrm{e}}=(\mathbf{a} \wedge \mathbf{b})^{-1}(\mathbf{r} \wedge \mathbf{b})=\frac{-520}{-0.625}=832 & \text { (Equilibrium quantity) } \\ & \mathrm{p}_{\mathrm{e}}=(\mathbf{a} \wedge \mathbf{b})^{-1}(\mathbf{a} \wedge \mathbf{r})=\frac{-468.75}{-0.625}=750 & \text { (Equilibrium price) }\end{array}$

Problem 4:

a) Equilibrium: $\quad x_{e}=\frac{1}{3} p_{e}-4=-2 p_{e}+206$

$$
\begin{aligned}
\frac{1}{3} p_{e} & =-2 p_{e}+210 \\
\frac{7}{3} p_{e} & =210 \\
p_{e} & =90 \quad \text { (Equilibrium price) }
\end{aligned}
$$

$$
\mathrm{x}_{\mathrm{e}}=\frac{1}{3} \cdot 90-4 \quad \text { or } \quad \mathrm{x}_{\mathrm{e}}=-2 \cdot 90+206
$$

$$
\mathrm{x}_{\mathrm{e}}=30-4=26 \quad \mathrm{x}_{\mathrm{e}}=-180+206=26 \quad \text { (Equilibrium quantity) }
$$

b) Equilibrium: $\quad \mathrm{x}_{\mathrm{e}}=\frac{2}{5}\left(\mathrm{p}_{\mathrm{e}}-80\right)=319-\frac{5}{7} \mathrm{p}_{\mathrm{e}}$

$$
\begin{aligned}
\frac{2}{5} \mathrm{p}_{\mathrm{e}}-32 & =319-\frac{5}{7} \mathrm{p}_{\mathrm{e}} \\
\frac{14+25}{35} \mathrm{p}_{\mathrm{e}} & =351 \\
\mathrm{p}_{\mathrm{e}} & =351 \cdot \frac{35}{39}=315 \quad \text { (Equilibrium price) }
\end{aligned}
$$

$$
\mathrm{x}_{\mathrm{e}}=\frac{2}{5}(315-80) \quad \text { or } \quad \mathrm{x}_{\mathrm{e}}=319-\frac{5}{7} \cdot 315
$$

$$
\mathrm{x}_{\mathrm{e}}=\frac{2}{5} \cdot 235=94 \quad \mathrm{x}_{\mathrm{e}}=319-225=94 \quad \text { (Equilibrium quantity) }
$$

Problem 5:

Supply and demand functions form a system of two linear equations.
a) Supply: $x=\frac{1}{3} p-4 \quad \Rightarrow \quad x-\frac{1}{3} p=-4$

Demand: $\mathrm{x}=-2 \mathrm{p}+206 \quad \Rightarrow \quad \mathrm{x}+2 \mathrm{p}=206$

Pauli vectors: $\quad \mathbf{a}=\sigma_{x}+\sigma_{y}$

$$
\begin{aligned}
& \mathbf{b}=-\frac{1}{3} \sigma_{x}+2 \sigma_{y} \\
& \mathbf{r}=-4 \sigma_{x}+206 \sigma_{y}
\end{aligned}
$$

Outer products: $\quad \mathbf{a} \wedge \mathbf{b}=\left(2+\frac{1}{3}\right) \sigma_{x} \sigma_{y}=\frac{7}{3} \sigma_{x} \sigma_{y}$

$$
\mathbf{r} \wedge \mathbf{b}=\left(-8+\frac{206}{3}\right) \sigma_{x} \sigma_{y}=\frac{182}{3} \sigma_{x} \sigma_{y}
$$

$$
\mathbf{a} \wedge \mathbf{r}=(206+4) \sigma_{x} \sigma_{y}=210 \sigma_{x} \sigma_{y}
$$

Solutions: $\mathrm{x}_{\mathrm{e}}=(\mathbf{a} \wedge \mathbf{b})^{-1}(\mathbf{r} \wedge \mathbf{b})=\frac{\frac{182}{3}}{\frac{7}{3}}=\frac{182}{3} \cdot \frac{3}{7}=\frac{182}{7}=26$
(Equilibrium quantity)

$$
\mathrm{p}_{\mathrm{e}}=(\mathbf{a} \wedge \mathbf{b})^{-1}(\mathbf{a} \wedge \mathbf{r})=\frac{210}{\frac{7}{3}}=210 \cdot \frac{3}{7}=90
$$

(Equilibrium price)
b) Supply: $\mathrm{x}=\frac{2}{5}(\mathrm{p}-80)=\frac{2}{5} \mathrm{p}-32 \quad \Rightarrow \quad \mathrm{x}-\frac{2}{5} \mathrm{p}=-32$

Demand: $\mathrm{x}=319-\frac{5}{7} \mathrm{p} \quad \Rightarrow \quad \mathrm{x}+\frac{5}{7} \mathrm{p}=319$
Pauli vectors: $\quad \mathbf{a}=\sigma_{x}+\sigma_{y}$

$$
\begin{aligned}
& \mathbf{b}=-\frac{2}{5} \sigma_{x}+\frac{5}{7} \sigma_{y} \\
& \mathbf{r}=-32 \sigma_{x}+319 \sigma_{y}
\end{aligned}
$$

Outer products: $\quad \mathbf{a} \wedge \mathbf{b}=\left(\frac{5}{7}+\frac{2}{5}\right) \sigma_{x} \sigma_{y}=\frac{39}{35} \sigma_{x} \sigma_{y}$
$\mathbf{r} \wedge \mathbf{b}=\left(-\frac{160}{7}+\frac{638}{5}\right) \sigma_{x} \sigma_{y}=\frac{3666}{35} \sigma_{x} \sigma_{y}$

$$
\mathbf{a} \wedge \mathbf{r}=(319+32) \sigma_{x} \sigma_{y}=351 \sigma_{x} \sigma_{y}
$$

Solutions: $\quad x_{e}=(\mathbf{a} \wedge \mathbf{b})^{-1}(\mathbf{r} \wedge \mathbf{b})=\frac{\frac{3666}{35}}{\frac{39}{35}}=\frac{3666}{35} \cdot \frac{35}{39}=\frac{3666}{39}=94 \quad$ (Equilibrium quantity)

$$
\mathrm{p}_{\mathrm{e}}=(\mathbf{a} \wedge \mathbf{b})^{-1}(\mathbf{a} \wedge \mathbf{r})=\frac{351}{\frac{39}{35}}=351 \cdot \frac{35}{39}=315
$$

Mathematics for Business and Economics

Berlin School of Economics and Law
Worksheet 8 - Answers

Problem 1:

a) $\mathbf{a}=5 \sigma_{\mathrm{x}}+2 \sigma_{\mathrm{y}}$
$\mathbf{b}=2 \sigma_{\mathrm{x}}+6 \sigma_{\mathrm{y}}$
$\mathbf{a} \mathbf{b}=\left(5 \sigma_{\mathrm{x}}+2 \sigma_{\mathrm{y}}\right)\left(2 \sigma_{\mathrm{x}}+6 \sigma_{\mathrm{y}}\right)$
$=5 \cdot 2 \sigma_{x}^{2}+5 \cdot 6 \sigma_{x} \sigma_{y}+2 \cdot 2 \sigma_{y} \sigma_{x}+2 \cdot 6 \sigma_{y}^{2}$
$=10 \sigma_{x}^{2}+30 \sigma_{x} \sigma_{y}+4 \sigma_{y} \sigma_{x}+12 \sigma_{y}^{2}$
$=10 \cdot 1+30 \sigma_{x} \sigma_{y}+4\left(-\sigma_{x} \sigma_{y}\right)+12 \cdot 1$
$=10+30 \sigma_{x} \sigma_{y}-4 \sigma_{x} \sigma_{y}+12$

$$
=22+26 \sigma_{x} \sigma_{y}
$$

$\Rightarrow \mathbf{a} \wedge \mathbf{b}=26 \sigma_{x} \sigma_{y}$

$\Rightarrow|\mathbf{A}|=26$
\Rightarrow The area of the parallelogram is $26 \mathrm{~cm}^{2}$.
b) $\mathbf{a}=8 \sigma_{\mathrm{x}}+7 \sigma_{\mathrm{y}}$
$\mathbf{b}=2 \sigma_{x}+20 \sigma_{y}$

$$
\begin{aligned}
\mathbf{a} \mathbf{b} & =\left(8 \sigma_{x}+7 \sigma_{y}\right)\left(2 \sigma_{x}+20 \sigma_{y}\right) \\
& =8 \cdot 2 \sigma_{x}^{2}+8 \cdot 20 \sigma_{x} \sigma_{y}+7 \cdot 2 \sigma_{y} \sigma_{x}+7 \cdot 20 \sigma_{y}^{2} \\
& =16 \sigma_{x}^{2}+160 \sigma_{x} \sigma_{y}+14 \sigma_{y} \sigma_{x}+140 \sigma_{y}^{2} \\
& =16 \cdot 1+160 \sigma_{x} \sigma_{y}+14\left(-\sigma_{x} \sigma_{y}\right)+140 \cdot 1 \\
& =16+160 \sigma_{x} \sigma_{y}-14 \sigma_{x} \sigma_{y}+140 \\
& =156+146 \sigma_{x} \sigma_{y}
\end{aligned}
$$

$\Rightarrow \mathbf{a} \wedge \mathbf{b}=146 \sigma_{x} \sigma_{y}$
$\Rightarrow|\mathbf{A}|=146$
\Rightarrow The area of the parallelogram is $146 \mathrm{~cm}^{2}$.

Sketch:

c) $\mathbf{a}=5 \sigma_{x}-5 \sigma_{y}$
$\mathbf{b}=3 \sigma_{\mathrm{x}}+7 \sigma_{\mathrm{y}}$

$$
\begin{aligned}
\mathbf{a} \mathbf{b} & =\left(5 \sigma_{x}-5 \sigma_{y}\right)\left(3 \sigma_{x}+7 \sigma_{y}\right) \\
& =5 \cdot 3 \sigma_{x}^{2}+5 \cdot 7 \sigma_{x} \sigma_{y}-5 \cdot 3 \sigma_{y} \sigma_{x}-5 \cdot 7 \sigma_{y}^{2} \\
& =15 \sigma_{x}^{2}+35 \sigma_{x} \sigma_{y}-15 \sigma_{y} \sigma_{x}-35 \sigma_{y}^{2} \\
& =15 \cdot 1+35 \sigma_{x} \sigma_{y}-15\left(-\sigma_{x} \sigma_{y}\right)-35 \cdot 1 \\
& =15+35 \sigma_{x} \sigma_{y}+15 \sigma_{x} \sigma_{y}-35 \\
& =-20+50 \sigma_{x} \sigma_{y}
\end{aligned}
$$

$\Rightarrow \mathbf{a} \wedge \mathbf{b}=50 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}$
$\Rightarrow|\mathbf{A}|=50$
\Rightarrow The area of the parallelogram is $50 \mathrm{~cm}^{2}$.
d) $\mathbf{a}=4 \sigma_{\mathrm{x}}+16 \sigma_{\mathrm{y}}$
$\mathbf{b}=9 \sigma_{\mathrm{x}}+2 \sigma_{\mathrm{y}}$

$$
\begin{aligned}
\mathbf{a} \mathbf{b} & =\left(4 \sigma_{x}+16 \sigma_{y}\right)\left(9 \sigma_{x}+2 \sigma_{y}\right) \\
& =4 \cdot 9 \sigma_{x}^{2}+4 \cdot 2 \sigma_{x} \sigma_{y}+16 \cdot 9 \sigma_{y} \sigma_{x}+16 \cdot 2 \sigma_{y}^{2} \\
& =36 \sigma_{x}^{2}+8 \sigma_{x} \sigma_{y}+144 \sigma_{y} \sigma_{x}+32 \sigma_{y}^{2} \\
& =36 \cdot 1+8 \sigma_{x} \sigma_{y}+144\left(-\sigma_{x} \sigma_{y}\right)+32 \cdot 1 \\
& =36+8 \sigma_{x} \sigma_{y}-144 \sigma_{x} \sigma_{y}+32 \\
& =68-136 \sigma_{x} \sigma_{y}
\end{aligned}
$$

$\Rightarrow \mathbf{a} \wedge \mathbf{b}=-136 \sigma_{x} \sigma_{y}$
$\Rightarrow|\mathbf{A}|=136$
\Rightarrow The area of the parallelogram is $136 \mathrm{~cm}^{2}$.

Problem 2:

a) $\mathbf{a}=6 \sigma_{\mathrm{x}}+4 \sigma_{\mathrm{y}}$
$\mathbf{b}=-4 \sigma_{x}+6 \sigma_{y}$
$\mathbf{a b}=\left(6 \sigma_{x}+4 \sigma_{y}\right)\left(-4 \sigma_{x}+6 \sigma_{y}\right)$

$$
=6 \cdot(-4) \sigma_{x}^{2}+6 \cdot 6 \sigma_{x} \sigma_{y}+4 \cdot(-4) \sigma_{y} \sigma_{x}+4 \cdot 6 \sigma_{y}^{2}
$$

$$
=-24 \sigma_{x}^{2}+36 \sigma_{x} \sigma_{y}-16 \sigma_{y} \sigma_{x}+24 \sigma_{y}^{2}
$$

$$
=-24 \cdot 1+36 \sigma_{x} \sigma_{y}-16\left(-\sigma_{x} \sigma_{y}\right)+24 \cdot 1
$$

$$
=-24+36 \sigma_{x} \sigma_{y}+16 \sigma_{x} \sigma_{y}+24
$$

$$
=0+52 \sigma_{x} \sigma_{y}
$$

$$
=52 \sigma_{x} \sigma_{y}
$$

Sketch:

5 cm

Sketch:

$\Rightarrow \mathbf{a} \wedge \mathbf{b}=52 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}$
$\Rightarrow|\mathbf{A}|=52$
\Rightarrow The area of the parallelogram is $52 \mathrm{~cm}^{2}$.
As the sides of the parallelogram are perpendicular to each other and have the same length, it is a square.
b) $\mathbf{a}=-4.8 \sigma_{x}-3.4 \sigma_{y}$
$\mathbf{b}=-5.1 \sigma_{x}+7.2 \sigma_{\mathrm{y}}$
$\mathbf{a} \mathbf{b}=\left(-4.8 \sigma_{x}-3.4 \sigma_{y}\right)\left(-5.1 \sigma_{x}+7.2 \sigma_{y}\right)$
$=-4.8 \cdot(-5.1) \sigma_{x}{ }^{2}-4.8 \cdot 7.2 \sigma_{x} \sigma_{y}-3.4 \cdot(-5.1) \sigma_{y} \sigma_{x}-3.4 \cdot 7.2 \sigma_{y}{ }^{2}$
$=24.48 \sigma_{x}{ }^{2}-34.56 \sigma_{x} \sigma_{y}+17.34 \sigma_{y} \sigma_{x}-24.48 \sigma_{y}{ }^{2}$
$=24.48 \cdot 1-34.56 \sigma_{x} \sigma_{y}+17.34\left(-\sigma_{x} \sigma_{y}\right)-24.48 \cdot 1$
$=24.48-34.36 \sigma_{x} \sigma_{y}-17.34 \sigma_{x} \sigma_{y}-24.48$
$=0-51.90 \sigma_{x} \sigma_{y}$
$=-51.90 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}$
$\Rightarrow \mathbf{a} \wedge \mathbf{b}=-51.90 \sigma_{x} \sigma_{y}$
$\Rightarrow|\mathbf{A}|=51.90$
\Rightarrow The area of the parallelogram is $51.90 \mathrm{~cm}^{2}$.
As the sides of the parallelogram are perpendicular to each other, it is a rectangle.

Sketch:

c) $\mathbf{a}=4 \sigma_{x}+3 \sigma_{y}$

Sketch:
$\mathbf{b}=12 \sigma_{x}+9 \sigma_{y}$

$$
\begin{aligned}
\mathbf{a} \mathbf{b} & =\left(4 \sigma_{x}+3 \sigma_{y}\right)\left(12 \sigma_{x}+9 \sigma_{y}\right) \\
& =4 \cdot 12 \sigma_{x}^{2}+4 \cdot 9 \sigma_{x} \sigma_{y}+3 \cdot 12 \sigma_{y} \sigma_{x}+3 \cdot 9 \sigma_{y}^{2} \\
& =48 \sigma_{x}^{2}+36 \sigma_{x} \sigma_{y}+36 \sigma_{y} \sigma_{x}+27 \sigma_{y}^{2} \\
& =48 \cdot 1+36 \sigma_{x} \sigma_{y}+36\left(-\sigma_{x} \sigma_{y}\right)+27 \cdot 1 \\
& =48+36 \sigma_{x} \sigma_{y}-36 \sigma_{x} \sigma_{y}+27 \\
& =75+0 \sigma_{x} \sigma_{y} \\
& =75
\end{aligned}
$$

$\Rightarrow \mathbf{a} \wedge \mathbf{b}=0 \sigma_{x} \sigma_{y}=0$
$\Rightarrow|\mathbf{A}|=0$
\Rightarrow The area of the parallelogram equals $0 \mathrm{~cm}^{2}$. Thus there is no area.
It is not possible to form a parallelogram, because all sides are parallel.
d) $\mathbf{a}=5 \sigma_{\mathrm{x}}+20 \sigma_{\mathrm{y}}$

Sketch:
$\mathbf{b}=-\sigma_{x}-4 \sigma_{y}$
$\mathbf{a b}=\left(5 \sigma_{\mathrm{x}}+20 \sigma_{\mathrm{y}}\right)\left(-\sigma_{\mathrm{x}}-4 \sigma_{\mathrm{y}}\right)$
$=5 \cdot(-1) \sigma_{x}^{2}+5 \cdot(-4) \sigma_{x} \sigma_{y}+20 \cdot(-1) \sigma_{y} \sigma_{x}+20 \cdot(-4) \sigma_{y}^{2}$
$=-5 \sigma_{x}^{2}+-20 \sigma_{x} \sigma_{y}-20 \sigma_{y} \sigma_{x}-80 \sigma_{y}^{2}$
$=-5 \cdot 1-20 \sigma_{x} \sigma_{y}-20\left(-\sigma_{x} \sigma_{y}\right)-80 \cdot 1$
$=-5-20 \sigma_{x} \sigma_{y}+20 \sigma_{x} \sigma_{y}-80$
$=-85+0 \sigma_{x} \sigma_{y}$
$=-85$
$\Rightarrow \mathbf{a} \wedge \mathbf{b}=0 \sigma_{x} \sigma_{y}=0$
$\Rightarrow|\mathbf{A}|=0$
\Rightarrow The area of the parallelogram equals $0 \mathrm{~cm}^{2}$.
Thus there is no area.
It is not possible to form a parallelogram, because all sides are parallel.

Problem 3:

a)

$$
\begin{aligned}
& 3 x+8 y=28 \Rightarrow \mathbf{a}=3 \sigma_{x}+6 \sigma_{y} \\
& 6 x+2 y=28 \\
& \mathbf{b}=8 \sigma_{\mathrm{x}}+2 \sigma_{\mathrm{y}} \\
& \mathbf{r}=28 \sigma_{\mathrm{x}}+28 \sigma_{\mathrm{y}} \\
& \Rightarrow \quad \mathbf{a b}=\left(3 \sigma_{x}+6 \sigma_{y}\right)\left(8 \sigma_{x}+2 \sigma_{y}\right) \\
& =24 \sigma_{x}^{2}+6 \sigma_{x} \sigma_{y}+48 \sigma_{y} \sigma_{x}+12 \sigma_{y}^{2} \\
& =36-42 \sigma_{x} \sigma_{y} \\
& \mathbf{a} \wedge \mathbf{b}=-42 \sigma_{x} \sigma_{y} \\
& \Rightarrow \quad \mathbf{r} \mathbf{b}=\left(28 \sigma_{\mathrm{x}}+28 \sigma_{\mathrm{y}}\right)\left(8 \sigma_{\mathrm{x}}+2 \sigma_{\mathrm{y}}\right) \\
& =224 \sigma_{x}^{2}+56 \sigma_{x} \sigma_{y}+224 \sigma_{y} \sigma_{x}+56 \sigma_{y}^{2} \\
& =280-168 \sigma_{x} \sigma_{y} \\
& \mathbf{r} \wedge \mathbf{b}=-168 \sigma_{x} \sigma_{y} \\
& \Rightarrow \quad \mathbf{a r}=\left(3 \sigma_{\mathrm{x}}+6 \sigma_{\mathrm{y}}\right)\left(28 \sigma_{\mathrm{x}}+28 \sigma_{\mathrm{y}}\right) \\
& =84 \sigma_{x}^{2}+84 \sigma_{x} \sigma_{y}+168 \sigma_{y} \sigma_{x}+168 \sigma_{y}^{2} \\
& =252-84 \sigma_{x} \sigma_{y} \\
& \mathbf{a} \wedge \mathbf{r}=-84 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}} \\
& \} \begin{aligned}
(\mathbf{a} \wedge \mathbf{b}) \mathrm{x} & =\mathbf{r} \wedge \mathbf{b} \\
-42 \sigma_{x} \sigma_{\mathrm{y}} \mathrm{x} & =-168 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}} \\
\Rightarrow \quad & =4
\end{aligned} \\
& (\mathbf{a} \wedge \mathbf{b}) \mathrm{y}=\mathbf{a} \wedge \mathbf{r} \\
& -42 \sigma_{x} \sigma_{y} y=-84 \sigma_{x} \sigma_{y} \\
& \Rightarrow \quad y=2
\end{aligned}
$$

Check: $\quad 3 \cdot 4+8 \cdot 2=12+16=28$

$$
6 \cdot 4+2 \cdot 2=24+4=28
$$

b) $\quad 4 \mathrm{x}+9 \mathrm{y}=29 \quad \Rightarrow \quad \mathbf{a}=4 \sigma_{\mathrm{x}}+5 \sigma_{\mathrm{y}}$
$5 \mathrm{x}+6 \mathrm{y}=31 \quad \mathbf{b}=9 \sigma_{\mathrm{x}}+6 \sigma_{\mathrm{y}}$
$\mathbf{r}=29 \sigma_{\mathrm{x}}+31 \sigma_{\mathrm{y}}$
$\Rightarrow \quad \mathbf{a b}=\left(4 \sigma_{\mathrm{x}}+5 \sigma_{\mathrm{y}}\right)\left(9 \sigma_{\mathrm{x}}+6 \sigma_{\mathrm{y}}\right)$
$=36 \sigma_{x}^{2}+24 \sigma_{x} \sigma_{y}+45 \sigma_{y} \sigma_{x}+30 \sigma_{y}^{2}$
$=66-21 \sigma_{x} \sigma_{y}$
$\mathbf{a} \wedge \mathbf{b}=-21 \sigma_{x} \sigma_{y}$

$$
\begin{aligned}
\Rightarrow \quad \mathbf{r} \mathbf{b} & =\left(29 \sigma_{x}+31 \sigma_{y}\right)\left(9 \sigma_{x}+6 \sigma_{y}\right) \\
& =261 \sigma_{x}^{2}+174 \sigma_{x} \sigma_{y}+279 \sigma_{y} \sigma_{x}+186 \sigma_{y}^{2} \\
& =447-105 \sigma_{x} \sigma_{y}
\end{aligned}
$$

$\mathbf{r} \wedge \mathbf{b}=-105 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}$
$\Rightarrow \quad \mathbf{a r}=\left(4 \sigma_{\mathrm{x}}+5 \sigma_{\mathrm{y}}\right)\left(29 \sigma_{\mathrm{x}}+31 \sigma_{\mathrm{y}}\right)$

$$
\begin{aligned}
& =116 \sigma_{x}^{2}+124 \sigma_{x} \sigma_{y}+145 \sigma_{y} \sigma_{x}+155 \sigma_{y}^{2} \\
& =271-21 \sigma_{x} \sigma_{y}
\end{aligned}
$$

$\mathbf{a} \wedge \mathbf{r}=-21 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}$
$(\mathbf{a} \wedge \mathbf{b}) \mathrm{x}=\mathbf{r} \wedge \mathbf{b}$
$-21 \sigma_{x} \sigma_{y} x=-105 \sigma_{x} \sigma_{y}$
$\Rightarrow \quad \mathrm{x}=5$
$\begin{aligned} \quad(\mathbf{a} \wedge \mathbf{b}) \mathrm{y} & =\mathbf{a} \wedge \mathbf{r} \\ -21 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}} \mathrm{y} & =-21 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}} \\ \Rightarrow \quad & \mathrm{y}\end{aligned}=1 \mathrm{l}$
Check: $\quad 4 \cdot 5+9 \cdot 1=20+9=29$
$5 \cdot 5+6 \cdot 1=25+6=31$
c) $6 x+4 y=6 \quad \Rightarrow \quad \mathbf{a}=6 \sigma_{x}+2 \sigma_{y}$
$2 \mathrm{x}+\mathrm{y}=3 \quad \mathbf{b}=4 \sigma_{\mathrm{x}}+\sigma_{\mathrm{y}}$

$$
\mathbf{r}=6 \sigma_{x}+3 \sigma_{y}
$$

$\Rightarrow \quad \mathbf{a b}=\left(6 \sigma_{\mathrm{x}}+2 \sigma_{\mathrm{y}}\right)\left(4 \sigma_{\mathrm{x}}+\sigma_{\mathrm{y}}\right)$

$$
\begin{aligned}
& =24 \sigma_{x}^{2}+6 \sigma_{x} \sigma_{y}+8 \sigma_{y} \sigma_{x}+2 \sigma_{y}^{2} \\
& =26-2 \sigma_{x} \sigma_{y}
\end{aligned}
$$

$\mathbf{a} \wedge \mathbf{b}=-2 \sigma_{x} \sigma_{y}$
$\Rightarrow \quad \mathbf{r b}=\left(6 \sigma_{\mathrm{x}}+3 \sigma_{\mathrm{y}}\right)\left(4 \sigma_{\mathrm{x}}+\sigma_{\mathrm{y}}\right)$
$=24 \sigma_{x}^{2}+6 \sigma_{x} \sigma_{y}+12 \sigma_{y} \sigma_{x}+3 \sigma_{y}^{2}$
$=27-6 \sigma_{x} \sigma_{y}$
$\mathbf{r} \wedge \mathbf{b}=-6 \sigma_{x} \sigma_{y}$
$\Rightarrow \quad \mathbf{a r}=\left(6 \sigma_{\mathrm{x}}+2 \sigma_{\mathrm{y}}\right)\left(6 \sigma_{\mathrm{x}}+3 \sigma_{\mathrm{y}}\right)$
$=36 \sigma_{x}^{2}+18 \sigma_{x} \sigma_{y}+12 \sigma_{y} \sigma_{x}+6 \sigma_{y}^{2}$ $=42+6 \sigma_{x} \sigma_{y}$
$\mathbf{a} \wedge \mathbf{r}=6 \sigma_{x} \sigma_{y}$

$$
\text { Check: } \begin{array}{ll}
6 \cdot 3+4 \cdot(-3)=18-12=6 \\
& 2 \cdot 3+(-3)=6-3=3
\end{array}
$$

d)

Check: $\quad 5 \cdot(-2)-2 \cdot(-8)=-10+16=6$

$$
-2 \cdot(-2)-3 \cdot(-8)=4+24=28
$$

Problem 4:

The system of two linear equations of this text problem is identical to the system of linear equations of problem 3a. Therefore the results of that problem can be used.
$3 \mathrm{x}+8 \mathrm{y}=28 \quad \Rightarrow \mathbf{a}=3 \sigma_{\mathrm{x}}+6 \sigma_{\mathrm{y}} \quad \Rightarrow \mathbf{a} \wedge \mathbf{b}=-42 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}$
$6 x+2 y=28$

$$
\begin{aligned}
& \mathbf{b}=8 \sigma_{x}+2 \sigma_{y} \\
& \mathbf{r}=28 \sigma_{x}+28 \sigma_{y}
\end{aligned}
$$

$$
\mathbf{r} \wedge \mathbf{b}=-168 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}
$$

$$
\mathbf{a} \wedge \mathbf{r}=-84 \sigma_{x} \sigma_{y}
$$

$x=(\mathbf{a} \wedge \mathbf{b})^{-1}(\mathbf{r} \wedge \mathbf{b})=\frac{-168}{-42}=4 \quad y=(\mathbf{a} \wedge \mathbf{b})^{-1}(\mathbf{a} \wedge \mathbf{r})=\frac{-84}{-42}=2$

Check:	4
3	8
6	2

If 28 units of the first raw material R_{1} and 28 units of the second raw material R_{2} are consumed in the production process, 4 units of the first final product P_{1} and 2 units of the second final product P_{2} will be produced.

$$
\begin{aligned}
& 5 \mathrm{x}-2 \mathrm{y}=6 \quad \Rightarrow \quad \mathbf{a}=5 \sigma_{\mathrm{x}}-2 \sigma_{\mathrm{y}} \\
& -2 x-3 y=28 \quad b=-2 \sigma_{x}-3 \sigma_{y} \\
& \mathbf{r}=6 \sigma_{\mathrm{x}}+28 \sigma_{\mathrm{y}} \\
& \Rightarrow \quad \mathbf{a} \mathbf{b}=\left(5 \sigma_{\mathrm{x}}-2 \sigma_{\mathrm{y}}\right)\left(-2 \sigma_{\mathrm{x}}-3 \sigma_{\mathrm{y}}\right) \\
& =-10 \sigma_{x}^{2}-15 \sigma_{x} \sigma_{y}+4 \sigma_{y} \sigma_{x}+6 \sigma_{y}^{2} \\
& =-4-19 \sigma_{x} \sigma_{y} \\
& \mathbf{a} \wedge \mathbf{b}=-19 \sigma_{x} \sigma_{y} \\
& \Rightarrow \quad \mathbf{r} \mathbf{b}=\left(6 \sigma_{\mathrm{x}}+28 \sigma_{\mathrm{y}}\right)\left(-2 \sigma_{\mathrm{x}}-3 \sigma_{\mathrm{y}}\right) \\
& =-12 \sigma_{x}^{2}-18 \sigma_{x} \sigma_{y}-56 \sigma_{y} \sigma_{x}-84 \sigma_{y}^{2} \\
& =-96+38 \sigma_{x} \sigma_{y} \\
& \mathbf{r} \wedge \mathbf{b}=38 \sigma_{x} \sigma_{y} \\
& \Rightarrow \quad \mathbf{a r}=\left(5 \sigma_{x}-2 \sigma_{y}\right)\left(6 \sigma_{x}+28 \sigma_{y}\right) \\
& =30 \sigma_{x}^{2}+140 \sigma_{x} \sigma_{y}-12 \sigma_{y} \sigma_{x}-56 \sigma_{y}^{2} \\
& =-26+152 \sigma_{x} \sigma_{y} \\
& \mathbf{a} \wedge \mathbf{r}=152 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}
\end{aligned}
$$

Problem 5:

$$
\begin{aligned}
2 \mathrm{x}+7 \mathrm{y}=2050 \\
5 \mathrm{x}+\mathrm{y}=1000
\end{aligned} \quad \Rightarrow \begin{aligned}
& \mathbf{a}=2 \sigma_{\mathrm{x}}+5 \sigma_{\mathrm{y}} \\
& \\
& \mathbf{b}=7 \sigma_{\mathrm{x}}+\sigma_{\mathrm{y}} \\
& \mathbf{r}=2050 \sigma_{\mathrm{x}}+1000 \sigma_{\mathrm{y}}
\end{aligned} \quad \Rightarrow \begin{aligned}
& \mathbf{a} \wedge \mathbf{b}=-33 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}} \\
& \\
& \\
& \mathbf{r} \wedge \mathbf{b}=-4950 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}} \\
& \mathbf{a} \wedge \mathbf{r}=-8250 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}
\end{aligned}
$$

$\mathrm{x}=(\mathbf{a} \wedge \mathbf{b})^{-1}(\mathbf{r} \wedge \mathbf{b})=\frac{-4950}{-33}=150 \quad \mathrm{y}=(\mathbf{a} \wedge \mathbf{b})^{-1}(\mathbf{a} \wedge \mathbf{r})=\frac{-8250}{-33}=250$

Check:	150 250
2	7
5	1

If 2050 units of the first raw material R_{1} and 1000 units of the second raw material R_{2} are consumed in the production process, 150 units of the first final product P_{1} and 250 units of the second final product P_{2} will be produced.

Problem 6:
first quarter second quarter
$\left[\begin{array}{ll}4 & 3 \\ 7 & 5\end{array}\right]\left[\begin{array}{ll}\mathrm{x}_{1} & \mathrm{x}_{2} \\ \mathrm{y}_{1} & \mathrm{y}_{2}\end{array}\right]=\left[\begin{array}{ll}33000 & 32000 \\ 38000 & 25000\end{array}\right]$

R matrix of quarterly consumption of raw materials (consumption matrix)
\mathbf{P}....... matrix of quarterly production
(production matrix)

$$
\begin{aligned}
& 4 \mathrm{x}_{1}+3 \mathrm{y}_{1}=33000 \quad \Rightarrow \mathbf{a}=4 \sigma_{\mathrm{x}}+\sigma_{\mathrm{y}} \quad \Rightarrow \mathbf{a} \wedge \mathbf{b}=17 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}} \\
& \mathrm{x}_{1}+5 \mathrm{y}_{1}=38000 \quad \mathbf{b}=3 \sigma_{\mathrm{x}}+5 \sigma_{\mathrm{y}} \\
& \mathbf{r}_{1}=33000 \sigma_{\mathrm{x}}+38000 \sigma_{\mathrm{y}} \quad \mathbf{a} \wedge \mathbf{r}_{1}=119000 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}} \\
& \mathrm{x}_{1}=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{r}_{1} \wedge \mathbf{b}\right)=\frac{51000}{17}=3000 \quad \mathrm{y}_{1}=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{a} \wedge \mathbf{r}_{1}\right)=\frac{119000}{17}=7000 \\
& 4 \mathrm{x}_{2}+3 \mathrm{y}_{2}=32000 \Rightarrow \mathbf{a}=4 \sigma_{\mathrm{x}}+\sigma_{\mathrm{y}} \quad \Rightarrow \mathbf{a} \wedge \mathbf{b}=17 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}} \\
& \mathrm{x}_{2}+5 \mathrm{y}_{2}=25000 \\
& \mathbf{b}=3 \sigma_{\mathrm{x}}+5 \sigma_{\mathrm{y}} \\
& \mathbf{r}_{2}=32000 \sigma_{\mathrm{x}}+25000 \sigma_{\mathrm{y}} \quad \mathbf{a} \wedge \mathbf{r}_{2}=68000 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}} \\
& x_{2}=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{r}_{2} \wedge \mathbf{b}\right)=\frac{85000}{17}=5000 \quad y_{2}=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{a} \wedge \mathbf{r}_{2}\right)=\frac{68000}{17}=4000 \\
& \Rightarrow \text { matrix of quarterly production: } \quad \mathbf{P}=\left[\begin{array}{ll}
3000 & 5000 \\
7000 & 4000
\end{array}\right]
\end{aligned}
$$

\left.| Check: | | 3000 |
| :--- | ---: | ---: |
| | | 5000 |
| 7000 | 4000 | |$\right]$| 4 | 3 | 33000 |
| :--- | ---: | :--- |
| 1 | 5 | 32000 |

3000 units of the first final product P_{1} and 7000 units of the second final product P_{2} will be produced in the first quarter.

5000 units of the first final product P_{1} and 4000 units of the second final product P_{2} will be produced in the second quarter.

Problem 7:

$\left[\begin{array}{ll}8 & 2 \\ 4 & 3\end{array}\right]\left[\begin{array}{ll}x_{1} & x_{2} \\ y_{1} & y_{2}\end{array}\right]=\left[\begin{array}{ll}42 & 28 \\ 23 & 26\end{array}\right]$
AB=D

D matrix of total demand
B demand matrix of the second production step
\qquad demand matrix of the first production step
$8 \mathrm{x}_{1}+2 \mathrm{y}_{1}=42$
$\Rightarrow \mathbf{a}=8 \sigma_{\mathrm{x}}+4 \sigma_{\mathrm{y}}$
$\Rightarrow \mathbf{a} \wedge \mathbf{b}=16 \sigma_{x} \sigma_{y}$
$\mathbf{b}=2 \sigma_{\mathrm{x}}+3 \sigma_{\mathrm{y}}$
$\mathbf{r}_{\mathbf{1}} \wedge \mathbf{b}=80 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}$ $\mathbf{r}_{\mathbf{1}}=42 \sigma_{\mathrm{x}}+23 \sigma_{\mathrm{y}}$
$\mathbf{a} \wedge \mathbf{r}_{1}=16 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}$
$\mathrm{x}_{1}=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{r}_{1} \wedge \mathbf{b}\right)=\frac{80}{16}=5 \quad \mathrm{y}_{1}=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{a} \wedge \mathbf{r}_{1}\right)=\frac{16}{16}=1$
$8 \mathrm{x}_{2}+2 \mathrm{y}_{2}=28 \quad \Rightarrow \mathbf{a}=8 \sigma_{\mathrm{x}}+4 \sigma_{\mathrm{y}} \quad \Rightarrow \mathbf{a} \wedge \mathbf{b}=16 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}$
$4 x_{2}+3 y_{2}=26$
$\mathbf{b}=2 \sigma_{\mathrm{x}}+3 \sigma_{\mathrm{y}}$
$\mathbf{r}_{2} \wedge \mathbf{b}=32 \sigma_{x} \sigma_{y}$
$\mathbf{r}_{2}=28 \sigma_{\mathrm{x}}+26 \sigma_{\mathrm{y}}$
$\mathbf{a} \wedge \mathbf{r}_{\mathbf{2}}=96 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}$
$x_{2}=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{r}_{2} \wedge \mathbf{b}\right)=\frac{32}{16}=2 \quad y_{2}=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{a} \wedge \mathbf{r}_{2}\right)=\frac{96}{16}=6$

Check:		5	2
		1	6
8	2	42	28
4	3	23	26

\Rightarrow demand matrix of the second production step:

$$
\mathbf{B}=\left[\begin{array}{ll}
5 & 2 \\
1 & 6
\end{array}\right]
$$

Problem 8:

$\underbrace{\left[\begin{array}{ll}9 & 3 \\ 2 & 2\end{array}\right]}_{\mid} \underbrace{\left[\begin{array}{lll}\mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} \\ \mathrm{y}_{1} & \mathrm{y}_{2} & \mathrm{y}_{3}\end{array}\right]}_{\mathbf{B}_{\mathbf{B}}}=\underbrace{\left[\begin{array}{ccc}48 & 21 & 84 \\ 12 & 14 & 32\end{array}\right]}_{\mathbf{D} \text { demand matrix of the second production step }}$

A demand matrix of the first production step

$$
\begin{array}{ll}
9 \mathrm{x}_{1}+3 \mathrm{y}_{1}=48 \\
2 \mathrm{x}_{1}+2 \mathrm{y}_{1}=12
\end{array} \quad \Rightarrow \begin{aligned}
& \mathbf{a}=9 \sigma_{\mathrm{x}}+2 \sigma_{\mathrm{y}} \\
& \mathbf{b}=3 \sigma_{\mathrm{x}}+2 \sigma_{\mathrm{y}}
\end{aligned} \quad \Rightarrow \begin{aligned}
& \mathbf{a} \wedge \mathbf{b}=12 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}} \\
& \mathbf{r}_{1} \wedge \mathbf{b}=60 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}} \\
& \\
& \\
& \mathbf{r}_{1}=48 \sigma_{\mathrm{x}}+12 \sigma_{\mathrm{y}}
\end{aligned} \quad \mathbf{a} \wedge \mathbf{r}_{\mathbf{1}}=12 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}} .
$$

$\mathrm{x}_{1}=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{r}_{1} \wedge \mathbf{b}\right)=\frac{60}{12}=5 \quad \mathrm{y}_{1}=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{a} \wedge \mathbf{r}_{1}\right)=\frac{12}{12}=1$
$9 \mathrm{x}_{2}+3 \mathrm{y}_{2}=21 \quad \Rightarrow \mathbf{a}=9 \sigma_{\mathrm{x}}+2 \sigma_{\mathrm{y}} \quad \Rightarrow \mathbf{a} \wedge \mathbf{b}=12 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}$
$2 \mathrm{x}_{2}+2 \mathrm{y}_{2}=14$

$$
\begin{aligned}
& \mathbf{b}=3 \sigma_{x}+2 \sigma_{y} \\
& \mathbf{r}_{2}=21 \sigma_{x}+14 \sigma_{y}
\end{aligned}
$$

$$
\mathbf{r}_{2} \wedge \mathbf{b}=0 \sigma_{x} \sigma_{y}
$$

$$
\mathbf{a} \wedge \mathbf{r}_{2}=84 \sigma_{x} \sigma_{y}
$$

$x_{2}=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{r}_{2} \wedge \mathbf{b}\right)=\frac{0}{12}=0 \quad y_{2}=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{a} \wedge \mathbf{r}_{2}\right)=\frac{84}{12}=7$
$9 \mathrm{x}_{3}+3 \mathrm{y}_{3}=84 \quad \Rightarrow \mathbf{a}=9 \sigma_{\mathrm{x}}+2 \sigma_{\mathrm{y}} \quad \Rightarrow \mathbf{a} \wedge \mathbf{b}=12 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}$
$2 \mathrm{x}_{3}+2 \mathrm{y}_{3}=32$

$$
\begin{aligned}
& \mathbf{b}=3 \sigma_{x}+2 \sigma_{y} \\
& \mathbf{r}_{3}=84 \sigma_{x}+32 \sigma_{y}
\end{aligned}
$$

$$
\mathbf{r}_{\mathbf{3}} \wedge \mathbf{b}=72 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}
$$

$$
\mathbf{a} \wedge \mathbf{r}_{3}=120 \sigma_{x} \sigma_{y}
$$

$x_{3}=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{r}_{3} \wedge \mathbf{b}\right)=\frac{72}{12}=6 \quad y_{3}=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{a} \wedge \mathbf{r}_{3}\right)=\frac{120}{12}=10$

Check:		5	0	6
	1	7	10	
9	3	48	21	84
2	2	12	14	32

\Rightarrow demand matrix of the second production step: $\quad \mathbf{B}=\left[\begin{array}{rrr}5 & 0 & 6 \\ 1 & 7 & 10\end{array}\right]$

Problem 9:

First part of problem 9: Consumption of exactly one unit of the first raw material R_{1}

$$
\begin{aligned}
7 \mathrm{x}+5 \mathrm{y}=1 \\
4 \mathrm{x}+3 \mathrm{y}=0
\end{aligned} \quad \Rightarrow \begin{aligned}
& \mathbf{a}=7 \sigma_{\mathrm{x}}+4 \sigma_{\mathrm{y}} \\
& \\
& \\
& \\
& \\
& \\
& \mathbf{r}_{1}=5 \sigma_{\mathrm{x}}+3 \sigma_{\mathrm{y}}=\sigma_{\mathrm{x}}
\end{aligned} \quad \Rightarrow \begin{aligned}
& \mathbf{a} \wedge \mathbf{b}=1 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}=\sigma_{\mathrm{x}} \sigma_{\mathrm{y}} \\
& \\
& \mathbf{r}_{1} \wedge \mathbf{b}=3 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}} \\
& \\
& \mathbf{a} \wedge \mathbf{r}_{1}=-4 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}
\end{aligned}
$$

$\mathrm{x}_{1}=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{r}_{1} \wedge \mathbf{b}\right)=\frac{3}{1}=3 \quad \mathrm{y}_{1}=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{a} \wedge \mathbf{r}_{1}\right)=\frac{-4}{1}=-4$
Economic interpretation:
If exactly one unit of the first raw material R_{1} had been consumed in the production process, 3 units of the first final product P_{1} and (-4) units of the second final product P_{2} would have been produced. However, the production of a negative number of final products is problematic.

Producing (-4) units means that in addition to an already produced quantity (-4) units are added. Mathematically, the negative number "minus four" is added or alternatively, the positive number "four" is subtracted. Thus after the production process the quantity is reduced by four units.

Therefore these four units will not be produced, but consumed and (in theory completely) split again into the initial raw materials R_{1} and R_{2}.

The correct economic interpretation will then be:
If exactly one unit of the first raw material R_{1} had been consumed in the production process, 3 units of the first final product P_{1} would have been produced and additionally 4 units of the second final product P_{2} would have been consumed.

Second part of problem 9: Consumption of exactly one unit of the second raw material R_{2}

$$
\begin{aligned}
& 7 \mathrm{x}+5 \mathrm{y}=0 \quad \Rightarrow \mathbf{a}=7 \sigma_{\mathrm{x}}+4 \sigma_{\mathrm{y}} \quad \Rightarrow \mathbf{a} \wedge \mathbf{b}=1 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}=\sigma_{\mathrm{x}} \sigma_{\mathrm{y}} \\
& 4 x+3 y=1 \quad \mathbf{b}=5 \sigma_{x}+3 \sigma_{y} \quad \mathbf{r}_{2} \wedge \mathbf{b}=-5 \sigma_{x} \sigma_{y} \\
& \mathbf{r}_{2}=1 \sigma_{\mathrm{y}}=\sigma_{\mathrm{y}} \\
& \mathbf{a} \wedge \mathbf{r}_{2}=7 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}} \\
& x_{2}=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{r}_{2} \wedge \mathbf{b}\right)=\frac{-5}{1}=-5 \quad y_{2}=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{a} \wedge \mathbf{r}_{2}\right)=\frac{-4}{1}=7
\end{aligned}
$$

Economic interpretation:
If exactly one unit of the second raw material R_{2} had been consumed in the production process, in addition 5 units of the first final product P_{1} would have been consumed and 7 units of the second final product P_{2} would have been produced.

As a complete splitting of products into the initial raw materials is hardly possible (and then usually connected with higher costs), negative production quantities or a negative output will only very rarely be part of realistic economical situations.

But mathematically the results just found are of enormous importance, which can be seen at the following check of the results.

Check:

Mathematical interpretation:
The resulting matrix $\mathbf{A}^{-1}=\left[\begin{array}{rr}3 & -5 \\ -4 & 7\end{array}\right]$ is the inverse of matrix $\mathbf{A}=\left[\begin{array}{ll}7 & 5 \\ 4 & 3\end{array}\right]$.

Problem 10:

First part of problem 10: Consumption of exactly one unit of the first raw material R_{1}

$$
\begin{aligned}
10 \mathrm{x}+12 \mathrm{y}=1 \\
4 \mathrm{x}+5 \mathrm{y}=0
\end{aligned} \quad \Rightarrow \quad \begin{aligned}
& \mathbf{a}=10 \sigma_{\mathrm{x}}+4 \sigma_{\mathrm{y}} \\
& \\
& \\
& \\
& \\
& \\
& \mathbf{r}_{1}=12 \sigma_{\mathrm{x}}+5 \sigma_{\mathrm{y}}=\sigma_{\mathrm{x}}
\end{aligned} \quad \Rightarrow \begin{aligned}
& \mathbf{a} \wedge \mathbf{b}=2 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}} \\
& \\
& \mathbf{r}_{1} \wedge \mathbf{b}=5 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}} \\
& \\
& \\
& \mathbf{a} \wedge \mathbf{r}_{1}=-4 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}
\end{aligned}
$$

$x_{1}=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{r}_{\mathbf{1}} \wedge \mathbf{b}\right)=\frac{5}{2}=2.5 \quad \mathrm{y}_{1}=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{a} \wedge \mathbf{r}_{\mathbf{1}}\right)=\frac{-4}{2}=-2$
Economic interpretation:
If exactly one unit of the first raw material R_{1} had been consumed in the production process, 2.5 units of the first final product P_{1} would have been produced and additionally 2 units of the second final product P_{2} would have been consumed.

Second part of problem 10: Consumption of exactly one unit of the second raw material R_{2}

$$
\begin{array}{cc}
10 \mathrm{x}+12 \mathrm{y}=0 \\
4 \mathrm{x}+5 \mathrm{y}=1
\end{array} \quad \Rightarrow \begin{aligned}
& \mathbf{a}=10 \sigma_{\mathrm{x}}+4 \sigma_{\mathrm{y}} \\
& \mathbf{b}=12 \sigma_{\mathrm{x}}+5 \sigma_{\mathrm{y}} \\
& \mathbf{r}_{2}=1 \sigma_{\mathrm{y}}=\sigma_{\mathrm{y}}
\end{aligned} \quad \Rightarrow \begin{aligned}
& \mathbf{a} \wedge \mathbf{b}=2 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}} \\
& \\
& \\
& \mathbf{r}_{2} \wedge \mathbf{b}=-12 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}} \\
& \\
& \mathrm{x}_{2}=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{r}_{2} \wedge \mathbf{b}\right)=\frac{-12}{2}=-6 \quad \mathrm{y}_{\mathrm{x}} \sigma_{\mathrm{y}}
\end{aligned}
$$

Economic interpretation:
If exactly one unit of the second raw material R_{2} had been consumed in the production process, in addition 6 units of the first final product P_{1} would have been consumed and 5 units of the second final product P_{2} would have been produced.

Check:

Result:
The inverse of the initial demand matrix $\mathbf{A}=\left[\begin{array}{rr}10 & 12 \\ 4 & 5\end{array}\right]$ is $\mathbf{A}^{-1}=\left[\begin{array}{cr}2.5 & -6 \\ -2 & 5\end{array}\right]$.

Problem 11:

a)

Check: \begin{tabular}{rll|rr}

\& \& \begin{tabular}{r}
-7

9

 \&

4

-5
\end{tabular}

\hline 5 \& 4 \& 1 \& 0

9 \& 7 \& 0 \& 1
\end{tabular}

$$
\Rightarrow \quad \mathbf{A}^{-1}=\left[\begin{array}{rr}
-7 & 4 \\
9 & -5
\end{array}\right]
$$

b)

$$
\mathbf{B}=\left[\begin{array}{ll}
10 & 4 \\
19 & 8
\end{array}\right] \quad \Rightarrow \begin{array}{lll}
\mathbf{a}=10 \sigma_{x}+19 \sigma_{y} \\
\mathbf{b}=4 \sigma_{x}+8 \sigma_{y}
\end{array} \quad \Rightarrow \begin{array}{ll}
\mathbf{a} \wedge \mathbf{b}=4 \sigma_{x} \sigma_{y} \\
& \mathbf{r}_{1} \wedge \mathbf{b}=8 \sigma_{x} \sigma_{y}
\end{array} \quad \begin{aligned}
& \mathbf{r}_{2} \wedge \mathbf{b}=-4 \sigma_{x} \sigma_{y} \\
& \mathbf{r}_{1}=\sigma_{x} \\
& \mathbf{r}_{2}=\sigma_{y}
\end{aligned} \quad \mathbf{a} \wedge \mathbf{r}_{1}=-19 \sigma_{x} \sigma_{y} \quad \mathbf{a} \wedge \mathbf{r}_{2}=10 \sigma_{x} \sigma_{y} .
$$

$$
x_{1}=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{r}_{1} \wedge \mathbf{b}\right)=\frac{8}{4}=2 \quad y_{1}=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{a} \wedge \mathbf{r}_{1}\right)=\frac{-19}{4}=-4.75
$$

$$
x_{2}=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{r}_{2} \wedge \mathbf{b}\right)=\frac{-4}{4}=-1 \quad y_{2}=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{a} \wedge \mathbf{r}_{2}\right)=\frac{10}{4}=2.5
$$

Check:

		2	-1
		-4.75	2.5
10	4	1	0
19	8	0	1

$\Rightarrow \quad \mathbf{B}^{-1}=\frac{1}{4}\left[\begin{array}{cc}8 & -4 \\ -19 & 10\end{array}\right]=\left[\begin{array}{cc}2 & -1 \\ -4.75 & 2.5\end{array}\right]$

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{ll}
5 & 4 \\
9 & 7
\end{array}\right] \\
& \begin{aligned}
\Rightarrow \mathbf{a} & =5 \sigma_{x}+9 \sigma_{y} \\
\mathbf{b} & =4 \sigma_{x}+7 \sigma_{y}
\end{aligned} \\
& \Rightarrow \mathbf{a} \wedge \mathbf{b}=-\sigma_{x} \sigma_{y} \\
& \mathbf{r}_{\mathbf{1}} \wedge \mathbf{b}=7 \sigma_{x} \sigma_{y} \\
& \mathbf{r}_{2} \wedge \mathbf{b}=-4 \sigma_{x} \sigma_{y} \\
& \mathbf{r}_{1}=\sigma_{x} \\
& \mathbf{r}_{2}=\sigma_{y} \\
& \mathbf{a} \wedge \mathbf{r}_{1}=-9 \sigma_{x} \sigma_{y} \quad \mathbf{a} \wedge \mathbf{r}_{2}=5 \sigma_{x} \sigma_{y} \\
& x_{1}=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{r}_{1} \wedge \mathbf{b}\right)=\frac{7}{-1}=-7 \quad y_{1}=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{a} \wedge \mathbf{r}_{1}\right)=\frac{-9}{-1}=9 \\
& \mathrm{x}_{2}=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{r}_{2} \wedge \mathbf{b}\right)=\frac{-4}{-1}=4 \quad \mathrm{y}_{2}=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{a} \wedge \mathbf{r}_{2}\right)=\frac{5}{-1}=-5
\end{aligned}
$$

c)

$$
\mathbf{C}=\left[\begin{array}{rr}
10 & 6 \\
20 & 13
\end{array}\right] \quad \Rightarrow \begin{array}{ll}
\mathbf{a}=10 \sigma_{x}+20 \sigma_{y} \\
\mathbf{b}=6 \sigma_{x}+13 \sigma_{y}
\end{array} \quad \begin{array}{ll}
\mathbf{a} \wedge \mathbf{b}=10 \sigma_{x} \sigma_{y} & \\
& \mathbf{r}_{1} \wedge \mathbf{b}=13 \sigma_{x} \sigma_{y} \\
\mathbf{r}_{1}=\sigma_{x} & \mathbf{a} \wedge \mathbf{r}_{1}=-20 \sigma_{x} \sigma_{y}
\end{array} \quad \begin{aligned}
& \mathbf{r}_{2} \wedge \mathbf{b}=-13 \sigma_{x} \sigma_{y} \\
& \mathbf{r}_{2}=\sigma_{y}
\end{aligned} \quad \begin{array}{r}
\mathbf{r}_{2}=10 \sigma_{x} \sigma_{y}
\end{array}
$$

$$
\begin{array}{ll}
x_{1}=\left(\mathbf{r}_{1} \wedge \mathbf{b}\right) /(\mathbf{a} \wedge \mathbf{b})=\frac{13}{10}=1.3 & y_{1}=\left(\mathbf{a} \wedge \mathbf{r}_{1}\right) /(\mathbf{a} \wedge \mathbf{b})=\frac{-20}{10}=-2 \\
x_{2}=\left(\mathbf{r}_{2} \wedge \mathbf{b}\right) /(\mathbf{a} \wedge \mathbf{b})=\frac{-6}{10}=-0.6 & y_{2}=\left(\mathbf{a} \wedge \mathbf{r}_{2}\right) /(\mathbf{a} \wedge \mathbf{b})=\frac{10}{10}=1
\end{array}
$$

Check:

| | | 1.3 -0.6
 -2 1
 10 6
 20 130 1 |
| :---: | :---: | :---: | :---: |

$$
\Rightarrow \quad \mathbf{C}^{-1}=\frac{1}{10}\left[\begin{array}{rr}
13 & -6 \\
-20 & 10
\end{array}\right]=\left[\begin{array}{cc}
1.3 & -0.6 \\
-2 & 1
\end{array}\right]
$$

d)

$$
\begin{aligned}
& \mathbf{D}=\left[\begin{array}{cr}
0 & -2.5 \\
0.2 & 3.4
\end{array}\right] \Rightarrow \begin{array}{l}
\mathbf{a}=0.2 \sigma_{y} \\
\mathbf{b}=-2.5 \sigma_{x}+3.4 \sigma_{y}
\end{array} \quad \begin{aligned}
\mathbf{a} \wedge \mathbf{b}=0.5 \sigma_{x} \sigma_{y} \\
\mathbf{r}_{1} \wedge \mathbf{b}=3.4 \sigma_{x} \sigma_{y}
\end{aligned} \quad \mathbf{r}_{2} \wedge \mathbf{b}=2.5 \sigma_{x} \sigma_{y} \\
& \mathbf{r}_{1}=\sigma_{\mathrm{x}} \\
& \mathbf{r}_{2}=\sigma_{\mathrm{y}} \\
& \mathrm{x}_{1}=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{r}_{1} \wedge \mathbf{b}\right)=\frac{3.4}{0.5}=2 \cdot 3.4=6.8 \quad \mathrm{y}_{1}=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{a} \wedge \mathbf{r}_{1}\right)=\frac{-0.2}{0.5}=2 \cdot(-0.2)=-0.4 \\
& \mathrm{x}_{2}=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{r}_{2} \wedge \mathbf{b}\right)=\frac{2.5}{0.5}=2 \cdot 2.5=5 \quad \mathrm{y}_{2}=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{a} \wedge \mathbf{r}_{2}\right)=\frac{0}{0.5}=2 \cdot 0=0
\end{aligned}
$$

Check: | | | 6.8 | 5 |
| :--- | :--- | :--- | :--- |
| | | -0.4 | 0 |
| 0 | -2.5 | 1 | 0 |
| 0.2 | 3.4 | 0 | 1 |

$\Rightarrow \quad \mathbf{D}^{-1}=2 \cdot\left[\begin{array}{rl}3.4 & 2.5 \\ -0.2 & 0\end{array}\right]=\left[\begin{array}{rr}6.8 & 5 \\ -0.4 & 0\end{array}\right]$

Mathematics for Business and Economics

Berlin School of Economics and Law
Worksheet 9 - Answers

Problem 1:

a) Downloading GAALOP:

b) Starting GAALOP

Problem 2:

a)

Elements of Pauli Algebra (Geometric Algebra of three-dimensional space) have eight components. The compiler field shows only nonzero components as compilation result. Thus components which are not shown in the compiler field must be 0 .

Therefore six of the eight components of problem 2 a) are zero and the following interpretation of the results can be given:
numbers:
scalar component without directions

$$
p_{-}\{0\} \&=0
$$

oriented line elements (or directed line segments):
vector component into σ_{x}-direction
vector component into σ_{y}-direction
vector component into σ_{z}-direction:

$$
\begin{aligned}
& p_{-}\{1\} \&=14 \rightarrow 14 \sigma_{x} \\
& p_{-}\{2\} \&=11 \rightarrow 11 \sigma_{y} \\
& p_{-}\{3\} \&=0
\end{aligned}
$$

oriented area elements:
bivector component into $\sigma_{x} \sigma_{y}$-direction
p_\{4\}\&= 0
bivector component into $\sigma_{\mathrm{x}} \sigma_{\mathrm{z}}$-direction
bivector component into $\sigma_{y} \sigma_{z}$-direction
$p_{-}\{5\} \&=0$
iented volume element:
trivector component into $\sigma_{x} \sigma_{y} \sigma_{z}$-direction $p_{-}\{7\} \&=0$
result in Pauli notation:
$\mathbf{p}=\left(4 \sigma_{\mathrm{x}}+8 \sigma_{\mathrm{y}}\right)+\left(10 \sigma_{\mathrm{x}}+3 \sigma_{\mathrm{y}}\right)=14 \sigma_{\mathrm{x}}+11 \sigma_{\mathrm{y}}$
b)

result in Pauli notation:
$\mathbf{q}=4 \cdot\left(4 \sigma_{x}+8 \sigma_{y}\right)+2 \cdot\left(10 \sigma_{x}+3 \sigma_{y}\right)=36 \sigma_{x}+38 \sigma_{y}$
c)

result in Pauli notation:
$\mathbf{r}=\left(10 \sigma_{\mathrm{x}}+3 \sigma_{\mathrm{y}}\right)-2 \cdot\left(5 \sigma_{\mathrm{x}}-5 \sigma_{\mathrm{y}}\right)=0 \sigma_{\mathrm{x}}+13 \sigma_{\mathrm{y}}=13 \sigma_{\mathrm{y}}$
As no σ_{x}-component $\mathrm{r}_{-}\{1\}$ is shown in the compiler field, this component must be zero: $\mathrm{r}_{-}\{1\} \&=0$
d)

As neither a σ_{x}-component $s_{-}\{1\}$ nor a σ_{y}-component $s_{-}\{2\}$ is shown in the compiler field, both components must be zero: s_\{1\} \&=0

$$
s_{-}\{2\} \&=0 .
$$

result in Pauli notation:
$\mathbf{s}=65 \cdot\left(4 \sigma_{x}+8 \sigma_{y}\right)-60 \cdot\left(10 \sigma_{x}+3 \sigma_{y}\right)+68 \cdot\left(5 \sigma_{x}-5 \sigma_{y}\right)=0 \sigma_{x}+0 \sigma_{y}=0$

Problem $3 \rightarrow$ Problem 1 of worksheet 8:

1) a)

```
a = 5*el + 2*e2
b = 2*el + 6*e2;
2A = a^b;
```


result in Pauli notation:

$$
\mathbf{A}=\mathbf{a} \wedge \mathbf{b}=26 \sigma_{x} \sigma_{y} \quad \Rightarrow|\mathbf{A}|=26
$$

\Rightarrow The area of the parallelogram is $26 \mathrm{~cm}^{2}$.

1) b)

```
a = 8*el + 7*e2;
b = 2*el + 20*e2;
2A}=\mp@subsup{a}{}{\wedge}b
```


\begin\{align*\} }
A_ $\{4\} \in=146 \backslash\}$
2A $\backslash 1$
\end\{align*\} }
result in Pauli notation:

$$
\begin{aligned}
\mathbf{A}=\mathbf{a} \wedge \mathbf{b}=146 \sigma_{x} \sigma_{y} & \Rightarrow|\mathbf{A}|=146 \\
& \Rightarrow \text { The area of the parallelogram is } 146 \mathrm{~cm}^{2} .
\end{aligned}
$$

1) c)

```
a = 5*el - 5*e2;
b = 3*el + 7*e2;
2A}=\mp@subsup{a}{}{\wedge}b
```


\begin\{align*\} }
A_ $\{4\} \in=50 \backslash 1$
2A1)
\end\{align*\} }
result in Pauli notation:

$$
\mathbf{A}=\mathbf{a} \wedge \mathbf{b}=50 \sigma_{x} \sigma_{y} \quad \Rightarrow|\mathbf{A}|=50
$$

\Rightarrow The area of the parallelogram is $50 \mathrm{~cm}^{2}$.

1) d)

```
a = 4*el + 16*e2;
b = 9*el + 2*e2;
2A = a^b;
```


\begin\{align*\} }
A_ $\{4\} \Leftrightarrow=-136\}$
2A
)
\end\{align*\} }
result in Pauli notation:

$$
\begin{aligned}
\mathbf{A}=\mathbf{a} \wedge \mathbf{b}=-136 \sigma_{x} \sigma_{y} & \Rightarrow|\mathbf{A}|=136 \\
& \Rightarrow \text { The area of the parallelogram is } 136 \mathrm{~cm}^{2} .
\end{aligned}
$$

Problem $3 \rightarrow$ Problem 2 of worksheet 8:

2) a)

```
a = 6*el + 4*e2;
b = -4*el + 6*e2;
2A = a^b;
```


\begin\{align*\} }
A_ $\{4\} \Leftrightarrow=52\}$
2A)
\end\{align*\} }
result in Pauli notation:

$$
\begin{aligned}
\mathbf{A}=\mathbf{a} \wedge \mathbf{b}=52 \sigma_{x} \sigma_{y} & \Rightarrow|\mathbf{A}|=52 \\
& \Rightarrow \text { The area of the square is } 52 \mathrm{~cm}^{2} .
\end{aligned}
$$

2) b) Solution with slightly inexact result:

Short remark: As GAALOP is still in the development stage, the program shows unwelcome rounding inaccuracies (which will be removed in newer versions of GAALOP). Therefore the last digits of the result should be ignored. Nevertheless, a correct result can be found if the coefficients are given as fractions of integers (see following solution).

Solution with a more accurate result:


```
a = (-24/5)*el - (17/5)*e2;
b = (-51/10)*el + (36/5)*e2;
2A = a^b;
```


\begin\{align*\} }
A_\{4\} $\&=-51.90000000000001\}$
2A ${ }^{2}$
\end\{align*\} }
result in Pauli notation:

$$
\mathbf{A}=\mathbf{a} \wedge \mathbf{b}=-51.90 \sigma_{x} \sigma_{y} \quad \Rightarrow|\mathbf{A}|=51.90
$$

\Rightarrow The area of the rectangle is $51.90 \mathrm{~cm}^{2}$.
2) c)

As no $\sigma_{x} \sigma_{y}$-component $\mathrm{A}_{-}\{4\}$ is shown in the compiler field, this component must be zero: A_\{4\} \& $=0$
result in Pauli notation:

$$
\mathbf{A}=\mathbf{a} \wedge \mathbf{b}=0 \sigma_{x} \sigma_{y} \quad \Rightarrow|\mathbf{A}|=0
$$

\Rightarrow The area is $0 \mathrm{~cm}^{2}$. It is not possible to form a parallelogram with the given vectors.
2) d)


```
a = 5*el + 20*e2;
b = -el - 4*e2;
2A = a^b;
```


\begin\{align*) }
2A
)
\end\{align*\} }

As no $\sigma_{x} \sigma_{y}$-component $\mathrm{A}_{-}\{4\}$ is shown in the compiler field, this component must be zero: A_\{4\} \& = 0
result in Pauli notation:

$$
\mathbf{A}=\mathbf{a} \wedge \mathbf{b}=0 \sigma_{x} \sigma_{y} \quad \Rightarrow|\mathbf{A}|=0
$$

\Rightarrow The area is $0 \mathrm{~cm}^{2}$. It is not possible to form a parallelogram with the given vectors.

Problem 3 Problems 3 \& 4 of worksheet 8:

3) a) \& 4)

Solution of the system of linear equations:

$$
\begin{aligned}
& x=(\mathbf{a} \wedge \mathbf{b})^{-1}(\mathbf{r} \wedge \mathbf{b})=(\mathbf{r} \wedge \mathbf{b}) /(\mathbf{a} \wedge \mathbf{b})=4 \\
& \mathrm{y}=(\mathbf{a} \wedge \mathbf{b})^{-1}(\mathbf{a} \wedge \mathbf{r})=(\mathbf{a} \wedge \mathbf{r}) /(\mathbf{a} \wedge \mathbf{b})=2
\end{aligned}
$$

Short remark: If systems of two linear equations are consistent and solvable, the outer products $(\mathbf{a} \wedge \mathbf{b}),(\mathbf{a} \wedge \mathbf{r})$, and $(\mathbf{r} \wedge \mathbf{b})$ will represent oriented areas which are parallel to each other and
thus have the same orientation in space. Therefore these outer products commute and their order can be changed when multiplied.
to 4) If 28 units of the first raw material R_{1} and 28 units of the second raw material R_{2} are consummed in the production process, 4 units of the first final product P_{1} and 2 units of the second final product P_{2} will be produced.
3) b)

```
a = 4*el + 5*e2;
b = 9*el + 6*e2;
r = 29*el + 31*e2;
2x = (r^b)/(a^b);
2Y = (a^r)/(a^b);
    \begin{align*}
    X_{0}&= 5\}
    2x\\
    Y_{0}&= 1}
    ?Y\\
    \end{align*}
```


Solution of the system of linear equations:

```
\(\mathrm{x}=(\mathbf{r} \wedge \mathbf{b}) /(\mathbf{a} \wedge \mathbf{b})=5\)
\(\mathrm{y}=(\mathbf{a} \wedge \mathbf{r}) /(\mathbf{a} \wedge \mathbf{b})=1\)
```

3) c)

Solution of the system of linear equations:

$$
\begin{aligned}
& \mathrm{x}=(\mathbf{r} \wedge \mathbf{b}) /(\mathbf{a} \wedge \mathbf{b})=3 \\
& \mathrm{y}=(\mathbf{a} \wedge \mathbf{r}) /(\mathbf{a} \wedge \mathbf{b})=-3
\end{aligned}
$$

3) d)
```
a = 5*el - 2*e2;
b = -2*el - 3*e2;
r = 6*el + 28*e2;
2x = (r^b)/(a^b);
2Y = (a^r)/(a^b);
```


\begin\{align*\} }
$\left.x_{-}\{0\} \&=-2\right\}$
2x\1
$\left.Y_{-}\{0\} \&=-8 \backslash\right\}$
?Y)
Yend\{align*\}

Solution of the system of linear equations:

$$
\begin{aligned}
& \mathrm{x}=(\mathbf{r} \wedge \mathbf{b}) /(\mathbf{a} \wedge \mathbf{b})=-2 \\
& \mathrm{y}=(\mathbf{a} \wedge \mathbf{r}) /(\mathbf{a} \wedge \mathbf{b})=-8
\end{aligned}
$$

Problem $3 \rightarrow$ Problem 5 of worksheet 8:

5)

Solution of the system of linear equations:
$\mathrm{x}=(\mathbf{r} \wedge \mathbf{b}) /(\mathbf{a} \wedge \mathbf{b})=150$
$\mathrm{y}=(\mathbf{a} \wedge \mathbf{r}) /(\mathbf{a} \wedge \mathbf{b})=250$
\Rightarrow If 2050 units of the first raw material R_{1} and 1000 units of the second raw material R_{2} are consumed in the production process, 150 units of the first final product P_{1} and 250 units of the second final product P_{2} will be produced.

Problem $3 \rightarrow$ Problem 6 of worksheet 8:

6)
```
a = 4*el + e2;
b = 3*el + 5*e2;
rl = 33000*el + 38000*e2;
r2 = 32000*el + 25000*e2;
2Xeins = (rl^b)/(a^^b);
2Yeins = (a^rl) /(a^b);
2Xzwei = (r2^b)/(a^b);
?Yzwei = (a^r2)/(a^b);
```


\begin\{align*\} }
Xeins_\{0\}\&=3000
$}$
2Xeins \
Yeins_\{0\}\& $=70001$ 人
2Yeins

Xzwei_\{0\}\& $=5000\}$
2Xzwei\}
Yzwei_\{0\}\& $=4000 \\}$
?Yzwei\
\end\{align*\} }

Solutions of the two systems of linear equations:
$\mathrm{x}_{1}=\left(\mathbf{r}_{1} \wedge \mathbf{b}\right) /(\mathbf{a} \wedge \mathbf{b})=3000 \quad \mathrm{x}_{2}=\left(\mathbf{r}_{2} \wedge \mathbf{b}\right) /(\mathbf{a} \wedge \mathbf{b})=5000$
$\mathrm{y}_{1}=\left(\mathbf{a} \wedge \mathbf{r}_{1}\right) /(\mathbf{a} \wedge \mathbf{b})=7000 \quad \mathrm{y}_{2}=\left(\mathbf{a} \wedge \mathbf{r}_{2}\right) /(\mathbf{a} \wedge \mathbf{b})=4000$
$\Rightarrow 3000$ units of the first final product P_{1} and 7000 units of the second final product P_{2} will be produced in the first quarter.
5000 units of the first final product P_{1} and 4000 units of the second final product P_{2} will be produced in the second quarter.

Problem $3 \rightarrow$ Problem 7 of worksheet 8:
7)

```
a = 8*el + 4*e2;
b = 2*el + 3*e2;
rl = 42*el + 23*e2;
r2 = 28*el + 26*e2;
2Xeins = (rl^b)/(a^b);
2Yeins = (a^rl)/(a^b);
2Xzwei = (r2^b)/(a^b);
2Yzwei = (a^r2)/(a^b);
```


Solutions of the two systems of linear equations:
$\mathrm{x}_{1}=\left(\mathbf{r}_{\mathbf{1}} \wedge \mathbf{b}\right) /(\mathbf{a} \wedge \mathbf{b})=5$
$\mathrm{x}_{2}=\left(\mathbf{r}_{2} \wedge \mathbf{b}\right) /(\mathbf{a} \wedge \mathbf{b})=2$
$\mathrm{y}_{1}=\left(\mathbf{a} \wedge \mathbf{r}_{1}\right) /(\mathbf{a} \wedge \mathbf{b})=1$
$y_{2}=\left(\mathbf{a} \wedge \mathbf{r}_{2}\right) /(\mathbf{a} \wedge \mathbf{b})=6$
\Rightarrow demand matrix of the second production step: $\quad \mathbf{B}=\left[\begin{array}{ll}5 & 2 \\ 1 & 6\end{array}\right]$

Problem $3 \rightarrow$ Problem 8 of worksheet 8:

8)
```
a = 9*el + 2*e2;
b = 3*el + 2*e2;
rl = 48*el + 12*e2;
r2 = 2l*el + 14*e2;
r3 = 84*el + 32*e2;
2Xeins = (rl^b)/(a^b);
2Yeins = (a^rl)/(a^b);
2Xzwei = (r2^b)/(a^b);
2Yzwei = (a^r2)/(a^b);
2Xdrei = (r3^b)/(a^b);
2Ydrei = (a^r 3)/(a^b);
```


© Compilation Result

Save file

msb-aufgabe-5.tex

```
\begin{align*}
```

Xeins_\{0\}\&=5
$}$
2Xeins

Yeins_\{0\}\&=1才
2Yeins)
2Xzwei \
Yzwei_\{0\}\&=7,
2Yzwei \
Xdrei_\{0\}\&=6
$}$
2Xdrei\|
Ydrei_\{0\}\&=10\},
2Ydrei
)
Yend\{align*\}

As no scalar component Xzwei_\{0\} is shown in the compiler field, this component must be zero: Xzwei_\{0\} \& = 0

Solutions of the three systems of linear equations:
$\mathrm{x}_{1}=\left(\mathbf{r}_{\mathbf{1}} \wedge \mathbf{b}\right) /(\mathbf{a} \wedge \mathbf{b})=5$
$\mathrm{x}_{2}=\left(\mathbf{r}_{2} \wedge \mathbf{b}\right) /(\mathbf{a} \wedge \mathbf{b})=0$
$\mathrm{x}_{3}=\left(\mathbf{r}_{3} \wedge \mathbf{b}\right) /(\mathbf{a} \wedge \mathbf{b})=6$
$\mathrm{y}_{1}=\left(\mathbf{a} \wedge \mathbf{r}_{1}\right) /(\mathbf{a} \wedge \mathbf{b})=1$
$\mathrm{y}_{2}=\left(\mathbf{a} \wedge \mathbf{r}_{2}\right) /(\mathbf{a} \wedge \mathbf{b})=7$
$\mathrm{y}_{3}=\left(\mathbf{a} \wedge \mathbf{r}_{3}\right) /(\mathbf{a} \wedge \mathbf{b})=10$
\Rightarrow demand matrix of the second production step: $\quad \mathbf{B}=\left[\begin{array}{rrr}5 & 0 & 6 \\ 1 & 7 & 10\end{array}\right]$

Problem $3 \rightarrow$ Problem 9 of worksheet 8:

9)
```
a = 7*el + 4*e2;
b = 5*el + 3*e2;
rl = el;
r2 = e2;
2Xeins = (rl^b) /(a^b);
2Yeins = (a^rl)/(a^b);
2Xzwei = (r2^b)/(a
2Yzwei = (a^r2)/(a^b);
```


Save file
ab8-aufgabe-9.tex
\begin\{align*\} }
Xeins_\{0\}\&=3才
2Xeins

Yeins_\{0\}\&=-4
$}$
2Yeins
)
Xzwei_\{0\}\&=-51才
2Xzwei

Yzwei_\{0\}\&=7
,
2Yzwei
,
\end\{align*\} }

Solutions of the two systems of linear equations:
$\mathrm{x}_{1}=\left(\mathbf{r}_{\mathbf{1}} \wedge \mathbf{b}\right) /(\mathbf{a} \wedge \mathbf{b})=3$
$\mathrm{x}_{2}=\left(\mathbf{r}_{2} \wedge \mathbf{b}\right) /(\mathbf{a} \wedge \mathbf{b})=-5$
$\mathrm{y}_{1}=\left(\mathbf{a} \wedge \mathbf{r}_{1}\right) /(\mathbf{a} \wedge \mathbf{b})=-4$
$\mathrm{y}_{2}=\left(\mathbf{a} \wedge \mathbf{r}_{2}\right) /(\mathbf{a} \wedge \mathbf{b})=7$
\Rightarrow The resulting matrix $\mathbf{A}^{-1}=\left[\begin{array}{rr}3 & -5 \\ -4 & 7\end{array}\right]$ is the inverse of matrix $\mathbf{A}=\left[\begin{array}{ll}7 & 5 \\ 4 & 3\end{array}\right]$.

Problem $3 \rightarrow$ Problem 10 of worksheet 8:

10)
```
a = 10*el + 4*e2;
b = 12*el + 5*e2;
rl = el;
r2 = e2;
2Xeins = (rl^b)/(a^b);
2Yeins = (a^rl)/(a^b);
2Xzwei = (r2^b)/(a^b);
2Yzwei = (a^r2)/(a^b);
```

 ab8-aufgabe-10.tex
    ```
\begqin{align*}
Xeins_{0}&=2.5\}
2Xeins\\
Yeins_{0}&= -2\}
?Yeins\\
Xzwei_{0}&= -6\\
2Xzwei\\
Yzwei_{0}&= 5\\
?Yzwei\\
\end{align*}
```

Solutions of the two systems of linear equations:

$$
\begin{aligned}
& x_{1}=\left(\mathbf{r}_{1} \wedge \mathbf{b}\right) /(\mathbf{a} \wedge \mathbf{b})=\frac{5}{2}=2.5 \quad x_{2}=\left(\mathbf{r}_{2} \wedge \mathbf{b}\right) /(\mathbf{a} \wedge \mathbf{b})=\frac{-12}{2}=-6 \\
& y_{1}=\left(\mathbf{a} \wedge \mathbf{r}_{1}\right) /(\mathbf{a} \wedge \mathbf{b})=\frac{-4}{2}=-2
\end{aligned} y_{2}=\left(\mathbf{a} \wedge \mathbf{r}_{2}\right) /(\mathbf{a} \wedge \mathbf{b})=\frac{10}{2}=5 .
$$

Problem $3 \rightarrow$ Problem 11 of worksheet 8:

11) a)
```
a = 5*el + 9*e2;
b = 4*el + 7*e2;
rl = el;
r2 = e2;
2Xeins = (rl^b)/(a^b);
2Yeins = (a^rl)/(a^b);
2Xzwei = (r2^b)/(a^b);
2Yzwei = (a^r2)/(a^b);
```

W Compilation Result

Save file
ab8-aufgabe-11a.tex
\begin\{align*\} }
Xeins_\{0\}\& $=-7 \backslash$
?Xeins

Yeins_\{0\}\&=9
$}$
?Yeins

Xzwei_\{0\}\&=4\}
?Xzwei

Yzwei_\{0\}\&=-5

?Yzwei

\end\{align*\} }

Solutions of the two systems of linear equations:

$$
\left.\begin{array}{l}
x_{1}=\left(\mathbf{r}_{1} \wedge \mathbf{b}\right) /(\mathbf{a} \wedge \mathbf{b})=\frac{7}{-1}=-7 \\
y_{1}=\left(\mathbf{a} \wedge \mathbf{r}_{1}\right) /(\mathbf{a} \wedge \mathbf{b})=\frac{-9}{-1}=9
\end{array} \mathrm{x}_{2}=\left(\mathbf{r}_{2} \wedge \mathbf{b}\right) /(\mathbf{a} \wedge \mathbf{b})=\frac{-4}{-1}=4 \mathbf{r}_{2}\right) /(\mathbf{a} \wedge \mathbf{b})=\frac{5}{-1}=-5 .
$$

11) b)
```
a = 10*el + 19*e2;
b = 4*el + 8*e2;
rl = el;
r2 = e2;
?Xeins = (rl^b)/(a^b);
?Yeins = (a^rl)/(a^b);
2Xzwei = (r2^b)/(a^b);
2Yzwei = (a^r2)/(a^b);
```

```
W Compilation Result
```

W Compilation Result
Xeins_{0}\&= 2

?Xeins

Yeins_{0}\&=-4.75\}
?Yeins

Xzwei_{0}\&= -1

2Xzwei

Yzwei_{0}\&= 2.5

?Yzwei

\end{align*}

```
ab8-aufgabe-11b.tex
```

\begin{align*}

```
```

\begin{align*}

```

Solutions of the two systems of linear equations:
\[
\begin{array}{ll}
x_{1}=\left(\mathbf{r}_{1} \wedge \mathbf{b}\right) /(\mathbf{a} \wedge \mathbf{b})=\frac{8}{4}=2 & x_{2}=\left(\mathbf{r}_{2} \wedge \mathbf{b}\right) /(\mathbf{a} \wedge \mathbf{b})=\frac{-4}{4}=-1 \\
\mathrm{y}_{1}=\left(\mathbf{a} \wedge \mathbf{r}_{1}\right) /(\mathbf{a} \wedge \mathbf{b})=\frac{-19}{4}=-4.75 & \mathrm{y}_{2}=\left(\mathbf{a} \wedge \mathbf{r}_{2}\right) /(\mathbf{a} \wedge \mathbf{b})=\frac{10}{4}=2.5
\end{array}
\]
\(\Rightarrow\) The resulting matrix \(\mathbf{B}^{-1}=\frac{1}{4}\left[\begin{array}{cc}8 & -4 \\ -19 & 10\end{array}\right]=\left[\begin{array}{cc}2 & -1 \\ -4.75 & 2.5\end{array}\right]\) is the inverse of matrix \(\mathbf{B}=\left[\begin{array}{ll}10 & 4 \\ 19 & 8\end{array}\right]\).
11) c)
```

a = 10*el + 20*e2;
b = 6*el + 13*e2;
rl = el;
r2 = e2;
2Xeins = (rl^b)/(a^b);
2Yeins = (a^rl)/(a^b);
2Xzwei = (r2^b)/(a^b);
2Yzwei = (a^r2)/(a^b);

```

\section*{W Compilation Result}

\section*{Save file}

\section*{ab8-aufgabe-11c.tex}
```

$$
\begin{align*}
```
\begin{align*}
Xeins_{0}&= 1.3\}
Xeins_{0}&= 1.3\}
?Xeins\\
?Xeins\\
Yeins_{0}&= -2\\
Yeins_{0}&= -2\\
?Yeins\\
?Yeins\\
Xzwei_{0}&= -0.6000000000000001\\
Xzwei_{0}&= -0.6000000000000001\\
?Xzwei\\
?Xzwei\\
Yzwei_{0}&= l\\
Yzwei_{0}&= l\\
?Yzwei\\
?Yzwei\\
\end{align*}
```
\end{align*}
$$
```

Solutions of the two systems of linear equations:

$$
\begin{aligned}
& x_{1}=\left(\mathbf{r}_{1} \wedge \mathbf{b}\right) /(\mathbf{a} \wedge \mathbf{b})=\frac{13}{10}=1.3 \quad x_{2}=\left(\mathbf{r}_{2} \wedge \mathbf{b}\right) /(\mathbf{a} \wedge \mathbf{b})=\frac{-6}{10}=-0.6 \\
& y_{1}=\left(\mathbf{a} \wedge \mathbf{r}_{1}\right) /(\mathbf{a} \wedge \mathbf{b})=\frac{-20}{10}=-2.0 \quad y_{2}=\left(\mathbf{a} \wedge \mathbf{r}_{2}\right) /(\mathbf{a} \wedge \mathbf{b})=\frac{10}{10}=1.0 \\
& \Rightarrow \text { The resulting matrix } \mathbf{C}^{-1}=\frac{1}{10}\left[\begin{array}{rr}
13 & -6 \\
-20 & 10
\end{array}\right]=\left[\begin{array}{cc}
1.3 & -0.6 \\
-2 & 1
\end{array}\right] \text { is the inverse } \\
& \\
& \text { of matrix } \mathbf{C}=\left[\begin{array}{rr}
10 & 6 \\
20 & 13
\end{array}\right] .
\end{aligned}
$$

## 11) d) Solution with slightly inexact results:

```
a = 0.2*e2;
b = -2.5*el + 3.4*e2;
rl = el;
r2 = e2;
2Xeins = (rl^b)/(a^b);
2Yeins = (a^rl)/(a^b);
2Xzwei = (r2^b)/(a^b);
2Yzwei = (a^r2)/(a^b);
```


## Compilation Result

## Save file

```
ab8-aufgabe-11d.tex
```

\begin\{align*\} }
Xeins_\{0\}\& $=6.800000089406966 \backslash\}$
2Xeins<br>
Yeins_\{0\}\&=-0.4<br>$}$
?Yeins <br>
Xzwei_\{0\}\&=4.999999925494195<br>
2Xzwei<br>
?Yzwei<br>
\end\{align*\} }

Avoiding decimal numbers will give the following solutions with more accurate results:

```
a = (1/5)*e2;
b = (-5/2)*el + (17/5)*e2;
rl = el;
r2 = e2;
2Xeins = (rl^b)/(a^b);
2Yeins = (a^rl)/(a^b);
2Xzwei = (r2^b)/(a^b);
2Yzwei = (a^r2)/(a^b);
```


## W Compilation Result

Save file

## ab8-aufgabe-11d-brueche.tex

```
\begin{align*}
```

$$
\begin{align*}
Xeins_{0}&=6.800000000000001\\
Xeins_{0}&=6.800000000000001\\
2Xeins\\
2Xeins\\
Yeins_{0}&= -0.4\\
Yeins_{0}&= -0.4\\
?Yeins\\
?Yeins\\
Xzwei_{0}&= 5\\
Xzwei_{0}&= 5\\
2Xzwei\\
2Xzwei\\
?Yzwei\\
?Yzwei\\
\end{align*}
$$

```
\end{align*}
```

As no scalar component Yzwei_\{0\} is shown in the compiler field, this component must be zero: Yzwei_\{0\} \& = 0

Solutions of the two systems of linear equations:
$\mathrm{x}_{1}=\left(\mathbf{r}_{1} \wedge \mathbf{b}\right) /(\mathbf{a} \wedge \mathbf{b})=\frac{34}{5}=6.8 \quad \mathrm{x}_{2}=\left(\mathbf{r}_{2} \wedge \mathbf{b}\right) /(\mathbf{a} \wedge \mathbf{b})=\frac{25}{5}=5$
$\mathrm{y}_{1}=\left(\mathbf{a} \wedge \mathbf{r}_{1}\right) /(\mathbf{a} \wedge \mathbf{b})=\frac{-2}{5}=-0.4 \quad \mathrm{y}_{2}=\left(\mathbf{a} \wedge \mathbf{r}_{2}\right) /(\mathbf{a} \wedge \mathbf{b})=\frac{0}{5}=0$
$\Rightarrow$ The resulting matrix $\mathbf{D}^{-1}=\frac{1}{5}\left[\begin{array}{rr}34 & 25 \\ -2 & 0\end{array}\right]=\left[\begin{array}{rr}6.8 & 5 \\ -0.4 & 0\end{array}\right]$ is the inverse

$$
\text { of matrix } \mathbf{D}=\left[\begin{array}{cr}
0 & -2.5 \\
0.2 & 3.4
\end{array}\right]
$$

## Problem 4:

a) $5 \mathrm{x}+0 \mathrm{y}=125 \quad \Rightarrow \mathbf{a}=5 \sigma_{\mathrm{x}}+4 \sigma_{\mathrm{y}}+3 \sigma_{\mathrm{z}}$
$4 \mathrm{x}+0 \mathrm{y}=100 \quad \mathbf{b}=2 \sigma_{\mathrm{z}}$
$3 \mathrm{x}+2 \mathrm{y}=145 \quad \mathbf{r}=125 \sigma_{\mathrm{x}}+100 \sigma_{\mathrm{y}}+145 \sigma_{\mathrm{z}}$
Solution found with the help of GAALOP:

```
a = 5*el + 4*e2 + 3*e3;
b = 2*e3;
r = 125*el + 100*e2 + 145*e3;
2x = ((r^b)/(a^b);
?Y = (a^r)/(a^b);
```



Save file
ab9-aufgabe-4a.tex
\begin\{align*\} }
$\left.x_{-}\{0\} \Leftrightarrow=25\right\}$
2x\}
$\left.Y_{-}\{0\} \&=35 \\right\}$
?Y $\backslash$
\end\{align*\} }

Solution of the system of linear equations:
$\mathrm{x}=(\mathbf{r} \wedge \mathbf{b}) /(\mathbf{a} \wedge \mathbf{b})=25$
$\mathrm{y}=(\mathbf{a} \wedge \mathbf{r}) /(\mathbf{a} \wedge \mathbf{b})=35$
Check: $5 \cdot 25+0 \cdot 35=125+0=125$

$$
4 \cdot 25+0 \cdot 35=100+0=100
$$

$$
3 \cdot 25+2 \cdot 35=75+70=145
$$

Detailed calculation of intermediate steps:

$$
\begin{aligned}
\mathbf{a} \mathbf{b} & =\left(5 \sigma_{x}+4 \sigma_{y}+3 \sigma_{z}\right)\left(2 \sigma_{z}\right) \\
& =10 \sigma_{x} \sigma_{z}+8 \sigma_{y} \sigma_{z}+6 \sigma_{z}^{2} \\
& =6+8 \sigma_{y} \sigma_{z}-10 \sigma_{z} \sigma_{x}
\end{aligned}
$$

$\Rightarrow \mathbf{a} \wedge \mathbf{b}=8 \sigma_{y} \sigma_{z}-10 \sigma_{z} \sigma_{x}$

$$
\begin{aligned}
\mathbf{r} \mathbf{b} & =\left(125 \sigma_{\mathrm{x}}+100 \sigma_{\mathrm{y}}+145 \sigma_{\mathrm{z}}\right)\left(2 \sigma_{\mathrm{z}}\right) \\
& =250 \sigma_{\mathrm{x}} \sigma_{\mathrm{z}}+200 \sigma_{\mathrm{y}} \sigma_{\mathrm{z}}+190 \sigma_{\mathrm{z}}^{2} \\
& =190+200 \sigma_{\mathrm{y}} \sigma_{\mathrm{z}}-250 \sigma_{\mathrm{z}} \sigma_{\mathrm{x}}
\end{aligned}
$$

$\Rightarrow \mathbf{r} \wedge \mathbf{b}=200 \sigma_{\mathrm{y}} \sigma_{\mathrm{z}}-250 \sigma_{\mathrm{z}} \sigma_{\mathrm{x}}$
$x=\frac{\mathbf{r} \wedge \mathbf{b}}{\mathbf{a} \wedge \mathbf{b}}=\frac{200 \sigma_{y} \sigma_{z}-250 \sigma_{z} \sigma_{x}}{8 \sigma_{y} \sigma_{z}-10 \sigma_{z} \sigma_{x}}=\frac{25\left(8 \sigma_{y} \sigma_{z}-10 \sigma_{z} \sigma_{x}\right)}{8 \sigma_{y} \sigma_{z}-10 \sigma_{z} \sigma_{x}}=25$
$\mathbf{a r}=\left(5 \sigma_{x}+4 \sigma_{y}+3 \sigma_{z}\right)\left(125 \sigma_{x}+100 \sigma_{y}+145 \sigma_{z}\right)$
$=625 \sigma_{\mathrm{x}}{ }^{2}+500 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}+725 \sigma_{\mathrm{x}} \sigma_{\mathrm{z}}+500 \sigma_{\mathrm{y}} \sigma_{\mathrm{x}}+400 \sigma_{\mathrm{y}}{ }^{2}+580 \sigma_{\mathrm{y}} \sigma_{\mathrm{z}}+375 \sigma_{\mathrm{z}} \sigma_{\mathrm{x}}+300 \sigma_{\mathrm{z}} \sigma_{\mathrm{y}}+435 \sigma_{\mathrm{z}}{ }^{2}$
$=1460+0 \sigma_{x} \sigma_{y}+280 \sigma_{y} \sigma_{z}-350 \sigma_{z} \sigma_{x}$
$\Rightarrow \mathbf{a} \wedge \mathbf{r}=280 \sigma_{\mathrm{y}} \sigma_{\mathrm{z}}-350 \sigma_{\mathrm{z}} \sigma_{\mathrm{x}}$
$\mathrm{y}=\frac{\mathbf{a} \wedge \mathbf{r}}{\mathbf{a} \wedge \mathbf{b}}=\frac{280 \sigma_{\mathrm{y}} \sigma_{\mathrm{z}}-350 \sigma_{\mathrm{z}} \sigma_{\mathrm{x}}}{8 \sigma_{\mathrm{y}} \sigma_{\mathrm{z}}-10 \sigma_{\mathrm{z}} \sigma_{\mathrm{x}}}=\frac{35\left(8 \sigma_{\mathrm{y}} \sigma_{\mathrm{z}}-10 \sigma_{\mathrm{z}} \sigma_{\mathrm{x}}\right)}{8 \sigma_{\mathrm{y}} \sigma_{\mathrm{z}}-10 \sigma_{\mathrm{z}} \sigma_{\mathrm{x}}}=35$
Conventional solution:
$5 x+0 y=125 \Rightarrow 5 x=125 \Rightarrow x=\frac{125}{5}=25$
$4 x+0 y=100 \Rightarrow 4 x=100 \Rightarrow x=\frac{100}{4}=25$
$3 x+2 y=145 \Rightarrow 75+2 y=145 \Rightarrow 2 y=70 \Rightarrow y=\frac{70}{2}=35$
$\Rightarrow$ If 125 units of the first raw material $\mathrm{R}_{1}, 100$ units of the second raw material $\mathrm{R}_{2}$, and 145 units of the third raw material $\mathrm{R}_{3}$ are consumed in the production process, 25 units of the first final product $\mathrm{P}_{1}$ and 35 units of the second final product $\mathrm{P}_{2}$ will be produced.
b) $5 \mathrm{x}+6 \mathrm{y}=380 \quad \Rightarrow \mathbf{a}=5 \sigma_{\mathrm{x}}+4 \sigma_{\mathrm{y}}+3 \sigma_{\mathrm{z}}$
$\begin{array}{ll}4 \mathrm{x}+7 \mathrm{y}=370 & \mathbf{b}=6 \sigma_{\mathrm{x}}+7 \sigma_{\mathrm{y}}+8 \sigma_{z} \\ 3 \mathrm{x}+8 \mathrm{y}=360 & \mathbf{r}=380 \sigma_{\mathrm{x}}+370 \sigma_{\mathrm{y}}+360 \sigma_{\mathrm{z}}\end{array}$
Solution found with the help of GAALOP:

```
a = 5*el + 4*e2 + 3*e3;
b = 6*el + 7*e2 + 8*e3;
r = 380*el + 370*e2 + 360*e3;
2x = (r^b)/(a^b);
2Y = (a^r)/(a^b);
```


\begin\{align*\} }
$\left.x_{-}\{0\} \&=40\right\}$
2x
$\left.Y_{-}\{0\} \&=30 \backslash\right\}$
?Y $\backslash$
\end\{align*\} }

Solution of the system of linear equations:
$\mathrm{x}=(\mathbf{r} \wedge \mathbf{b}) /(\mathbf{a} \wedge \mathbf{b})=40$
$\mathrm{y}=(\mathbf{a} \wedge \mathbf{r}) /(\mathbf{a} \wedge \mathbf{b})=30$
Check: $5 \cdot 40+6 \cdot 30=125+0=380$
$4 \cdot 40+7 \cdot 30=100+0=370$
$3 \cdot 40+8 \cdot 30=75+70=360$
Detailed calculation of intermediate steps:

$$
\begin{aligned}
\mathbf{a} \mathbf{b} & =\left(5 \sigma_{x}+4 \sigma_{y}+3 \sigma_{z}\right)\left(6 \sigma_{x}+7 \sigma_{y}+8 \sigma_{z}\right) \\
& =30 \sigma_{x}^{2}+35 \sigma_{x} \sigma_{y}+40 \sigma_{x} \sigma_{z}+24 \sigma_{y} \sigma_{x}+28 \sigma_{y}^{2}+32 \sigma_{y} \sigma_{z}+18 \sigma_{z} \sigma_{x}+21 \sigma_{z} \sigma_{y}+24 \sigma_{z}^{2} \\
& =82+11 \sigma_{x} \sigma_{y}+11 \sigma_{y} \sigma_{z}-22 \sigma_{z} \sigma_{x}
\end{aligned}
$$

$\Rightarrow \mathbf{a} \wedge \mathbf{b}=11 \sigma_{x} \sigma_{y}+11 \sigma_{y} \sigma_{z}-22 \sigma_{z} \sigma_{x}$
$\mathbf{r} \mathbf{b}=\left(380 \sigma_{x}+370 \sigma_{y}+360 \sigma_{z}\right)\left(6 \sigma_{x}+7 \sigma_{y}+8 \sigma_{z}\right)$
$=2280 \sigma_{x}^{2}+2660 \sigma_{x} \sigma_{y}+3040 \sigma_{x} \sigma_{z}+2220 \sigma_{y} \sigma_{x}+2590 \sigma_{y}^{2}+2960 \sigma_{y} \sigma_{z}$ $+2160 \sigma_{z} \sigma_{x}+2520 \sigma_{z} \sigma_{y}+2880 \sigma_{z}^{2}$
$=7750+440 \sigma_{x} \sigma_{y}+440 \sigma_{y} \sigma_{z}-880 \sigma_{z} \sigma_{x}$
$\Rightarrow \mathbf{r} \wedge \mathbf{b}=440 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}+440 \sigma_{\mathrm{y}} \sigma_{\mathrm{z}}-880 \sigma_{\mathrm{z}} \sigma_{\mathrm{x}}$
$\mathrm{x}=\frac{\mathbf{r} \wedge \mathbf{b}}{\mathbf{a} \wedge \mathbf{b}}=\frac{440 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}+440 \sigma_{\mathrm{y}} \sigma_{\mathrm{z}}-880 \sigma_{\mathrm{z}} \sigma_{\mathrm{x}}}{11 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}+11 \sigma_{\mathrm{y}} \sigma_{\mathrm{z}}-22 \sigma_{\mathrm{z}} \sigma_{\mathrm{x}}}=\frac{40\left(11 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}+11 \sigma_{\mathrm{y}} \sigma_{\mathrm{z}}-22 \sigma_{\mathrm{z}} \sigma_{\mathrm{x}}\right)}{11 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}+11 \sigma_{\mathrm{y}} \sigma_{\mathrm{z}}-22 \sigma_{\mathrm{z}} \sigma_{\mathrm{x}}}=40$
$\mathbf{a r}=\left(5 \sigma_{\mathrm{x}}+4 \sigma_{\mathrm{y}}+3 \sigma_{\mathrm{z}}\right)\left(380 \sigma_{\mathrm{x}}+370 \sigma_{\mathrm{y}}+360 \sigma_{\mathrm{z}}\right)$
$=1900 \sigma_{x}^{2}+1850 \sigma_{x} \sigma_{y}+1800 \sigma_{x} \sigma_{z}+1520 \sigma_{y} \sigma_{x}+1480 \sigma_{y}^{2}+1440 \sigma_{y} \sigma_{z}$ $+1140 \sigma_{z} \sigma_{x}+1110 \sigma_{z} \sigma_{y}+1080 \sigma_{z}^{2}$
$=4460+330 \sigma_{x} \sigma_{y}+330 \sigma_{y} \sigma_{z}-660 \sigma_{z} \sigma_{x}$
$\Rightarrow \mathbf{a} \wedge \mathbf{r}=330 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}+330 \sigma_{\mathrm{y}} \sigma_{\mathrm{z}}-660 \sigma_{\mathrm{z}} \sigma_{\mathrm{x}}$
$\mathrm{y}=\frac{\mathbf{a} \wedge \mathbf{r}}{\mathbf{a} \wedge \mathbf{b}}=\frac{330 \sigma_{x} \sigma_{y}+330 \sigma_{y} \sigma_{z}-660 \sigma_{z} \sigma_{x}}{11 \sigma_{x} \sigma_{y}+11 \sigma_{y} \sigma_{z}-22 \sigma_{z} \sigma_{x}}=\frac{30\left(11 \sigma_{x} \sigma_{y}+11 \sigma_{y} \sigma_{z}-22 \sigma_{z} \sigma_{x}\right)}{11 \sigma_{x} \sigma_{y}+11 \sigma_{y} \sigma_{z}-22 \sigma_{z} \sigma_{x}}=30$
Conventional solution:

$\Rightarrow$ If 380 units of the first raw material $R_{1}, 370$ units of the second raw material $R_{2}$, and 360 units of the third raw material $\mathrm{R}_{3}$ are consumed in the production process, 40 units of the first final product $P_{1}$ and 30 units of the second final product $P_{2}$ will be produced.

## Problem 5:

a) $\mathbf{a}=4 \sigma_{x}+2 \sigma_{y}$
$\mathbf{b}=2 \sigma_{\mathrm{x}}+4 \sigma_{\mathrm{y}}$
$\mathbf{c}=3 \sigma_{z}$


GAALOP program and compilation result:

$\begin{aligned} & \mathrm{a}=4^{\star} \mathrm{e} 1+2^{\star} \mathrm{e} 2 \\ & \mathrm{~b}=2^{\star} \mathrm{e} 1+4^{\star} \mathrm{e} 2 ; \\ & \mathrm{c}=3^{\star} \mathrm{e} 3 ; \\ & 2 \mathrm{~V}=\mathrm{a}^{\wedge} \mathrm{b}^{\wedge} c \end{aligned}$	
	\% Compilation Result
	Save file
	ab9-aufgabe-5a.tex
	```\begin{align*} V_{7}&= 36\} 2V\\ \end{align*}```

Detailed calculation:
$\mathbf{a b}=\left(4 \sigma_{\mathrm{x}}+2 \sigma_{\mathrm{y}}\right)\left(2 \sigma_{\mathrm{x}}+4 \sigma_{\mathrm{y}}\right)=16+12 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}} \quad \Rightarrow \mathbf{a} \wedge \mathbf{b}=12 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}$
$\mathbf{a b c}=\left(16+12 \sigma_{x} \sigma_{y}\right)\left(3 \sigma_{z}\right)=48 \sigma_{z}+36 \sigma_{x} \sigma_{y} \sigma_{z}$
$\Rightarrow \mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c}=36 \sigma_{x} \sigma_{y} \sigma_{z}$

$$
\Rightarrow|\mathbf{V}|=36
$$

\Rightarrow The volume of the parallelepiped is $36 \mathrm{~cm}^{3}$.
Check by applying the rule of Sarrus:

$$
\mathbf{A}=\left(\begin{array}{lll}
4 & 2 & 0 \\
2 & 4 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

$\operatorname{det} \mathbf{A}=4 \cdot 4 \cdot 3+2 \cdot 0 \cdot 0+0 \cdot 2 \cdot 0-0 \cdot 4 \cdot 0-4 \cdot 0 \cdot 0-2 \cdot 2 \cdot 3=48-12=36$
b) $\mathbf{a}=4 \sigma_{x}+2 \sigma_{y}$
$\mathbf{b}=2 \sigma_{x}+4 \sigma_{y}$ $\mathbf{c}=5 \sigma_{\mathrm{y}}+5 \sigma_{\mathrm{z}}$

GAALOP program and compilation result:

Detailed calculation:
$\mathbf{a b}=\left(4 \sigma_{x}+2 \sigma_{y}\right)\left(2 \sigma_{x}+4 \sigma_{y}\right)=16+12 \sigma_{x} \sigma_{y} \quad \Rightarrow \mathbf{a} \wedge \mathbf{b}=12 \sigma_{x} \sigma_{y}$
abcc $=\left(16+12 \sigma_{x} \sigma_{y}\right)\left(5 \sigma_{y}+5 \sigma_{z}\right)=60 \sigma_{x}+80 \sigma_{y}+80 \sigma_{z}+60 \sigma_{x} \sigma_{y} \sigma_{z}$

$$
\begin{aligned}
& \Rightarrow \mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c}=60 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}} \sigma_{\mathrm{z}} \\
& \Rightarrow|\mathbf{V}|=60
\end{aligned}
$$

\Rightarrow The volume of the parallelepiped is $60 \mathrm{~cm}^{3}$.
Check by applying the rule of Sarrus:
$\mathbf{B}=\left(\begin{array}{lll}4 & 2 & 0 \\ 2 & 4 & 5 \\ 0 & 0 & 5\end{array}\right)$

$\operatorname{det} \mathbf{B}=4 \cdot 4 \cdot 5+2 \cdot 5 \cdot 0+0 \cdot 2 \cdot 0-0 \cdot 4 \cdot 0-4 \cdot 5 \cdot 0-2 \cdot 2 \cdot 5=80-20=60$

GAALOP program and compilation result:

```
a = 4*el + 2*e2;
b = 2*el + 4*e2;
c = 7*el + 7*e2 + 7*e3;
2V = a^b}\mp@subsup{}{}{\wedge}\textrm{c}
```

W Compilation Result

Save file

ab9-aufgabe-4c.tex

\begin\{align*\}

}V_\{7\}\&=84\}
2V
)
\end\{align*\} }

Detailed calculation:
$\mathbf{a b}=\left(4 \sigma_{\mathrm{x}}+2 \sigma_{\mathrm{y}}\right)\left(2 \sigma_{\mathrm{x}}+4 \sigma_{\mathrm{y}}\right)=16+12 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}} \quad \Rightarrow \mathbf{a} \wedge \mathbf{b}=12 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}$
$\mathbf{a b c}=\left(16+12 \sigma_{x} \sigma_{y}\right)\left(7 \sigma_{x}+7 \sigma_{y}+7 \sigma_{z}\right)=112 \sigma_{x}+28 \sigma_{y}+112 \sigma_{z}+84 \sigma_{x} \sigma_{y} \sigma_{z}$

$$
\begin{aligned}
& \Rightarrow \mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c}=84 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}} \sigma_{\mathrm{z}} \\
& \Rightarrow|\mathbf{V}|=84
\end{aligned}
$$

\Rightarrow The volume of the parallelepiped is $84 \mathrm{~cm}^{3}$.
Check by applying the rule of Sarrus:

$$
\mathbf{C}=\left(\begin{array}{lll}
4 & 2 & 7 \\
2 & 4 & 7 \\
0 & 0 & 7
\end{array}\right)
$$

$\operatorname{det} \mathbf{C}=4 \cdot 4 \cdot 7+2 \cdot 7 \cdot 0+7 \cdot 2 \cdot 0-7 \cdot 4 \cdot 0-4 \cdot 7 \cdot 0-2 \cdot 2 \cdot 7=112-28=84$
d) $\mathbf{a}=2 \sigma_{x}+5 \sigma_{y}+5 \sigma_{z}$
$\mathbf{b}=3 \sigma_{x}+3 \sigma_{y}+6 \sigma_{z}$
$\mathbf{c}=4 \sigma_{\mathrm{x}}+4 \sigma_{\mathrm{y}}+4 \sigma_{\mathrm{z}}$
GAALOP program and compilation result:

```
a = 2*el + 5*e2 + 5*e3;
b = 3*el + ***e2 + 6*e3;
c = 4*el + 4*e2 + 4*e3;
2V = a^b^c;
```

W Compilation Result

Save file

ab9-aufgabe-5d.tex
\begin\{align*\} }
V_\{7\}\&=36\1
2V\
Yend\{align*\}

Detailed calculation:
$\mathbf{a} \mathbf{b}=\left(2 \sigma_{x}+5 \sigma_{y}+5 \sigma_{z}\right)\left(3 \sigma_{x}+3 \sigma_{y}+6 \sigma_{z}\right)=51-9 \sigma_{x} \sigma_{y}+15 \sigma_{y} \sigma_{z}+3 \sigma_{z} \sigma_{x}$

$$
\Rightarrow \mathbf{a} \wedge \mathbf{b}=-9 \sigma_{x} \sigma_{y}+15 \sigma_{y} \sigma_{z}+3 \sigma_{z} \sigma_{x}
$$

$\mathbf{a b c}=\left(51-9 \sigma_{x} \sigma_{y}+15 \sigma_{y} \sigma_{z}+3 \sigma_{z} \sigma_{x}\right)\left(4 \sigma_{x}+4 \sigma_{y}+4 \sigma_{z}\right)=156 \sigma_{x}+300 \sigma_{y}+156 \sigma_{z}+36 \sigma_{x} \sigma_{y} \sigma_{z}$

$$
\begin{aligned}
& \Rightarrow \mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c}=36 \sigma_{x} \sigma_{y} \sigma_{z} \\
& \Rightarrow|\mathbf{V}|=36
\end{aligned}
$$

\Rightarrow The volume of the parallelepiped is $36 \mathrm{~cm}^{3}$.
Check by applying the rule of Sarrus:
D $=\left(\begin{array}{lll}2 & 3 & 4 \\ 5 & 3 & 4 \\ 5 & 6 & 4\end{array}\right)$

$\operatorname{det} \mathbf{D}=2 \cdot 3 \cdot 4+3 \cdot 4 \cdot 5+4 \cdot 5 \cdot 6-4 \cdot 3 \cdot 5-2 \cdot 4 \cdot 6-3 \cdot 5 \cdot 4$

$$
=24+60+120-60-48-60=36
$$

Another check: $\left(2^{2}+5^{2}+5^{2}\right)\left(3^{2}+3^{2}+6^{2}\right)=51^{2}+(-9)^{2}+15^{2}+3^{2}=2916$ $\left(51^{2}+(-9)^{2}+15^{2}+3^{2}\right)\left(4^{2}+4^{2}+4^{2}\right)=156^{2}+300^{2}+156^{2}+36^{2}=139968$ \Rightarrow trigonometric Pythagoras: $\sin ^{2} \alpha+\cos ^{2} \alpha=1$
e) $\mathbf{a}=2 \sigma_{x}+6 \sigma_{y}+10 \sigma_{z}$
$\mathbf{b}=8 \sigma_{x}+3 \sigma_{y}+12 \sigma_{z}$
$\mathbf{c}=7 \sigma_{\mathrm{x}}+9 \sigma_{\mathrm{y}}+4 \sigma_{\mathrm{z}}$
GAALOP program and compilation result:

Detailed calculation:
$\mathbf{a} \mathbf{b}=\left(2 \sigma_{x}+6 \sigma_{y}+10 \sigma_{z}\right)\left(8 \sigma_{x}+3 \sigma_{y}+12 \sigma_{z}\right)=154-42 \sigma_{x} \sigma_{y}+42 \sigma_{y} \sigma_{z}+56 \sigma_{z} \sigma_{x}$ $\Rightarrow \mathbf{a} \wedge \mathbf{b}=-42 \sigma_{x} \sigma_{y}+42 \sigma_{y} \sigma_{z}+56 \sigma_{z} \sigma_{x}$
$\mathbf{a b c}=\left(154-42 \sigma_{x} \sigma_{y}+42 \sigma_{y} \sigma_{z}+56 \sigma_{z} \sigma_{x}\right)\left(7 \sigma_{x}+9 \sigma_{y}+4 \sigma_{z}\right)$

$$
\begin{aligned}
=476 \sigma_{x}+1848 & \sigma_{y}+630 \sigma_{z}+630 \sigma_{x} \sigma_{y} \sigma_{z} \\
& \Rightarrow \mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c}=630 \sigma_{x} \sigma_{y} \sigma_{z} \\
& \Rightarrow|\mathbf{V}|=630
\end{aligned}
$$

\Rightarrow The volume of the parallelepiped is $630 \mathrm{~cm}^{3}$.
Check by applying the rule of Sarrus:
$\mathbf{T}=\left(\begin{array}{ccc}2 & 8 & 7 \\ 6 & 3 & 9 \\ 10 & 12 & 4\end{array}\right)$

$\operatorname{det} \mathbf{T}=2 \cdot 3 \cdot 4+8 \cdot 9 \cdot 10+7 \cdot 6 \cdot 12-7 \cdot 3 \cdot 10-2 \cdot 9 \cdot 12-8 \cdot 6 \cdot 4$

$$
=24+720+504-210-216-192=630-
$$

Another check: $\left(2^{2}+6^{2}+10^{2}\right)\left(8^{2}+3^{2}+12^{2}\right)=154^{2}+(-42)^{2}+42^{2}+56^{2}=30380$

$$
\left(154^{2}+(-42)^{2}+42^{2}+56^{2}\right)\left(7^{2}+9^{2}+4^{2}\right)=476^{2}+1848^{2}+630^{2}+630^{2}=4435480
$$

$$
\Rightarrow \text { trigonometric Pythagoras: } \sin ^{2} \alpha+\cos ^{2} \alpha=1
$$

f) $\mathbf{a}=4 \sigma_{\mathrm{x}}+8 \sigma_{\mathrm{y}}-5 \sigma_{\mathrm{z}}$
$\mathbf{b}=3 \sigma_{\mathrm{x}}-7 \sigma_{\mathrm{y}}+6 \sigma_{\mathrm{z}}$
$\mathbf{c}=-2 \sigma_{\mathrm{x}}+9 \sigma_{\mathrm{y}}-\sigma_{\mathrm{z}}$
GAALOP program and compilation result:

```
a = 4*el + 8*e2 - 5*e3;
b = 3*el - 7*e2 + 6*e3;
c = - 2*el + 9*e2 - e3;
2V = a }\mp@subsup{\mp@code{A}}{}{\wedge}\mp@subsup{b}{}{\wedge}c
```


Compilation Result

Save file
ab9-aufgabe-5f.tex
\begin\{align* }
V_\{7\}\&=-325\})
2V)
\end\{align*\} }

Detailed calculation:
$\mathbf{a b}=\left(4 \sigma_{x}+8 \sigma_{y}-5 \sigma_{z}\right)\left(3 \sigma_{x}-7 \sigma_{y}+6 \sigma_{z}\right)=-74-52 \sigma_{x} \sigma_{y}+13 \sigma_{y} \sigma_{z}-39 \sigma_{z} \sigma_{x}$

$$
\Rightarrow \mathbf{a} \wedge \mathbf{b}=-52 \sigma_{x} \sigma_{y}+13 \sigma_{y} \sigma_{z}-39 \sigma_{z} \sigma_{x}
$$

$\mathbf{a b c}=\left(-74-52 \sigma_{x} \sigma_{y}+13 \sigma_{y} \sigma_{z}-39 \sigma_{z} \sigma_{x}\right)\left(-2 \sigma_{x}+9 \sigma_{y}-\sigma_{z}\right)$

$$
\begin{aligned}
=-359 \sigma_{\mathrm{x}}- & 783 \sigma_{\mathrm{y}}+35 \sigma_{\mathrm{z}}-325 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}} \sigma_{\mathrm{z}} \\
& \Rightarrow \mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c}=-325 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}} \sigma_{\mathrm{z}} \\
& \Rightarrow|\mathbf{V}|=325
\end{aligned}
$$

\Rightarrow The volume of the parallelepiped is $325 \mathrm{~cm}^{3}$.
Check by applying the rule of Sarrus:
$\mathbf{F}=\left(\begin{array}{rrr}4 & 3 & -2 \\ 8 & -7 & 9 \\ -5 & 6 & -1\end{array}\right)$

$\operatorname{det} \mathbf{F}=4 \cdot(-7) \cdot(-1)+3 \cdot 9 \cdot(-5)+(-2) \cdot 8 \cdot 6-(-2) \cdot(-7) \cdot(-5)-4 \cdot 9 \cdot 6-3 \cdot 8 \cdot(-1)$ $=28-135-96+70-216+24=-325$

Another check: $\left(4^{2}+8^{2}+(-5)^{2}\right)\left(3^{2}+(-7)^{2}+6^{2}\right)=(-74)^{2}+(-52)^{2}+13^{2}+(-39)^{2}=9870$

$$
\begin{aligned}
& \begin{array}{r}
\left((-74)^{2}+(-52)^{2}+13^{2}+(-39)^{2}\right)\left((-2)^{2}+9^{2}+(-1)^{2}\right) \\
\\
\quad=(-359)^{2}+(-783)^{2}+35^{2}+(-325)^{2}=848820 \\
\Rightarrow \text { trigonometric Pythagoras: } \sin ^{2} \alpha+\cos ^{2} \alpha=1
\end{array}
\end{aligned}
$$

Problem 6:

a) $\begin{aligned} 3 \mathrm{x}+8 \mathrm{y} & =28 \\ 6 \mathrm{x}+2 \mathrm{y} & =28 \\ 2 \mathrm{x}+4 \mathrm{y}+2 \mathrm{z} & =28\end{aligned} \quad \Rightarrow \quad \mathbf{a}=3 \sigma_{\mathrm{x}}+6 \sigma_{\mathrm{y}}+2 \sigma_{\mathrm{z}} \quad \mathbf{r}=28 \sigma_{\mathrm{x}}+28 \sigma_{\mathrm{y}}+28 \sigma_{\mathrm{z}}$

Short GAALOP program without intermediate steps:

```
a = 3*el + 6*e2 + 2*e3;
b = 8*el + 2*e2 + 4*e3;
c = 2*e3;
r = 28*el + 28*e2 + 28*e3;
2x = ( }\mp@subsup{\textrm{r}}{}{\wedge}\mp@subsup{b}{}{\wedge}c)/(\mp@subsup{a}{}{\wedge}\mp@subsup{b}{}{\wedge}c)
2Y = (a^r}\mp@subsup{r}{}{\wedge}c)/(\mp@subsup{a}{}{\wedge}\mp@subsup{b}{}{\wedge}c)
2z = (a^b^r})/(\mp@subsup{a}{}{\wedge}\mp@subsup{b}{}{\wedge}c)
```


$\$$ Compilation Result

Save file

> ab9-aufgabe-6a.tex

```
\begin{align*}
```

$x_{-}\{0\} \in=4 \backslash$
2× $\backslash 1$
$Y_{-}\{0\} \Leftrightarrow=2 \backslash$
? $\mathrm{Y} \backslash$
$\left.z_{-}\{0\} \Leftrightarrow=6 \backslash\right\}$
2Z\
\end\{align*\} }

Extended GAALOP program with intermediate steps (in German: Zwischenschritte) and solutions (in German: Loesungen):

```
a = 3*el + 6*e2 + 2*e3;
b = 8*el + 2*e2 + 4*e3;
c = 2*e3;
r = 28*el + 28*e2 + 28*e3;
#(Zwischenschritte);
?VOLUNENabc = a^b^c;
?VOLUMENrbc = r^b}\mp@subsup{}{}{\wedge}c
2VOLTNENarc = a^r^c;
?VOLUNENabr = a^ b^r;
#(Loesungen);
?x = ( }\mp@subsup{r}{}{\wedge}\mp@subsup{b}{}{\wedge}c)/(\mp@subsup{a}{}{\wedge}\mp@subsup{b}{}{\wedge}c)
2Y = (a^^^c) /(a^^^^c);
?Z = (a^b^
```


Compilation Result

Save file
ab9-aufgabe-6a-zwischenschritte.tex
\begin\{align*\} }
Zwischenschritte

VOLUNENabc_\{7\}\&=-84\}
?VOLUNENabc
)
VOLUMENrbc_ $\{7\} \leqslant=-336 \backslash$
?VOLUNENrbc
,
VOLUNENarc_\{7) $\varepsilon=-168\}$
? VOLUNENarc \backslash
VOLUNENabr_\{7\} $\Leftrightarrow=-504 \backslash\}$
?VOLUNENabr

Loesungen

$\left.x_{-}\{0\} \Leftrightarrow=4 \backslash\right\}$
? $\mathrm{x} \backslash 1$
$Y_{-}\{0\} \&=2 \backslash$
? $\mathrm{Y} \backslash$
$z_{-}\{0\} \&=6 \backslash$
? Z $\$
\end\{align*\} }

Intermediate steps:
$\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c}=-84 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}} \sigma_{\mathrm{z}}$
$\mathbf{r} \wedge \mathbf{b} \wedge \mathbf{c}=-336 \sigma_{x} \sigma_{y} \sigma_{z}$
$\mathbf{a} \wedge \mathbf{r} \wedge \mathbf{c}=-168 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}} \sigma_{\mathrm{z}}$
$\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{r}=-504 \sigma_{x} \sigma_{y} \sigma_{z}$
Solution of the system of linear equations:
$x=(\mathbf{r} \wedge \mathbf{b} \wedge \mathbf{c}) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=\frac{-336}{-84}=4$
$y=(\mathbf{a} \wedge \mathbf{r} \wedge \mathbf{c}) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=\frac{-168}{-84}=2$
$\mathrm{z}=(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{r}) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=\frac{-504}{-84}=6$

$$
\text { Check: } \begin{array}{rll}
3 \cdot 4+8 \cdot 2 & =12+16 & =28 \\
& 6 \cdot 4+2 \cdot 2 & =24+4 \\
& 2 \cdot 4+4 \cdot 2+2 \cdot 6 & =8+8+12=28
\end{array}
$$

b) $8 \mathrm{x}+5 \mathrm{y}+10 \mathrm{z}=396 \Rightarrow \mathbf{a}=8 \sigma_{\mathrm{x}}+3 \sigma_{\mathrm{y}}+2 \sigma_{\mathrm{z}} \quad \mathbf{r}=396 \sigma_{\mathrm{x}}+375 \sigma_{\mathrm{y}}+386 \sigma_{\mathrm{z}}$
$3 \mathrm{x}+7 \mathrm{y}+12 \mathrm{z}=375 \quad \mathbf{b}=5 \sigma_{\mathrm{x}}+7 \sigma_{\mathrm{y}}+6 \sigma_{\mathrm{z}}$
$2 \mathrm{x}+6 \mathrm{y}+14 \mathrm{z}=386 \quad \mathbf{c}=10 \sigma_{\mathrm{x}}+12 \sigma_{\mathrm{y}}+14 \sigma_{\mathrm{z}}$
Short GAALOP program without intermediate steps:

```
a = 8*el + 3*e2 + 2*e3;
b = 5*el + 7*e2 + 6*e3;
c = 10*el + 12*e2 + 14*e3;
r = 396*el + 375*e2 + 386*e3;
2x = (r}\mp@subsup{r}{}{\wedge}\mp@subsup{b}{}{\wedge}c)/(\mp@subsup{a}{}{\wedge}\mp@subsup{b}{}{\wedge}c)
2Y = (a^r^c)/(a^^\mp@subsup{b}{}{\wedge}c);
2z = (a^ (b^r)/(a^ (a^c);
```


\begin\{align*\} }
$x_{-}\{0\} \&=17 \backslash$
? $\mathrm{x} \backslash 1$
$\left.Y_{-}\{0\} \&=12 \backslash\right\}$
?Y\
$z_{-}\{0\} \&=20 \backslash$
2z\1
\{end\{align*\}

Extended GAALOP program with intermediate steps (in German: Zwischenschritte) and solutions (in German: Loesungen):

```
a = 8*el + 3*e2 + 2*e3;
b = 5*el + 7*e2 + 6*e3;
c = 10*el + 12*e2 + 14*e3;
r = 396*el + 375*e2 + 386*e3;
#(Zwischenschritte);
?VOLUNENabc = a^b^c;
?VOLUNENrbc = r^b^c;
?VOLUMENarc = a^^^c;
?VOLUNENabr = a^b^r;
#(Loesungen);
2x = ( ( ^^ b^c)/ (a^b^^);
```



```
?z = (a^b^r)/(a^b^c);
```


Compilation Result

Save file
ab9-aufgabe-6b-zwischenschritte.tex
\begin\{align*\} }
Zwischenschritte\
VOLUNENabc_ $\{7\}$ \& $=158\}$
?VOLTMENabc
)
VOLUNENrbc_\{7\}\& $=2686 \backslash$
? VOLTHENrbe \backslash
VOLUMENarc_\{7\}\&= 1896

?VOLUNENarc \backslash
VOLUNENabr_ $\{7\} \Leftrightarrow=3160 \backslash\}$
?VOLUNENabr

Loesungen

$x_{-}\{0\} \Leftrightarrow=17 \backslash$
2x
$\mathrm{Y}_{-}\{0\} \in=12 \backslash$
?Y Y
$\left.z_{-}\{0\} \&=20 \backslash\right\}$
? $2 \backslash$
\end\{align*\} }

Intermediate steps:
$\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c}=158 \sigma_{x} \sigma_{y} \sigma_{z}$
$\mathbf{r} \wedge \mathbf{b} \wedge \mathbf{c}=2686 \sigma_{x} \sigma_{y} \sigma_{z}$
$\mathbf{a} \wedge \mathbf{r} \wedge \mathbf{c}=1896 \sigma_{x} \sigma_{y} \sigma_{z}$
$\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{r}=3160 \sigma_{x} \sigma_{y} \sigma_{z}$
Solution of the system of linear equations:
$\mathrm{x}=(\mathbf{r} \wedge \mathbf{b} \wedge \mathbf{c}) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=\frac{2686}{158}=17$
$\mathrm{y}=(\mathbf{a} \wedge \mathbf{r} \wedge \mathbf{c}) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=\frac{1896}{158}=12$
$\mathrm{z}=(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{r}) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=\frac{3160}{158}=20$
Check: $8 \cdot 17+5 \cdot 12+10 \cdot 20=136+60+200=396$
$3 \cdot 17+7 \cdot 12+12 \cdot 20=51+84+240=375$
$2 \cdot 17+6 \cdot 12+14 \cdot 20=34+72+280=386$

$$
\text { c) } \begin{array}{rlr}
3 \mathrm{x}-5 \mathrm{y}+6 \mathrm{z} & =41 \\
-2 \mathrm{x}+5 \mathrm{y}+8 \mathrm{z} & =111 \\
7 \mathrm{x}+\mathrm{y}+9 \mathrm{z} & =185
\end{array} \quad \Rightarrow \quad \begin{aligned}
& \mathbf{a}=3 \sigma_{\mathrm{x}}-2 \sigma_{\mathrm{y}}+7 \sigma_{\mathrm{z}} \\
& \mathbf{b}=-5 \sigma_{\mathrm{x}}+5 \sigma_{\mathrm{y}}+\sigma_{\mathrm{z}}
\end{aligned} \quad \mathbf{r}=41 \sigma_{\mathrm{x}}+111 \sigma_{\mathrm{y}}+185 \sigma_{\mathrm{z}} .
$$

Short GAALOP program without intermediate steps:

```
a = 3*el - 2*e2 + 7*e3;
b = -5*el + 5*e2 + e3;
c = 6*el + 8*e2 + 9*e3;
r = 41*el + 1ll*e2 + 185*e3;
2x = ( (r^b^c)/ (a^b^c);
?Y = (a^r^c)/(a^b^c);
?z = (a^b^r)/(a^b^c);
```


\begin\{align*\} }
$\mathrm{X}_{-}\{0\} \&=12 \backslash$
2x\
$Y_{-}\{0\} \in=11 \$
? $\mathrm{Y} \backslash$
$\left.z_{-}\{0\} \Leftrightarrow=10 \backslash\right\}$
? 2 \
\end\{align*\} }

Extended GAALOP program with intermediate steps (in German: Zwischenschritte) and solutions (in German: Loesungen):

```
a = 3*el - 2*e2 + 7*e3;
b = -5*el + 5*e2 + e3;
c = 6*el + 8*e2 + 9*e3;
r = 4l*el + 1ll*e2 + 185*e3;
#(Zwischenschritte);
?VOLUNENabc = a^b^c;
?VOLUNENrbc = r^b}\mp@subsup{}{}{\wedge}c\mathrm{ c;
2VOLUNENarc = a^r^c;
?VOLUMENabr = a^b^r;
#(Loesungen);
2x = ( (r^b^c)/(a^b^c);
?Y = (a^r^c)/(a^b^c);
2z = (a^b^r)/(a^b^c);
```


Compilation Result

Save file

```
ab9-aufgabe-6c-zwischenschritte.tex
```

```
\begin{align*}
```

Zwischenschritte

VOLUNENabc_\{7\}\&=-481
)
?VOLUNENabc

VOLUNENrbc_\{7) $\&=-5772 \$
?VOLUNENrbc
VOLTNENarc_\{7) $\&=-5291 \\}$
?VOLUNENarc

VOLUNENabr_\{7\}\&=-4810
$}$
?VOLTHENabr

Loesungen
)
$x_{-}\{0\} \&=12 \backslash$
2x
$Y_{-}\{0\} \&=11 \backslash$
? $\mathrm{Y} \backslash$
$z_{-}\{0\} \&=10 \backslash$
? Z \
\end\{align*\} }

Intermediate steps:
$\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c}=-481 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}} \sigma_{\mathrm{z}}$
$\mathbf{r} \wedge \mathbf{b} \wedge \mathbf{c}=-5772 \sigma_{x} \sigma_{y} \sigma_{z}$
$\mathbf{a} \wedge \mathbf{r} \wedge \mathbf{c}=-5291 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}} \sigma_{\mathrm{z}}$
$\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{r}=-4810 \sigma_{x} \sigma_{y} \sigma_{z}$
Solution of the system of linear equations:

$$
\begin{aligned}
& \mathrm{x}=(\mathbf{r} \wedge \mathbf{b} \wedge \mathbf{c}) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=\frac{-5772}{-481}=12 \\
& \mathrm{y}=(\mathbf{a} \wedge \mathbf{r} \wedge \mathbf{c}) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=\frac{-5291}{-481}=11 \\
& \mathrm{z}=(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{r}) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=\frac{-4810}{-481}=10
\end{aligned}
$$

Check: $3 \cdot 12-5 \cdot 11+6 \cdot 10=36-55+60=41$

$$
\begin{aligned}
-2 \cdot 12+5 \cdot 11+8 \cdot 10 & =-24+55+80=111 \\
7 \cdot 12+11+9 \cdot 10 & =84+11+90=185
\end{aligned}
$$

d) $2 / 5 \mathrm{x}+{ }^{7} / 5 \mathrm{y}+{ }^{9} / 5 \mathrm{z}=210 \Rightarrow \mathbf{a}=2 / 5 \sigma_{\mathrm{x}}+8 / 5 \sigma_{\mathrm{y}}+{ }^{4} / 5 \sigma_{\mathrm{z}} \quad \mathbf{r}=210 \sigma_{\mathrm{x}}+138 \sigma_{\mathrm{y}}+282 \sigma_{\mathrm{z}}$
$8 / 5 x+1 / 5 y+3 / 5 z=138$ $\mathbf{b}=7 / 5 \sigma_{x}+1 / 5 \sigma_{y}+12 / 5 \sigma_{z}$
$4 / 5 x+12 / 5 y+6 / 5 z=282$
$\mathbf{c}={ }^{9} / 5 \sigma_{x}+3 / 5 \sigma_{y}+6 / 5 \sigma_{z}$
Short GAALOP program without intermediate steps:

```
a = (2/5)*el + (8/5)*e2 + (4/5)*e3;
b = (7/5)*el + (1/5)*e2 + (12/5)*e3;
c = (9/5)*el + (3/5)*e2 + (6/5)*e3;
r = 210*el + 138*e2 + 282*e3;
2x = ( (r^b^c)/ (a^b^
```



```
2z = (a^b^r)/(a^b^c);
```

(Compilation Result
Save file
ab9-aufgabe-6d.tex
```\begin{align*} x_{0}&=60.00000000000001\\ 2x\ Y_{0}&=75.00000000000001\\ ?Y\\ z_{0}&=45.00000000000004\} ?z\\ \end{align*}```

Extended GAALOP program with intermediate steps (in German: Zwischenschritte) and solutions (in German: Loesungen):

```
a = (2/5)*el + (8/5)*e2 + (4/5)*e3;
b = (7/5)*el + (1/5)*e2 + (12/5)*e3;
c = (9/5)*el + (3/5)*e2 + (6/5)*e3;
r = 210*el + 138*e2 + 282*e3;
#(Zwischenschritte);
2VOLUNENabc = a^b^c;
2VOLTNENrbc = r^b}\mp@subsup{}{}{\wedge
2VOLUNENarc = a^r^c;
2VOLTNENabr = a^ b^r;
#(Loesungen);
2x = (}\mp@subsup{r}{}{\wedge}\mp@subsup{b}{}{\wedge}c)/(\mp@subsup{a}{}{\wedge}\mp@subsup{b}{}{\wedge}c)
?Y = (a^r^c)/(䄼b^c);
?z = (a^b^r)/(a^b^c);
```

```
* Compilation Result
```

Save file
ab9-aufgabe-6d-zwischenschritte.tex

## \begin\{align*\} 

}Zwischenschritte<br>
VOLUNENabc_\{7\}\&=4.128000000000001<br>$}$
?VOLUNENabc<br>)
VOLTNENrbc_\{7) $\varepsilon=247.68000000000006 \backslash$ ? VOLUNENrbc \
VOLUMENarc_ $\{7\} \leqslant=309.60000000000014 \backslash\}$ ?VOLUNENarc <br>
VOLTMENabr_\{7) $\&=185.76000000000022 \$ 2VOLTHENabr<br>
Loesungen<br>
$X_{-}\{0\} \&=60.00000000000001 \$
2x\
$\mathrm{Y}_{-}\{0\} \&=75.00000000000001 \mathrm{l}$
?Y $\backslash$
$\left.z_{-}\{0\} \&=45.00000000000004 \backslash\right\}$
? $\mathrm{z} \backslash$
\end\{align*\} }

Intermediate steps:
$\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c}=4.128 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}} \sigma_{\mathrm{z}}=\frac{516}{125} \sigma_{\mathrm{x}} \sigma_{\mathrm{y}} \sigma_{\mathrm{z}}$
$\mathbf{r} \wedge \mathbf{b} \wedge \mathbf{c}=247.680 \sigma_{x} \sigma_{y} \sigma_{z}=\frac{30960}{125} \sigma_{x} \sigma_{y} \sigma_{z}$
$\mathbf{a} \wedge \mathbf{r} \wedge \mathbf{c}=309.600 \sigma_{x} \sigma_{y} \sigma_{z}=\frac{38700}{125} \sigma_{x} \sigma_{y} \sigma_{z}$
$\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{r}=185.760 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}} \sigma_{\mathrm{z}}=\frac{23220}{125} \sigma_{\mathrm{x}} \sigma_{\mathrm{y}} \sigma_{\mathrm{z}}$
Solution of the system of linear equations:
$\mathrm{x}=(\mathbf{r} \wedge \mathbf{b} \wedge \mathbf{c}) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=\frac{30960}{516}=60$
$\mathrm{y}=(\mathbf{a} \wedge \mathbf{r} \wedge \mathbf{c}) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=\frac{38700}{516}=75$
$\mathrm{z}=(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{r}) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=\frac{23220}{516}=45$
Check: ${ }^{2} / 5 \cdot 60+7 / 5 \cdot 75+9 / 5 \cdot 45=24+105+81=210$

$$
\begin{aligned}
& 8 / 5 \cdot 60+1 / 5 \cdot 75+3 / 5 \cdot 45=96+15+27=138 \\
& 4 / 5 \cdot 60+12 / 5 \cdot 75+6 / 5 \cdot 45=48+180+54=282
\end{aligned}
$$

## Problem 7:

$\begin{array}{lll}7 \mathrm{x}+2 \mathrm{y}+5 \mathrm{z}=500 \\ 3 \mathrm{x}+9 \mathrm{y}+\quad=780 \\ 4 \mathrm{x}+6 \mathrm{y}+8 \mathrm{z}=880\end{array} \quad \Rightarrow \quad \mathbf{a}=7 \sigma_{\mathrm{x}}+3 \sigma_{\mathrm{y}}+4 \sigma_{\mathrm{z}} \quad \mathbf{r}=500 \sigma_{\mathrm{x}}+780 \sigma_{\mathrm{y}}+880 \sigma_{\mathrm{z}}$
GAALOP program and compilation result:

```
a = 7*el + 3*e2 + 4*e3;
b = 2*el + 9*e2 + 6*e3;
c = 5*el + 8*e3;
r = 500*el + 780*e2 + 880*e3;
2x = (r^^b^c)/(a^b
?Y = (a^^}\mp@subsup{r}{}{\wedge}c)/(\mp@subsup{a}{}{\wedge}\mp@subsup{b}{}{\wedge}c)
2z = (a^b^r)}/(\mp@subsup{a}{}{\wedge}\mp@subsup{b}{}{\wedge}c)
```


\begin\{align*\} }
$\left.x_{\sim}\{0\} \&=20\right\}$
2x\y
$\left.Y_{-}\{0\} \&=80\right\}$
2Y)
$\left.z_{-}\{0\} \&=40\right\}$
2Z<br>,
\end\{align*\} }

Solution of the system of linear equations:
$\mathrm{x}=(\mathbf{r} \wedge \mathbf{b} \wedge \mathbf{c}) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=20$
$\mathrm{y}=(\mathbf{a} \wedge \mathbf{r} \wedge \mathbf{c}) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=80$
$\mathrm{z}=(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{r}) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=40$
Check: $7 \cdot 20+2 \cdot 80+5 \cdot 40=140+160+200=500$

$$
\begin{array}{lll}
3 \cdot 20+9 \cdot 80 & =60+720 & =780 \\
4 \cdot 20+6 \cdot 80+8 \cdot 40 & =80+480+320 & =880
\end{array}
$$

$\Rightarrow$ If 500 units of the first raw material $\mathrm{R}_{1}, 780$ units of the second raw material $\mathrm{R}_{2}$, and 880 units of the third raw material $\mathrm{R}_{3}$ are consumed in the production process, 20 units of the first final product $P_{1}, 80$ units of the second final product $P_{2}$, and 40 units of the third final product $P_{3}$ will be produced.

## Problem 8:

$12 \mathrm{x}+30 \mathrm{y}+10 \mathrm{z}=12000 \Rightarrow \mathbf{a}=12 \sigma_{\mathrm{x}}+20 \sigma_{\mathrm{y}}+16 \sigma_{\mathrm{z}} \quad \mathbf{r}=12000 \sigma_{\mathrm{x}}+13900 \sigma_{\mathrm{y}}+18300 \sigma_{\mathrm{z}}$
$20 \mathrm{x}+15 \mathrm{y}+8 \mathrm{z}=13900 \quad \mathbf{b}=30 \sigma_{\mathrm{x}}+15 \sigma_{\mathrm{y}}+28 \sigma_{\mathrm{z}}$
$16 x+28 y+25 z=18300$
$\mathbf{c}=10 \sigma_{x}+8 \sigma_{y}+25 \sigma_{z}$

GAALOP program and compilation result:

```
a = 12*el + 20*e2 + 16*e3;
b = 30*el + 15*e2 + 28*e3;
c = 10*el + 8*e2 + 25*e3;
r = 12000*el + 13900*e2 + 18300*e3;
2x = ((r^b^c)/(a>
2Y = (a^r^c)/(a^^\mp@subsup{b}{}{\wedge}c);
2z = (a^b^r)/(a* b^c);
```


## W Compilation Result

Save file
ab9-aufgabe-8.tex
\begin\{align*\} }
$\mathrm{x}_{-}\{0\} \&=500.00000000000006 \backslash$
? $\mathrm{x} \backslash$
$\mathrm{Y}_{-}\{0\} \Leftrightarrow=100 \mathrm{~W}$
? $\mathrm{Y} \backslash$
$\left.z_{-}\{0\} \in=300 \backslash\right\}$
? $2 \backslash$
\end\{align*\} }

Solution of the system of linear equations:
$\mathrm{x}=(\mathbf{r} \wedge \mathbf{b} \wedge \mathbf{c}) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=500$
$\mathrm{y}=(\mathbf{a} \wedge \mathbf{r} \wedge \mathbf{c}) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=100$
$\mathrm{z}=(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{r}) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=300$
Check: $12 \cdot 500+30 \cdot 100+10 \cdot 300=6000+3000+3000=12000$

$$
20 \cdot 500+15 \cdot 100+8 \cdot 300=10000+1500+2400=13900
$$

$$
16 \cdot 500+28 \cdot 100+25 \cdot 300=8000+2800+7500=18300
$$

$\Rightarrow$ If 12000 units of the first raw material $\mathrm{R}_{1}, 13900$ units of the second raw material $\mathrm{R}_{2}$, and 18300 units of the third raw material $\mathrm{R}_{3}$ are consumed in the production process, 500 units of the first final product $\mathrm{P}_{1}, 100$ units of the second final product $\mathrm{P}_{2}$, and 300 units of the third final product $\mathrm{P}_{3}$ will be produced.

## Problem 9:

first quarter second quarter

$\left[\begin{array}{lll}9 & 3 & 4 \\ 2 & 2 & 3 \\ 7 & 5 & 2\end{array}\right] \underbrace{\left[\begin{array}{ll}\mathrm{x}_{1} & \mathrm{x}_{2} \\ \mathrm{y}_{1} & \mathrm{y}_{2} \\ \mathrm{z}_{1} & \mathrm{z}_{2}\end{array}\right]}=\underbrace{\left[\begin{array}{ll}98 & 61 \\ 35 & 30 \\ 76 & 59\end{array}\right]}$
R.. matrix of quarterly consumption of raw materials (consumption matrix)

P $\qquad$ matrix of quarterly production (production matrix)
$\Rightarrow$ Two systems of linear equations:
$9 x_{1}+3 y_{1}+4 z_{1}=98$

$$
9 x_{2}+3 y_{2}+4 z_{2}=61
$$

$2 x_{1}+2 y_{1}+3 z_{1}=35$
$7 \mathrm{x}_{1}+5 \mathrm{y}_{1}+2 \mathrm{z}_{1}=76$
and
$2 x_{2}+2 y_{2}+3 z_{2}=30$
$7 \mathrm{x}_{2}+5 \mathrm{y}_{2}+2 \mathrm{z}_{2}=59$

$$
\begin{array}{rlr}
\Rightarrow \mathbf{a}=9 \sigma_{\mathrm{x}}+2 \sigma_{\mathrm{y}}+7 \sigma_{\mathrm{z}} & \mathbf{r}=98 \sigma_{\mathrm{x}}+35 \sigma_{\mathrm{y}}+76 \sigma_{\mathrm{z}} \\
\mathbf{b}=3 \sigma_{\mathrm{x}}+2 \sigma_{\mathrm{y}}+2 \sigma_{\mathrm{z}} & \mathbf{q}=61 \sigma_{\mathrm{x}}+30 \sigma_{\mathrm{y}}+59 \sigma_{\mathrm{z}} \\
\mathbf{c}=4 \sigma_{\mathrm{x}}+3 \sigma_{\mathrm{y}}+2 \sigma_{\mathrm{z}} &
\end{array}
$$

GAALOP program and compilation result:

```
a = 9*el + 2*e2 + 7*e3;
b = 3*el + 2*e2 + 5*e3;
c = 4*el + 3*e2 + 2*e3;
r = 98*el + 35*e2 + 76*e3;
q = 61*el + 30*e2 + 59*e3;
2Xeins = ((r^b^c)/(a^b^c);
2Yeins = (a^r^^c)/(a^b^c);
2Zeins = (a^b^}r)/(\mp@subsup{a}{}{\wedge}\mp@subsup{b}{}{\wedge}c)
2Xzwei = (q^ (b^c)/(a^b^c);
2Yzwei = (a^q}\mp@subsup{q}{}{\wedge}c)/(\mp@subsup{a}{}{\wedge}\mp@subsup{b}{}{\wedge}c)
2Zzwei = (a^ (a^q)/(a^b^c);
```

```
NT}\mathrm{ Compilation Result
```


## Save file

## ab9-aufgabe-9.tex

## \begin\{align*\} 

}Xeins_\{0\}\&=8\1
2Xeins <br>
Yeins_\{0\}\&=21\} ?Yeins<br>)
Zeins_\{0\}\&=5<br>$}$ 2Zeins <br>)
Xzwei_\{0\}\&=3<br>$}$
2Xzwei<br>)
Yzwei_\{0\}\&=6\1
?Yzwei<br>
Zzwei_\{0\}\&=4\}
2Zzwei
\end\{align*\} }

Solutions of the two systems of linear equations:
$\mathrm{x}_{1}=(\mathbf{r} \wedge \mathbf{b} \wedge \mathbf{c}) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=8$
$\mathrm{y}_{1}=(\mathbf{a} \wedge \mathbf{r} \wedge \mathbf{c}) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=2$
$\mathrm{z}_{1}=(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{r}) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=5$

Check:		8	3	
2	6			
			5	4
9	3	4	98	61
2	2	3	35	30
7	5	2	76	59

$\Rightarrow 8$ units of the first final product $\mathrm{P}_{1}, 2$ units of the second final product $\mathrm{P}_{2}$, and 4 units of the third final product $P_{3}$ will be produced in the first quarter.
3 units of the first final product $P_{1}, 6$ units of the second final product $P_{2}$, and 4 units of the third final product $\mathrm{P}_{3}$ will be produced in the second quarter.

## Problem 10:

$\left[\begin{array}{lll}10 & 15 & 11 \\ 17 & 20 & 16 \\ 12 & 14 & 25\end{array}\right]\left[\begin{array}{ll}\mathrm{x}_{1} & \mathrm{x}_{2} \\ \mathrm{y}_{1} & \mathrm{y}_{2} \\ \mathrm{z}_{1} & \mathrm{z}_{2}\end{array}\right]=\left[\begin{array}{rr}964 & 814 \\ 1409 & 1184 \\ 1320 & 1093\end{array}\right] \quad$ A B = D


D ....... matrix of total demand
B ....... demand matrix of the second production step
A ....... demand matrix of the first production step
$\Rightarrow$ Two systems of linear equations:
$10 x_{1}+15 y_{1}+11 z_{1}=964$
$17 \mathrm{x}_{1}+20 \mathrm{y}_{1}+16 \mathrm{z}_{1}=1409$
$12 \mathrm{x}_{1}+14 \mathrm{y}_{1}+25 \mathrm{z}_{1}=1320$
$\Rightarrow \mathbf{a}=10 \sigma_{\mathrm{x}}+17 \sigma_{\mathrm{y}}+12 \sigma_{\mathrm{z}} \quad \mathbf{r}=964 \sigma_{\mathrm{x}}+1409 \sigma_{\mathrm{y}}+1320 \sigma_{\mathrm{z}}$
$\mathbf{b}=15 \sigma_{x}+20 \sigma_{y}+14 \sigma_{z}$
$\mathbf{q}=814 \sigma_{\mathrm{x}}+1184 \sigma_{\mathrm{y}}+1093 \sigma_{\mathrm{z}}$
$\mathbf{c}=11 \sigma_{\mathrm{x}}+16 \sigma_{\mathrm{y}}+25 \sigma_{\mathrm{z}}$

GAALOP program and compilation result:

```
a = 10*el + 17*e2 + 12*e3;
b = 15*el + 20*e2 + 14*e3;
c = 11*el + 16*e2 + 25*e3;
r = 964*el + 1409*e2 + 1320*e3;
q = 814*el + 1184*e2 + 1093*e3;
2Xeins = (r^b^c)/(a^b^c);
2Yeins = (a^r^c)/(a^b^c);
2Zeins = (a^b^r)/(a^b^c);
2Xzwei = (q^ (b^c)/(a^b^c);
2Yzwei = (a^q^c)/(a^b^c);
2Zzwei = (a^b^q)/(a^b^c);
```


\begin\{align*\} }
Xeins_\{0\}\&=25\},
2Xeins <br>)
Yeins_\{0\}\&=301\}
2Yeins \y
Zeins_\{0\}\&=24\},
2Zeins <br>)
Xzwei_\{0\}\&=20<br>$}$
2Xzwei \
Yzwei_\{0\}\&=27\1
2Yzwei<br>
Zzwei_\{0\}\&=19<br>,
2Zzwei
\end\{align*\} }

Solutions of the two systems of linear equations:
$\mathrm{x}_{1}=(\mathbf{r} \wedge \mathbf{b} \wedge \mathbf{c}) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=25$
$\mathrm{x}_{2}=(\mathbf{q} \wedge \mathbf{b} \wedge \mathbf{c}) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=20$
$\mathrm{y}_{1}=(\mathbf{a} \wedge \mathbf{r} \wedge \mathbf{c}) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=30$
$y_{2}=(\mathbf{a} \wedge \mathbf{q} \wedge \mathbf{c}) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=27$
$\mathrm{z}_{1}=(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{r}) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=24$
$\mathrm{z}_{2}=(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{q}) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=19$

Check:		25 20   30 27   24 19           10 15   17 20 11	964
12	14	25	1409
1320	1184		

$\Rightarrow$ Demand matrix of the second production step: $\quad \mathbf{B}=\left[\begin{array}{ll}25 & 20 \\ 30 & 27 \\ 24 & 19\end{array}\right]$

## Problem 11:

$$
\underbrace{\left[\begin{array}{lll}
8 & 6 & 6 \\
7 & 5 & 7 \\
5 & 4 & 0
\end{array}\right]}_{:}[\underbrace{\left[\begin{array}{lll}
\mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} \\
\mathrm{y}_{1} & \mathrm{y}_{2} & \mathrm{y}_{3} \\
\mathrm{z}_{1} & \mathrm{z}_{2} & \mathrm{z}_{3}
\end{array}\right]}_{\mathbf{B}}=\underbrace{\left[\begin{array}{ccc}
228 & 186 & 308 \\
186 & 166 & 282 \\
108 & 107 & 160
\end{array}\right]}_{\mathbf{D} . \ldots . . \text { demand matrix of the second production step }} \quad \mathbf{A ~ B}=\mathbf{D}
$$

A demand matrix of the first production step
$\Rightarrow$ Three systems of linear equations:

$$
\begin{aligned}
& 8 \mathrm{x}_{1}+6 \mathrm{y}_{1}+6 \mathrm{z}_{1}=228 \\
& 7 \mathrm{x}_{1}+5 \mathrm{y}_{1}+7 \mathrm{z}_{1}=186 \text { and } \\
& 8 x_{2}+6 y_{2}+6 z_{2}=308 \\
& 8 x_{3}+6 y_{3}+6 z_{3}=308 \\
& 5 \mathrm{x}_{1}+4 \mathrm{y}_{1}=108 \\
& 7 x_{2}+5 y_{2}+7 z_{2}=166 \\
& \text { and } \\
& 7 x_{3}+5 y_{3}+7 z_{3}=282 \\
& 5 x_{2}+4 y_{2}=107 \\
& 5 \mathrm{x}_{3}+4 \mathrm{y}_{3}=160 \\
& \Rightarrow \mathbf{a}=8 \sigma_{\mathrm{x}}+7 \sigma_{\mathrm{y}}+5 \sigma_{\mathrm{z}} \\
& \mathbf{r}_{\mathbf{1}}=228 \sigma_{\mathrm{x}}+186 \sigma_{\mathrm{y}}+108 \sigma_{\mathrm{z}} \\
& \mathbf{b}=6 \sigma_{x}+5 \sigma_{y}+4 \sigma_{z} \\
& \mathbf{r}_{2}=186 \sigma_{\mathrm{x}}+166 \sigma_{\mathrm{y}}+107 \sigma_{\mathrm{z}} \\
& \mathbf{c}=6 \sigma_{\mathrm{x}}+7 \sigma_{\mathrm{y}} \\
& \mathbf{r}_{3}=308 \sigma_{x}+282 \sigma_{y}+160 \sigma_{z}
\end{aligned}
$$

GAALOP program and compilation result:

```
a = 8*el + 7*e2 + 5*e3;
b = 6*el + 5*e2 + 4*e3;
c = 6*el + 7*e2;
rl = 228*el + 214*e2 + 108*e3;
r2 = 186*el + 166*e2 + 107*e3;
r3 = 308*el + 282*e2 + 160*e3;
2Xeins = (rl^^b^c)/(a^b}\mp@subsup{b}{}{\wedge}c)
2Yeins = (a^rl^c)/(a^b^c);
2Zeins = (a^b}\mp@subsup{b}{}{\wedge}rl)/(\mp@subsup{a}{}{\wedge}\mp@subsup{b}{}{\wedge}c)
2Xzwei = (r2^^b^c)/(a^^b^c);
2Yzwei = (a^r2^c)/(a^b}\mp@subsup{b}{}{\wedge}c)
2Zzwei = (a^b^r2)/(a^b^c);
2Xdrei = (r3^}\mp@subsup{b}{}{\wedge}c)/(\mp@subsup{a}{}{\wedge}\mp@subsup{b}{}{\wedge}c)
2Ydrei = (a^r3^c)/(a^b^c);
2Zdrei = (a^b}\mp@subsup{b}{}{\wedge}r3)/(\mp@subsup{a}{}{\wedge}\mp@subsup{b}{}{\wedge}c)
```


## W Compilation Result

Save file
ab9-aufgabe-11 tex

## \begin\{align*\} 

}Xeins_\{0\}\&=12\
? Xeins <br>
Yeins_\{0\}\& $=12 \\}$
?Yeins <br>
Zeins_\{0\}\& $=10 \backslash\}$
?Zeins <br>
Xzwei_\{0\}\&=15<br>
?Xzwei<br>)
Yzwei_\{0\}\&=8<br>$}$
2Yzwei<br>
2zwei_\{0\}\&= 3<br>$}$
2Zzwei<br>
Xdrei_\{0\}\&= 16<br>
?Xdrei<br>
Ydrei_\{0\}\&=20<br>$}$
?Ydrei<br>
Zdrei_\{0\}\&=10<br>$}$
2Zdreil|
\end\{align*\} }

Solutions of the three systems of linear equations:
$\mathrm{x}_{1}=\left(\mathbf{r}_{1} \wedge \mathbf{b} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=12$
$\mathrm{y}_{1}=\left(\mathbf{a} \wedge \mathbf{r}_{1} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=12$
$\mathrm{z}_{1}=\left(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{r}_{1}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=10$

$$
\begin{aligned}
& \mathrm{x}_{2}=\left(\mathbf{r}_{2} \wedge \mathbf{b} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=15 \\
& \mathrm{y}_{2}=\left(\mathbf{a} \wedge \mathbf{r}_{2} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=8 \\
& \mathrm{z}_{2}=\left(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{r}_{2}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=3
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{x}_{3}=\left(\mathbf{r}_{3} \wedge \mathbf{b} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=16 \\
& \mathrm{y}_{3}=\left(\mathbf{a} \wedge \mathbf{r}_{3} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=20 \\
& \mathrm{z}_{3}=\left(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{r}_{3}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=10
\end{aligned}
$$

Check:		12 15 16   12 8 20   10 3 10   8 6 6   7 5 7   5 4 0	228	186
		308	166	282
		108	107	160

$\Rightarrow$ Demand matrix of the second production step:

$$
\mathbf{B}=\left[\begin{array}{rrr}
12 & 15 & 16 \\
12 & 8 & 20 \\
10 & 3 & 10
\end{array}\right]
$$

## Problem 12:

$\left[\begin{array}{ccc}82 & 63 & 20 \\ 44 & 19 & 37 \\ 10 & 52 & 92\end{array}\right]\left[\begin{array}{lll}x_{1} & x_{2} & x_{3} \\ y_{1} & y_{2} & y_{3} \\ z_{1} & z_{2} & z_{3}\end{array}\right]=\left[\begin{array}{lll}4496 & 5462 & 4815 \\ 2530 & 3482 & 2801 \\ 3224 & 4062 & 4646\end{array}\right] \quad$ A B = D


A ....... demand matrix of the first production step
$\Rightarrow$ Three systems of linear equations:

$$
\begin{aligned}
& 82 \mathrm{x}_{1}+63 \mathrm{y}_{1}+20 \mathrm{z}_{1}=4496 \quad 82 \mathrm{x}_{2}+63 \mathrm{y}_{2}+20 \mathrm{z}_{2}=5462 \quad 82 \mathrm{x}_{3}+63 \mathrm{y}_{3}+20 \mathrm{z}_{3}=4815 \\
& 44 x_{1}+19 y_{1}+37 z_{1}=2530 \text { and } 44 x_{2}+19 y_{2}+37 z_{2}=3482 \text { and } 44 x_{3}+19 y_{3}+37 z_{3}=2801 \\
& 10 \mathrm{x}_{1}+52 \mathrm{y}_{1}+92 \mathrm{z}_{1}=3224 \quad 10 \mathrm{x}_{2}+52 \mathrm{y}_{2}+92 \mathrm{z}_{2}=4062 \quad 10 \mathrm{x}_{3}+52 \mathrm{y}_{3}+92 \mathrm{z}_{3}=4646 \\
& \Rightarrow \mathbf{a}=82 \sigma_{\mathrm{x}}+44 \sigma_{\mathrm{y}}+10 \sigma_{\mathrm{z}} \\
& \mathbf{r}_{1}=4496 \sigma_{\mathrm{x}}+2530 \sigma_{\mathrm{y}}+3224 \sigma_{\mathrm{z}} \\
& \mathbf{b}=63 \sigma_{x}+19 \sigma_{y}+52 \sigma_{z} \\
& \mathbf{r}_{2}=5462 \sigma_{x}+3482 \sigma_{y}+4062 \sigma_{z} \\
& \mathbf{c}=20 \sigma_{\mathrm{x}}+37 \sigma_{\mathrm{y}}+92 \sigma_{\mathrm{z}} \\
& \mathbf{r}_{3}=4815 \sigma_{x}+2801 \sigma_{y}+4646 \sigma_{z}
\end{aligned}
$$

GAALOP program and compilation result:

```
a = 82*el + 44*e2 + 10*e3;
b = 63*el + 19*e2 + 52*e3;
c = 20*el + 37*e2 + 92*e3;
rl = 4496*el + 2530*e2 + 3224*e3;
r2 = 5462*el + 3482*e2 + 4062*e3;
r3 = 4815*el + 2801*e2 + 4646*e3;
2Xeins = (rl^b^c)/(a^b^c);
?Yeins = (a^rl^c)/(a^b^c);
2Zeins = (a^b^rl)/(a^b^c);
?Xzwei = (r2^b^c)/(a^b^c);
?Yzwei = (a^r2^c)/(a^b^c);
2Zzwei = (a^b^r2)/(a^ (a^c);
2Xdrei = (r3^}\mp@subsup{b}{}{\wedge}c)/(\mp@subsup{a}{}{\wedge}\mp@subsup{b}{}{\wedge}c)
?Ydrei = (a^r3^c)/(a^b^c);
2Zdrei = (a^ '^^r3)/(a^ (a^c);
```


\begin\{align*\} }
Xeins_\{0\}\& $=32 \$
?Xeins <br>$}$
Yeins_\{0\}\& $=24 \backslash$
?Yeins <br>)
Zeins_\{0\}\& $=18 \backslash$
2Zeins <br>
Xzwei_\{0\}\&= 47<br>
2Xzwei<br>
Yzwei_\{0\}\&= 16<br>$}$
?Yzwei<br>
Zzwei_\{0\}\&= 30<br>$}$
?Zzwei<br>
Xdrei_\{0\}\& $=25 \backslash$
?Xdrei<br>
Ydrei_\{0\}\& $=35 \backslash$
?Ydreil\
Zdrei_\{0\}\& $=28 \\}$
22dreily
\end\{align*\} }

Solutions of the three systems of linear equations:
$\mathrm{x}_{1}=\left(\mathbf{r}_{1} \wedge \mathbf{b} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=32$
$y_{1}=\left(\mathbf{a} \wedge \mathbf{r}_{1} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=24$

$$
\begin{aligned}
& \mathrm{x}_{2}=\left(\mathbf{r}_{2} \wedge \mathbf{b} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=47 \\
& \mathrm{y}_{2}=\left(\mathbf{a} \wedge \mathbf{r}_{2} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=16 \\
& \mathrm{z}_{2}=\left(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{r}_{2}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=30
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{x}_{3}=\left(\mathbf{r}_{3} \wedge \mathbf{b} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=25 \\
& \mathrm{y}_{3}=\left(\mathbf{a} \wedge \mathbf{r}_{3} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=35 \\
& \mathrm{z}_{3}=\left(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{r}_{3}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=28
\end{aligned}
$$

Check			$\begin{aligned} & 32 \\ & 24 \\ & 18 \end{aligned}$	$\begin{aligned} & 47 \\ & 16 \\ & 30 \end{aligned}$	$\begin{aligned} & 25 \\ & 35 \\ & 28 \end{aligned}$
82	63	20	4496	5462	4815
44	19	37	2530	3482	2801
10	52	92	3224	4062	4646

$\Rightarrow$ Demand matrix of the second production step: $\quad \mathbf{B}=\left[\begin{array}{ccc}32 & 47 & 25 \\ 24 & 16 & 35 \\ 18 & 30 & 28\end{array}\right]$

## Problem 13:

$\left[\begin{array}{rrr}3 & 5 & 4 \\ 2 & 6 & 3 \\ 8 & 7 & 10\end{array}\right]\left[\begin{array}{lll}\mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} \\ \mathrm{y}_{1} & \mathrm{y}_{2} & \mathrm{y}_{3} \\ \mathrm{z}_{1} & \mathrm{z}_{2} & \mathrm{z}_{3}\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\mathrm{A} \mathrm{A}^{-1}=\mathbf{I}$
 identity matrix
$\Rightarrow$ Three systems of linear equations:

$$
\begin{aligned}
& 3 x_{1}+5 y_{1}+4 z_{1}=1 \quad 3 x_{2}+5 y_{2}+4 z_{2}=0 \quad 3 x_{3}+5 y_{3}+4 z_{3}=0 \\
& 2 x_{1}+6 y_{1}+3 z_{1}=0 \text { and } 2 x_{2}+6 y_{2}+3 z_{2}=1 \text { and } 2 x_{3}+6 y_{3}+3 z_{3}=0 \\
& 8 \mathrm{x}_{1}+7 \mathrm{y}_{1}+10 \mathrm{z}_{1}=0 \quad 8 \mathrm{x}_{2}+7 \mathrm{y}_{2}+10 \mathrm{z}_{2}=0 \quad 8 \mathrm{x}_{3}+7 \mathrm{y}_{3}+10 \mathrm{z}_{3}=1 \\
& \Rightarrow \mathbf{a}=3 \sigma_{\mathrm{x}}+2 \sigma_{\mathrm{y}}+8 \sigma_{\mathrm{z}} \quad \mathbf{r}_{1}=\sigma_{\mathrm{x}} \\
& \mathbf{b}=5 \sigma_{\mathrm{x}}+6 \sigma_{\mathrm{y}}+7 \sigma_{\mathrm{z}} \quad \mathbf{r}_{2}=\sigma_{\mathrm{y}} \\
& \mathbf{c}=4 \sigma_{\mathrm{x}}+3 \sigma_{\mathrm{y}}+10 \sigma_{\mathrm{z}} \quad \mathbf{r}_{3}=\sigma_{\mathrm{z}}
\end{aligned}
$$

GAALOP program and compilation result:

```
a = 3*el + 2*e2 + 8*e3;
b = 5*el + 6*e2 + 7*e3;
c = 4*el + 3*e2 + 10*e3;
rl = el;
r2 = e2;
r3 = e3;
2Xeins = (rl^ 列c)/(a^b}\mp@subsup{}{}{\wedge}c)
```



```
2Zeins = (a'列rl)/(a\mp@subsup{a}{}{\wedge}
2Xzwei = (r2^b^c)/(a^b
2Yzwei = (a^r2^c)/(a^b^c);
```



```
2Xdrei = (r3^}\mp@subsup{\mp@code{b}}{}{\wedge}c)/(\mp@subsup{a}{}{\wedge}\mp@subsup{b}{}{\wedge}c)
2Ydrei = (a^r r3^c)/(a^b}\mp@subsup{b}{}{\wedge}c)
2Zdrei = (a}\mp@subsup{|}{}{\wedge}\mp@subsup{b}{}{\wedge}r3)/(\mp@subsup{a}{}{\wedge}\mp@subsup{b}{}{\wedge}c)
```

```
W Compilation Result
```


## Save file

ab9-aufgabe-13.tex

## \begin\{align*\} 

}Xeins_\{0\}\&= 39<br>
2Xeins $\backslash$
Yeins_\{0\}\&=4\}
?Yeins <br>
Zeins_\{0\}\&= -34<br>$}$
?Zeins<br>
Xzwei_\{0\}\&=-22\}
?Xzwei<br>
Yzwei_\{0\}\&= -2\
?Yzwei<br>
Zzwei_\{0\}\&=19<br>
2Zzwei\
Xdrei_\{0\}\& $=-9 \backslash$
2Xdrei<br>
Ydrei_\{0\}\&= -1<br>
?Ydrei<br>
Zdrei_\{0\}\&= 8<br>$}$
?2drei<br>
\end\{align*\} }

Solution of the first system of linear equations:
$\mathrm{x}_{1}=\left(\mathbf{r}_{\mathbf{1}} \wedge \mathbf{b} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=39$
$\mathrm{y}_{1}=\left(\mathbf{a} \wedge \mathbf{r}_{1} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=4$
$\mathrm{z}_{1}=\left(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{r}_{1}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=-34$
$\Rightarrow$ If exactly one unit of the first raw material $\mathrm{R}_{1}$ had been consumed in the production process, 39 units of the first final product $\mathrm{P}_{1}$ and 4 units of the second final product $\mathrm{P}_{2}$ would have been produced and additionally 34 units of the third final product $\mathrm{P}_{3}$ would have been consumed (and split again completely into the raw materials).

Or more realistic:
If it just happened that one more unit of the first raw material $R_{1}$ had been delivered accidentally and has had to be consumed in addition in the production process, the output of the first final product $P_{1}$ would have been increased by 39 units, the output of the second final product $P_{2}$ would have been increased by 4 units, and the output of the third final product $P_{3}$ would have been reduced by 34 units.
(You can imagine the economy of the GDR as it existed in reality somehow working in that way, as production plans didn't depend on the demand of customers, but they depended strongly on the erratic supply of raw materials.)

Solution of the second system of linear equations:
$\mathrm{x}_{2}=\left(\mathbf{r}_{2} \wedge \mathbf{b} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=-22$
$\mathrm{y}_{2}=\left(\mathbf{a} \wedge \mathbf{r}_{2} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=-2$
$\mathrm{z}_{2}=\left(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{r}_{2}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=19$
$\Rightarrow$ If exactly one unit of the second raw material $\mathrm{R}_{2}$ had been consumed in the production process, 19 units of the third final product $\mathrm{P}_{3}$ would have been produced and additionally 22 units of the first final product $\mathrm{P}_{1}$ and 2 units of the second final product $\mathrm{P}_{2}$ would have been consumed (and split again completely into the raw materials).

Or more realistic:
If it just happened that one more unit of the second raw material $R_{2}$ had been delivered accidentally and has had to be consumed in addition in the production process, the output of the first final product $P_{1}$ would have been reduced by 22 units, the output of the second final product $P_{2}$ would have been reduced by 2 units, and the output of the third final product $P_{3}$ would have been increased by 19 units.

Solution of the third system of linear equations:

$$
\begin{aligned}
& \mathrm{x}_{3}=\left(\mathbf{r}_{3} \wedge \mathbf{b} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=-9 \\
& \mathrm{y}_{3}=\left(\mathbf{a} \wedge \mathbf{r}_{3} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=-1 \\
& \mathrm{z}_{3}=\left(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{r}_{3}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=8
\end{aligned}
$$

$\Rightarrow$ If exactly one unit of the third raw material $\mathrm{R}_{3}$ had been consumed in the production process, 8 units of the third final product $P_{3}$ would have been produced and additionally 9 units of the first final product $P_{1}$ and one unit of the second final product $P_{2}$ would have been consumed (and split again completely into the raw materials).

Or more realistic:
If it just happened that one more unit of the third raw material $\mathrm{R}_{3}$ had been delivered accidentally and has had to be consumed in addition in the production process, the output of the first final product $\mathrm{P}_{1}$ would have been reduced by 9 units, the output of the second final product $\mathrm{P}_{2}$ would have been reduced by one unit, and the output of the third final product $P_{3}$ would have been increased by 8 units.


## Problem 14:

a) $\underbrace{\left[\begin{array}{lll}1 & 4 & 9 \\ 7 & 2 & 6 \\ 6 & 3 & 8\end{array}\right]}_{\mathbf{A}} \underbrace{\left[\begin{array}{lll}\mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} \\ \mathrm{y}_{1} & \mathrm{y}_{2} & \mathrm{y}_{3} \\ \mathrm{z}_{1} & \mathrm{z}_{2} & \mathrm{z}_{3}\end{array}\right]}_{\mathbf{A}^{-1}}=\underbrace{\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]}_{\mathbf{I} \text {....... identity matrix }} \quad \mathbf{A} \mathbf{A}^{-1}=\mathbf{I}$
$\Rightarrow$ Three systems of linear equations:

$$
\begin{aligned}
& x_{1}+4 y_{1}+9 z_{1}=1 \\
& x_{2}+4 y_{2}+9 z_{2}=0 \\
& x_{3}+4 y_{3}+9 z_{3}=0 \\
& 7 x_{1}+2 y_{1}+6 z_{1}=0 \text { and } 7 x_{2}+2 y_{2}+6 z_{2}=1 \text { and } 7 x_{3}+2 y_{3}+6 z_{3}=0 \\
& 6 x_{1}+3 y_{1}+8 z_{1}=0 \\
& 6 x_{2}+3 y_{2}+8 z_{2}=0 \\
& 6 x_{3}+3 y_{3}+8 z_{3}=1 \\
& \Rightarrow \mathbf{a}=\sigma_{\mathrm{x}}+7 \sigma_{\mathrm{y}}+6 \sigma_{\mathrm{z}} \quad \mathbf{r}_{1}=\sigma_{\mathrm{x}} \\
& \mathbf{b}=4 \sigma_{x}+2 \sigma_{y}+3 \sigma_{z} \\
& \mathbf{r}_{2}=\sigma_{y} \\
& \mathbf{c}=9 \sigma_{x}+6 \sigma_{y}+8 \sigma_{z} \\
& \mathbf{r}_{3}=\sigma_{z}
\end{aligned}
$$

GAALOP program and compilation result:

```
a = l*el + 7*e2 + 6*e3;
b = 4*el + 2*e2 + 3*e3;
c = 9*el + 6*e2 + 8*e3;
rl = el;
r2 = e2;
r3 = e3;
2Xeins = (rl^^b^c)/(a^}\mp@subsup{|}{}{\wedge}c)
2Yeins = (a^^rl^c)/(a^}\mp@subsup{|}{}{\wedge}c)
2Zeins = (a^^b^rl)/(a^^b^c);
2Xzwei = (r2^^b^c)/(a^^b^c);
2Yzwei = (a^r2^}c)/(\mp@subsup{a}{}{\wedge}\mp@subsup{b}{}{\wedge}c)
2Zzwei = (a^b}\mp@subsup{b}{}{\wedge}r2)/(\mp@subsup{a}{}{\wedge}\mp@subsup{b}{}{\wedge}c)
2Xdrei = (r3^^b^c)/(a^b}\mp@subsup{}{}{\wedge}c)
2Ydrei = (a^r r*^c)/(a^b}\mp@subsup{b}{}{\wedge}c)
2Zdrei = (a^b^r3)/(a^b^c);
```

```
$ Compilation Result
 Save file
 ab9-aufgabe-14a.tex
 \begin{align*}
Xeins_{0}&= 2\
?Xeins\\
Yeins_{0}&= 20\\
?Yeins\\
Zeins_{0}&= -9\\
?Zeins\\
Xzwei_{0}&= 5\\
?Xzwei\\
Yzwei_{0}&= 46\\
?Yzwei\\
Zzwei_{0}&= -2l\}
2Zzwei\\
Xdrei_{0}&= -6\\
2Xdrei\\
Ydrei_{0}&= -57\\
?Ydrei\\
Zdrei_{0}&= 26\\
?2drei\\
\end{align*}
```

Solution of the three systems of linear equations:

$$
\begin{aligned}
& x_{1}=\left(\mathbf{r}_{1} \wedge \mathbf{b} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=2 \\
& \mathrm{y}_{1}=\left(\mathbf{a} \wedge \mathbf{r}_{1} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=20
\end{aligned}
$$

$$
x_{2}=\left(\mathbf{r}_{2} \wedge \mathbf{b} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=5
$$

$$
\mathrm{y}_{2}=\left(\mathbf{a} \wedge \mathbf{r}_{2} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=46
$$

$$
z_{2}=\left(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{r}_{2}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=-21
$$

$$
\begin{aligned}
& \mathrm{x}_{3}=\left(\mathbf{r}_{3} \wedge \mathbf{b} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=-6 \\
& \mathrm{y}_{3}=\left(\mathbf{a} \wedge \mathbf{r}_{3} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=-57 \\
& \mathrm{z}_{3}=\left(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{r}_{3}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=26
\end{aligned}
$$

Check:			2	5	-6	
		20	46	-57		
		-9	-21	26		
1	4		9	1	0	0
7	2		6	0	1	0
6	3	8	0	0	1	

$\Rightarrow$ The resulting matrix $\mathbf{A}^{-1}=\left[\begin{array}{rrr}2 & 5 & -6 \\ 20 & 46 & -57 \\ -9 & -21 & 26\end{array}\right]$ is the inverse of matrix $\mathbf{A}=\left[\begin{array}{lll}1 & 4 & 9 \\ 7 & 2 & 6 \\ 6 & 3 & 8\end{array}\right]$.
b)

$\Rightarrow$ Three systems of linear equations:

$$
\begin{aligned}
& 4 \mathrm{y}_{1}+7 \mathrm{z}_{1}=1 \quad 4 \mathrm{y}_{2}+7 \mathrm{z}_{2}=0 \quad 4 \mathrm{y}_{3}+7 \mathrm{z}_{3}=0 \\
& 4 x_{1}+5 y_{1}+8 z_{1}=0 \text { and } 4 x_{2}+5 y_{2}+8 z_{2}=1 \quad \text { and } 4 x_{3}+5 y_{3}+8 z_{3}=0 \\
& 3 x_{1}+6 y_{1}+9 z_{1}=0 \quad 3 x_{2}+6 y_{2}+9 z_{2}=0 \quad 3 x_{3}+6 y_{3}+9 z_{3}=1 \\
& \Rightarrow \mathbf{a}=4 \sigma_{\mathrm{y}}+3 \sigma_{\mathrm{z}} \quad \mathbf{r}_{1}=\sigma_{\mathrm{x}} \\
& \mathbf{b}=4 \sigma_{\mathrm{x}}+5 \sigma_{\mathrm{y}}+6 \sigma_{\mathrm{z}} \quad \mathbf{r}_{2}=\sigma_{\mathrm{y}} \\
& \mathbf{c}=7 \sigma_{x}+8 \sigma_{y}+9 \sigma_{z} \\
& \mathbf{r}_{3}=\sigma_{z}
\end{aligned}
$$

GAALOP program and compilation result:

```
a = 4*e2 + 3*e3;
b = 4*el + 5*e2 + 6*e3;
c = 7*el + 8*e2 + 9*e3;
rl = el;
r2 = e2;
r3 = e3;
2Xeins = (rl^ b^c)/(a^b^c);
2Yeins = (a^r rl^c)/(a\mp@subsup{a}{}{\wedge}\mp@subsup{b}{}{\wedge}c);
2Zeins = (a^b^rl)/(a^b^c);
2Xzwei = (r2^ b^c)/(a
2Yzwei = (a^r2^c)/(a^b^c);
2Zzwei = (a^b^r2)/(a^b
2Xdrei = (r3^}\mp@subsup{b}{}{\wedge}c)/(\mp@subsup{a}{}{\wedge}\mp@subsup{b}{}{\wedge}c)
2Ydrei = (a^r r`^c)/(a
2Zdrei = (a}\mp@subsup{a}{}{\wedge}\mp@subsup{b}{}{\wedge}r3)/(\mp@subsup{a}{}{\wedge}\mp@subsup{b}{}{\wedge}c)
```

W Compilation Result

## Save file

ab9-aufgabe-14b.tex

```
\begin{align*}
```

Xeins_\{0\}\& $=-0.2 \$
2Xeins<br>
Yeins_\{0\}\& $=-0.8 \\}$
?Yeins<br>
Zeins_\{0\}\&=0.6<br>$}$
?Zeins <br>
Xzwei_ $\{0\} \&=0.4 \backslash\}$
2Xzwei<br>
Yzwei_\{0\}\& $=-1.4 \backslash$
?Yzwei\
Zzwei_\{0\}\&=0.8<br>
2Zzwei\
Xdrei_\{0\}\&=-0.2\
2Xdrei<br>
Ydrei_\{0\}\&=1.8666666666666667<br>
?Ydrei<br>
Zdrei_\{0\}\&=-1.0666666666666667<br>
?2drei\l
\end\{align*\} }

Solution of the three systems of linear equations:

$$
\begin{array}{ll}
\mathrm{x}_{1}=\left(\mathbf{r}_{1} \wedge \mathbf{b} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=-0.2=-\frac{1}{5} & \mathrm{x}_{2}=\left(\mathbf{r}_{2} \wedge \mathbf{b} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=0.4=\frac{2}{5} \\
\mathrm{y}_{1}=\left(\mathbf{a} \wedge \mathbf{r}_{1} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=-0.8=-\frac{4}{5} & \mathrm{y}_{2}=\left(\mathbf{a} \wedge \mathbf{r}_{2} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=-1.4=-\frac{7}{5} \\
\mathrm{z}_{1}=\left(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{r}_{1}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=0.6=\frac{3}{5} & \mathrm{z}_{2}=\left(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{r}_{2}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=0.8=\frac{4}{5}
\end{array}
$$

$$
\begin{aligned}
& \mathrm{x}_{3}=\left(\mathbf{r}_{3} \wedge \mathbf{b} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=-0.2=-\frac{1}{5} \\
& \mathrm{y}_{3}=\left(\mathbf{a} \wedge \mathbf{r}_{3} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=1.8 \overline{6} . .=\frac{28}{15} \\
& \mathrm{z}_{3}=\left(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{r}_{3}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=-1.0 \overline{6} . .=-\frac{16}{15}
\end{aligned}
$$

Check:			$\begin{array}{r} -0.2 \\ -0.8 \\ 0.6 \end{array}$	0.4	-0.2
				-1.4	$1.8 \overline{6}$..
				0.8	- 1.06..
0	4	7	1	0	0
4	5	8	0	1	0
3	6	9	0	0	1


Alternative check:	-3 6 -3   -12 -21 28   9 12 -16		
0	4	7	15
4	5	8	0
3	6	9	0
0	15	0	

$\Rightarrow$ The resulting matrix $\mathbf{B}^{-1}=\left[\begin{array}{rrr}-0.2 & 0.4 & -0.2 \\ -0.8 & -1.4 & 1.8 \overline{6} . . \\ 0.6 & 0.8 & -1.0 \overline{6} . .\end{array}\right]=\frac{1}{15}\left[\begin{array}{rrr}-3 & 6 & -3 \\ -12 & -21 & 28 \\ 9 & 12 & -16\end{array}\right]$ is
the inverse of matrix $\mathbf{B}=\left[\begin{array}{lll}0 & 4 & 7 \\ 4 & 5 & 8 \\ 3 & 6 & 9\end{array}\right]$.
c) $\underbrace{\left[\begin{array}{lll}1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9\end{array}\right]}_{\mathbf{C}} \underbrace{\left[\begin{array}{lll}\mathbf{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} \\ \mathrm{y}_{1} & \mathrm{y}_{2} & \mathrm{y}_{3} \\ \mathrm{z}_{1} & \mathrm{z}_{2} & \mathrm{z}_{3}\end{array}\right]}_{\mathbf{C}^{-1}}=\underbrace{\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]}_{\mathbf{I} \ldots \ldots . \text { identity matrix }} \quad \mathbf{C} \mathbf{C}^{-1}=\mathbf{I}$
$\Rightarrow$ Three systems of linear equations:

$$
\begin{aligned}
& \mathrm{x}_{1}+4 \mathrm{y}_{1}+7 \mathrm{z}_{1}=1 \\
& \mathrm{x}_{2}+4 \mathrm{y}_{2}+7 \mathrm{z}_{2}=0 \\
& x_{3}+4 y_{3}+7 z_{3}=0 \\
& 2 x_{1}+5 y_{1}+8 z_{1}=0 \quad \text { and } \\
& 2 x_{2}+5 y_{2}+8 z_{2}=1 \text { and } \\
& 2 x_{3}+5 y_{3}+8 z_{3}=0 \\
& 3 x_{1}+6 y_{1}+9 z_{1}=0 \\
& 3 x_{2}+6 y_{2}+9 z_{2}=0 \\
& 3 x_{3}+6 y_{3}+9 z_{3}=1 \\
& \Rightarrow \begin{array}{ll}
\mathbf{a}=\sigma_{x}+2 \sigma_{y}+3 \sigma_{z} & \mathbf{r}_{1}=\sigma_{x} \\
\mathbf{b}=4 \sigma_{x}+5 \sigma_{y}+6 \sigma_{z} & \mathbf{r}_{2}=\sigma_{y} \\
\mathbf{c}=7 \sigma_{\mathrm{x}}+8 \sigma_{\mathrm{y}}+9 \sigma_{\mathrm{z}} & \mathbf{r}_{3}=\sigma_{\mathrm{z}}
\end{array} \\
& \mathbf{b}=4 \sigma_{x}+5 \sigma_{y}+6 \sigma_{z} \\
& \mathbf{r}_{3}=\sigma_{z}
\end{aligned}
$$

GAALOP program and compilation result:

```
a = 1*el + 2*e2 + 3*e3;
b = 4*el + 5*e2 + 6*e3;
c = 7*el + 8*e2 + 9*e3;
rl = el;
r2 = e2;
r3 = e3;
2Xeins = (r (^ b}\mp@subsup{}{}{\wedge}c)/(\mp@subsup{a}{}{\wedge}\mp@subsup{b}{}{\wedge}c)
2Yeins = (a^rl^c)/(a^b^c);
2Zeins = (a^b^rl)/(a^b}\mp@subsup{b}{}{\wedge}c)
2Xzwei = (r2^b^c)/(a^b}\mp@subsup{b}{}{\wedge}c)
2Yzwei = (a^r2^c)/(a^b^c);
2Zzwei = (a^b^r2)/(a^b}\mp@subsup{b}{}{\wedge}c)
2Xdrei = (r3^}\mp@subsup{\mp@code{b}}{}{\wedge}c)/(\mp@subsup{a}{}{\wedge}\mp@subsup{b}{}{\wedge}c)
2Ydrei = (a^^r3^c)/(a^b}\mp@subsup{b}{}{\wedge}c)
2Zdrei = (a^b}\mp@subsup{b}{}{\wedge}r3)/(\mp@subsup{a}{}{\wedge}\mp@subsup{b}{}{\wedge}c)
```


## W Compilation Result

## Save file

ab9-aufgabe-14c.tex

```
\begin{align*}
```

Xeins_\{0\}\&=0<br>$}$
2Xeins $\backslash$
Yeins_\{0\}\&=0<br>$}$
?Yeins <br>
Zeins_\{0\}\& $=0\}$
?Zeins <br>
Xzwei_\{0\}\&=0<br>$}$
2Xzwei<br>
Yzwei_\{0\}\&=0<br>$}$
?Yzwei<br>
Zzwei_\{0\}\&=0<br>$}$
2Zzwei
Xdrei_\{0\}\&=0<br>$}$
2Xdrei<br>
Ydrei_\{0\}\&=0<br>$}$
?Ydrei<br>
Zdrei_\{0\}\&=0<br>$}$
?Zdrei\l
\end\{align*\} }

Supposed solution of the three systems of linear equations:
$\mathrm{x}_{1}=\left(\mathbf{r}_{1} \wedge \mathbf{b} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=0$

$$
\begin{aligned}
& \mathrm{x}_{2}=\left(\mathbf{r}_{2} \wedge \mathbf{b} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=0 \\
& \mathrm{y}_{2}=\left(\mathbf{a} \wedge \mathbf{r}_{2} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=0 \\
& \mathrm{z}_{2}=\left(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{r}_{2}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=0
\end{aligned}
$$

$\mathrm{y}_{1}=\left(\mathbf{a} \wedge \mathbf{r}_{1} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=0$
$\mathrm{z}_{1}=\left(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{r}_{1}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=0$

$$
\begin{aligned}
& \mathrm{x}_{3}=\left(\mathbf{r}_{3} \wedge \mathbf{b} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=0 \\
& \mathrm{y}_{3}=\left(\mathbf{a} \wedge \mathbf{r}_{3} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=0 \\
& \mathrm{z}_{3}=\left(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{r}_{3}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=0
\end{aligned}
$$

$\left.\begin{array}{ll|lll}\text { Check: } & & \begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \hline 1 & 4 & 7 \\ 2 & 5 & 8\end{array} & \begin{array}{l}0 \\ 0\end{array} & 0 \\ 3 & 6 & 9 & 0 & 0\end{array} 00\right\}$

This zero matrix is not equal to the identity matrix I!
$\mathbf{I}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\Rightarrow$ The check shows that the solutions found with GAALOP are wrong.

The reason for that can be found at the end of page one of the problem sheet (i.e. at the end of page 10 of this collection of worksheets), because ...
... you will now find problems about systems of three linear equations. To solve these problems the mathematics of vectors, which point into three directions and which are situated in three-dimensional space, is required. Thus vectors will now have three components, representing $x, y$, and $z$ directions.

The three coefficient vectors do not form a basis of three-dimensional space, as they are linearly dependent. They are all situated in a plane, and every coefficient vector can be written as linear combination of the other two coefficient vectors:

$$
\begin{aligned}
& \mathbf{a}=2 \mathbf{b}-\mathbf{c} \\
& \mathbf{b}=\frac{1}{2}(\mathbf{a}+\mathbf{a}) \\
& \mathbf{c}=2 \mathbf{b}-\mathbf{a}
\end{aligned}
$$

Therefore every possible resulting vector $\mathbf{r}$ must be situated in the plane, which is formed by the coefficient vectors, to make sure that meaningful solution of the unknown variables $x, y$, and $z$ can be found. Unfortunately, the three resulting vectors of this problem $\mathbf{r}_{1}=\sigma_{x}, \mathbf{r}_{2}=\sigma_{y}$, and $\mathbf{r}_{3}=\sigma_{z}$ do not point into the direction of this plane. Therefore (real number) solution values for $\mathrm{x}, \mathrm{y}$, and z do not exist.

This geometric explanation can also be interpreted algebraically, as the outer product of the three coefficient vectors $\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c}$ is equal to zero:

$$
\begin{array}{r}
\mathbf{a} \mathbf{b}=\left(\sigma_{x}+2 \sigma_{y}+3 \sigma_{z}\right)\left(4 \sigma_{x}+5 \sigma_{y}+6 \sigma_{z}\right)=32-3 \sigma_{x} \sigma_{y}-3 \sigma_{y} \sigma_{z}+6 \sigma_{z} \sigma_{x} \\
\Rightarrow \mathbf{a} \wedge \mathbf{b}=-3 \sigma_{x} \sigma_{y}-3 \sigma_{y} \sigma_{z}+6 \sigma_{z} \sigma_{x}
\end{array}
$$

$$
\begin{array}{r}
\mathbf{a b} \mathbf{b}=\left(32-3 \sigma_{x} \sigma_{y}-3 \sigma_{y} \sigma_{z}+6 \sigma_{z} \sigma_{x}\right)\left(7 \sigma_{x}+8 \sigma_{y}+9 \sigma_{z}\right) \\
=146 \sigma_{x}+250 \sigma_{y}+354 \sigma_{z}+0 \sigma_{x} \sigma_{y} \sigma_{z} \\
\Rightarrow \mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c}=0
\end{array}
$$

Check: $\left(1^{2}+2^{2}+3^{2}\right)\left(4^{2}+5^{2}+6^{2}\right)\left(7^{2}+8^{2}+9^{2}\right)=\left(146^{2}+250^{2}+354^{2}\right)=209132$
A short look at the solution formulas $x_{i}=\left(\mathbf{r}_{i} \wedge \mathbf{b} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})$

$$
y_{i}=\left(\mathbf{a} \wedge \mathbf{r}_{i} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})
$$

$$
\mathrm{z}_{\mathrm{i}}=\left(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{r}_{\mathrm{i}}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})
$$

shows that the numerators must be divided by the outer product $\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c}$ (or in other words: the numerators must be divided by the determinant of matrix $\mathbf{C}$ : $\left.\operatorname{det} \mathbf{C}=\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c} \sigma_{z} \sigma_{y} \sigma_{x}\right)$.

As this outer product of coefficient vectors is zero, a division is not possible and solution values do not exist. Therefore the compilation result of GAALOP must be wrong, and the conclusion is:
$\Rightarrow$ Problem 14 c ) is insoluble.
$\Rightarrow$ The inverse $\mathbf{C}^{-1}$ is not defined.
$\Rightarrow$ An inverse of matrix $\mathbf{C}=\left[\begin{array}{lll}1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9\end{array}\right]$ does not exist.
d) $\left[\begin{array}{rrr}3 & 4 & 8 \\ 10 & 5 & 10 \\ 10 & 20 & 15\end{array}\right]\left[\begin{array}{lll}\mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} \\ \mathrm{y}_{1} & \mathrm{y}_{2} & \mathrm{y}_{3} \\ \mathrm{z}_{1} & \mathrm{z}_{2} & \mathrm{z}_{3}\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
D $\mathbf{D}^{-1}=\mathbf{I}$

D
$\mathbf{D}^{-1}$
I ....... identity matrix
$\Rightarrow$ Three systems of linear equations:

$$
\begin{array}{rlrl}
3 \mathrm{x}_{1}+4 \mathrm{y}_{1}+8 \mathrm{z}_{1}=1 & & 3 \mathrm{x}_{2}+4 \mathrm{y}_{2}+8 \mathrm{z}_{2}=0 & 3 \mathrm{x}_{3}+4 \mathrm{y}_{3}+8 \mathrm{z}_{3}=0 \\
10 \mathrm{x}_{1}+5 \mathrm{y}_{1}+10 \mathrm{z}_{1}=0 \\
10 \mathrm{x}_{1}+20 \mathrm{y}_{1}+15 \mathrm{z}_{1}=0 & \text { and } & 10 \mathrm{x}_{2}+5 \mathrm{y}_{2}+10 \mathrm{z}_{2}=1 & \text { and } \\
\Rightarrow \mathbf{a}=3 \sigma_{\mathrm{x}}+10 \sigma_{\mathrm{y}}+10 \sigma_{\mathrm{z}} & 10 \mathrm{x}_{2}+20 \mathrm{y}_{2}+15 \mathrm{z}_{2}=0 & & 10 \mathrm{x}_{3}+20 \mathrm{y}_{3}+10 \mathrm{z}_{3}=0 \\
\mathbf{b}=4 \sigma_{\mathrm{x}}+5 \sigma_{\mathrm{y}}+20 \sigma_{\mathrm{z}} & \mathbf{r}_{1}=\sigma_{\mathrm{x}} & & \\
\mathbf{c}=8 \sigma_{\mathrm{x}}+10 \sigma_{\mathrm{y}}+15 \sigma_{\mathrm{z}} & \mathbf{r}_{2}=\sigma_{\mathrm{y}} & \mathbf{r}_{3}=\sigma_{\mathrm{z}} & \\
\Rightarrow
\end{array}
$$

GAALOP program and compilation result:

```
a = 3*el + 10*e2 + 10*e3;
b = 4*el + 5*e2 + 20*e3;
c = 8*el + 10*e2 + 15*e3;
rl = el;
r2 = e2;
r3 = e3;
2Xeins = (rl^ b^c)/(a^b}\mp@subsup{b}{}{\wedge}c)
2Yeins = (a^r rl^c)/(a^^b^c);
2Zeins = (a^b^rl)/(a^b^c);
2Xzwei = (r2^b^c)/(a^^b^c);
2Yzwei = (a^r2^c)/(a^b^c);
2Zzwei = (a^b^r2)/(a^^b^c);
2Xdrei = (r3^}\mp@subsup{b}{}{\wedge}c)/(\mp@subsup{a}{}{\wedge}\mp@subsup{b}{}{\wedge}c)
2Ydrei = (a^r r*^c)/(a^b
2Zdrei = (a^b^r3)/(a^b^c);
```


## Compilation Result

## Save file

## ab9-aufgabe-14d.tex

```
\begin{align*}
```

Xeins_\{0\}\& $=-0.2 \backslash\}$
2Xeins <br>
Yeins_\{0\}\&=-0.08<br>$}$
?Yeins <br>
Zeins_\{0\}\&= $0.24000000000000002 \backslash\}$
?Zeins <br>
Xzwei_\{0\}\&=0.16<br>$}$
2Xzwei<br>
Yzwei_\{0\}\& $=-0.056 \backslash$
?Yzwei<br>
Zzwei_\{0\}\& $=-0.032 \backslash$
?2zwei\
?Xdreil|
Ydrei_\{0\}\&=0.08<br>$}$
?Ydreil|
Zdrei_\{0\}\& $=-0.04 \backslash\}$
?Zdrei<br>,
\end\{align*\} }

As no scalar component Xdrei_\{0\} is shown in the compiler field, this component must be zero: Xdrei_\{0\} \& = 0

Solution of the three systems of linear equations:

$$
\begin{array}{ll}
\mathrm{x}_{1}=\left(\mathbf{r}_{1} \wedge \mathbf{b} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=-0.20=-\frac{1}{5} & \mathrm{x}_{2}=\left(\mathbf{r}_{2} \wedge \mathbf{b} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=0.160=\frac{4}{25} \\
\mathrm{y}_{1}=\left(\mathbf{a} \wedge \mathbf{r}_{1} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=-0.08=-\frac{2}{25} & \mathrm{y}_{2}=\left(\mathbf{a} \wedge \mathbf{r}_{2} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=-0.056=-\frac{7}{125} \\
\mathrm{z}_{1}=\left(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{r}_{1}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=0.24=\frac{6}{25} & \mathrm{z}_{2}=\left(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{r}_{2}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=-0.032=-\frac{4}{125}
\end{array}
$$

$$
\begin{aligned}
& x_{3}=\left(\mathbf{r}_{3} \wedge \mathbf{b} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=0 \\
& \mathrm{y}_{3}=\left(\mathbf{a} \wedge \mathbf{r}_{3} \wedge \mathbf{c}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=0.08=\frac{2}{25} \\
& \mathrm{z}_{3}=\left(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{r}_{3}\right) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})=-0.04=-\frac{1}{25}
\end{aligned}
$$

Check:		-0.20      -0.08  		0.160	0
		0.056	0.08		
		0.24	-0.032	-0.04	
3	4	8	1	0	0
10	5	10	0	1	0
10	20	15	0	0	1


Alternative check:	-25   -10   30	20   -7   -4	0		
		10			
3	4	8	125	0	0
10	5	10	0	125	0
10	20	15	0	0	125

$\Rightarrow$ The resulting matrix $\mathbf{D}^{-1}=\left[\begin{array}{rrc}-0.20 & 0.160 & 0 \\ -0.08 & -0.056 & 0.08 \\ 0.24 & -0.032 & -0.04\end{array}\right]=\frac{1}{125}\left[\begin{array}{rrr}-25 & 20 & 0 \\ -10 & -7 & 10 \\ 30 & -4 & -5\end{array}\right]$ is
the inverse of matrix $\mathbf{D}=\left[\begin{array}{rrr}3 & 4 & 8 \\ 10 & 5 & 10 \\ 10 & 20 & 15\end{array}\right]$.

# Mathematics for Business and Economics 

Berlin School of Economics and Law
Worksheet 21 - Answers

## Problem 8:

a) $\mathbf{a}=20 \sigma_{\mathrm{x}}+6 \sigma_{\mathrm{y}}$
$\mathbf{b}=-2 \sigma_{\mathrm{x}}+10 \sigma_{\mathrm{y}}$
$\mathbf{a} \mathbf{b}=\left(20 \sigma_{\mathrm{x}}+6 \sigma_{\mathrm{y}}\right)\left(-2 \sigma_{\mathrm{x}}+10 \sigma_{\mathrm{y}}\right)$

$$
=-40 \sigma_{x}^{2}+200 \sigma_{x} \sigma_{y}-12 \sigma_{y} \sigma_{x}+60 \sigma_{y}^{2}
$$

$$
=-40+200 \sigma_{x} \sigma_{y}+12 \sigma_{x} \sigma_{y}+60
$$

$$
=20+212 \sigma_{x} \sigma_{y}
$$

$\mathbf{a} \wedge \mathbf{b}=212 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}} \Rightarrow|\mathbf{A}|=212 \mathrm{~cm}^{2}$
b) $\mathbf{a}=18 \sigma_{x}+4 \sigma_{y}$
$\mathbf{d}=10 \sigma_{\mathrm{x}}+12 \sigma_{\mathrm{y}}$
add $=\left(18 \sigma_{x}+4 \sigma_{y}\right)\left(10 \sigma_{x}+12 \sigma_{y}\right)$
$=180 \sigma_{x}^{2}+216 \sigma_{x} \sigma_{y}+40 \sigma_{y} \sigma_{x}+48 \sigma_{y}{ }^{2}$
$=180+216 \sigma_{x} \sigma_{y}-40 \sigma_{x} \sigma_{y}+48$
$=228+176 \sigma_{x} \sigma_{y}$
$\mathbf{a} \wedge \mathbf{d}=176 \sigma_{x} \sigma_{y} \Rightarrow|\mathbf{A}|=176 \mathrm{~cm}^{2}$
Alternative solution:

$$
\begin{aligned}
\mathbf{b}=\mathbf{d}-\mathbf{a} & =\left(10 \sigma_{x}+12 \sigma_{y}\right)-\left(18 \sigma_{x}+4 \sigma_{y}\right) \\
& =10 \sigma_{x}+12 \sigma_{y}-18 \sigma_{x}-4 \sigma_{y} \\
& =-8 \sigma_{x}+8 \sigma_{y} \\
\mathbf{a} \mathbf{b}= & \left(18 \sigma_{x}+4 \sigma_{y}\right)\left(-8 \sigma_{x}+8 \sigma_{y}\right) \\
& =-144 \sigma_{x}^{2}+144 \sigma_{x} \sigma_{y}-32 \sigma_{y} \sigma_{x}+32 \sigma_{y}^{2} \\
& =-144+144 \sigma_{x} \sigma_{y}+32 \sigma_{x} \sigma_{y}+32 \\
& =-112+176 \sigma_{x} \sigma_{y}
\end{aligned}
$$

$\mathbf{a} \wedge \mathbf{b}=176 \sigma_{x} \sigma_{y} \Rightarrow|\mathbf{A}|=176 \mathrm{~cm}^{2}$

## Problem 9:

$$
\begin{aligned}
8 \mathrm{x}+10 \mathrm{y}=280 \\
5 \mathrm{x}+15 \mathrm{y}=280
\end{aligned} \quad \Rightarrow \quad \mathbf{a}=8 \sigma_{\mathrm{x}}+5 \sigma_{\mathrm{y}} .
$$

$$
\begin{array}{ll}
\mathbf{a} \mathbf{b}=\left(8 \sigma_{x}+5 \sigma_{y}\right)\left(10 \sigma_{x}+15 \sigma_{y}\right)=155+70 \sigma_{x} \sigma_{y} & \Rightarrow \mathbf{a} \wedge \mathbf{b}=70 \sigma_{x} \sigma_{y} \\
\mathbf{r} \mathbf{b}=\left(280 \sigma_{x}+280 \sigma_{y}\right)\left(10 \sigma_{x}+15 \sigma_{y}\right)=7000+1400 \sigma_{x} \sigma_{y} & \Rightarrow \mathbf{r} \wedge \mathbf{b}=1400 \sigma_{x} \sigma_{y} \\
\mathbf{a r}=\left(8 \sigma_{x}+5 \sigma_{y}\right)\left(280 \sigma_{x}+280 \sigma_{y}\right)=3640+840 \sigma_{x} \sigma_{y} & \Rightarrow \mathbf{a} \wedge \mathbf{r}=840 \sigma_{x} \sigma_{y} \\
x=(\mathbf{a} \wedge \mathbf{b})^{-1}(\mathbf{r} \wedge \mathbf{b})=\frac{1400}{70}=20 \quad y=(\mathbf{a} \wedge \mathbf{b})^{-1}(\mathbf{a} \wedge \mathbf{r})=\frac{840}{70}=12
\end{array}
$$

Check of results:		20   12
8 10   5 15	280	
280		

20 units of the first final product $P_{1}$ and 12 units of the second final product $P_{2}$ will be produced.

## Problem 10:

$$
\begin{array}{ll}
7 \mathrm{x}_{1}+3 \mathrm{y}_{1}=94 \quad \Rightarrow \\
8 \mathrm{x}_{1}+9 \mathrm{y}_{1}=152
\end{array} \quad \begin{aligned}
& \mathbf{a}=7 \sigma_{\mathrm{x}}+8 \sigma_{\mathrm{y}} \\
& \\
& \\
& \\
& \\
& \\
& \mathbf{r}_{\mathbf{1}}=3 \sigma_{\mathrm{x}}+9 \sigma_{\mathrm{x}}+152 \sigma_{\mathrm{y}}
\end{aligned}
$$

$$
\mathbf{a} \mathbf{b}=\left(7 \sigma_{x}+8 \sigma_{y}\right)\left(3 \sigma_{x}+9 \sigma_{y}\right)=93+39 \sigma_{x} \sigma_{y} \quad \Rightarrow \quad \mathbf{a} \wedge \mathbf{b}=39 \sigma_{x} \sigma_{y}
$$

$$
\mathbf{r}_{1} \mathbf{b}=\left(94 \sigma_{x}+152 \sigma_{y}\right)\left(3 \sigma_{x}+9 \sigma_{y}\right)=1650+390 \sigma_{x} \sigma_{y} \quad \Rightarrow \quad \mathbf{r}_{1} \wedge \mathbf{b}=390 \sigma_{x} \sigma_{y}
$$

$$
\mathbf{a} \mathbf{r}_{1}=\left(7 \sigma_{x}+8 \sigma_{y}\right)\left(94 \sigma_{x}+152 \sigma_{y}\right)=1874+312 \sigma_{x} \sigma_{y} \quad \Rightarrow \quad \mathbf{a} \wedge \mathbf{r}_{1}=312 \sigma_{x} \sigma_{y}
$$

$$
x_{1}=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{r}_{1} \wedge \mathbf{b}\right)=\frac{390}{39}=10 \quad y_{1}=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{a} \wedge \mathbf{r}_{1}\right)=\frac{312}{39}=8
$$

$$
7 x_{2}+3 y_{2}=80 \quad \Rightarrow \quad \mathbf{a}=7 \sigma_{x}+8 \sigma_{y}
$$

$$
8 x_{2}+9 y_{2}=175 \quad \mathbf{b}=3 \sigma_{x}+9 \sigma_{y}
$$

$$
\mathbf{r}_{2}=80 \sigma_{x}+175 \sigma_{y}
$$

$$
\begin{array}{ll}
\mathbf{r}_{2} \mathbf{b}=\left(80 \sigma_{x}+175 \sigma_{y}\right)\left(3 \sigma_{x}+9 \sigma_{y}\right)=1815+195 \sigma_{x} \sigma_{y} & \Rightarrow \mathbf{r}_{2} \wedge \mathbf{b}=195 \sigma_{x} \sigma_{y} \\
\mathbf{a} \mathbf{r}_{2}=\left(7 \sigma_{x}+8 \sigma_{y}\right)\left(80 \sigma_{x}+175 \sigma_{y}\right)=1960+585 \sigma_{x} \sigma_{y} & \Rightarrow \mathbf{a} \wedge \mathbf{r}_{2}=585 \sigma_{x} \sigma_{y} \\
x_{2}=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{r}_{2} \wedge \mathbf{b}\right)=\frac{195}{39}=5 & y_{2}=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{a} \wedge \mathbf{r}_{2}\right)=\frac{585}{39}=15
\end{array}
$$

Check of results:

llts:		10	5
		8	15
7	3	94	80
8	9	152	175

$\Rightarrow$ Demand matrix $\mathbf{B}$ of second production step: $\quad \mathbf{B}=\left[\begin{array}{rr}10 & 5 \\ 8 & 15\end{array}\right]$

## Problem 11:

a) Scheme of Falk:
$\left.\begin{array}{ccc|c} & & & \begin{array}{c}x \\ y \\ z\end{array} \\ \hline 7 & 9 & 5 & 7 x+9 y+5 z=359 \\ 6 & 8 & 4 & 6 x+8 y+4 z=308 \\ 5 & 7 & 3 & 5 x+7 y+3 z=257\end{array}\right\}$ System of simultaneous linear equations
b) $\mathbf{a}=7 \sigma_{\mathrm{x}}+6 \sigma_{\mathrm{y}}+5 \sigma_{\mathrm{z}} \quad \rightarrow \quad \mathrm{a}=7^{\star} \mathrm{e} 1+6^{\star} \mathrm{e} 2+5^{\star} \mathrm{e} 3$;
$\mathbf{b}=9 \sigma_{x}+8 \sigma_{y}+7 \sigma_{z} \quad \rightarrow \quad \mathrm{~b}=9^{*} \mathrm{e} 1+8^{*} \mathrm{e} 2+7^{*} \mathrm{e} 3$;
$\mathbf{c}=5 \sigma_{x}+4 \sigma_{y}+3 \sigma_{z} \quad \rightarrow \quad c=5 * e 1+4^{*} e 2+3^{*} e 3$;
$\mathbf{r}=359 \sigma_{\mathrm{x}}+308 \sigma_{\mathrm{y}}+257 \sigma_{\mathrm{z}} \rightarrow \quad \mathrm{r}=359^{*} \mathrm{e} 1+308^{*} \mathrm{e} 2+257^{*} \mathrm{e} 3$;
GAALOP user interface:


$\Rightarrow$ The production vector $\mathbf{q}=\left[\begin{array}{l}18 \\ 17 \\ 16\end{array}\right]$ is a solution of the given system of linear equations.
d) The solution given in part (c) is not the only solution of the system of linear equations, because there are an unlimited number of solutions, e.g.

$$
\begin{array}{lll}
\mathrm{x}=20 & \text { or } & \mathrm{x}=16 \\
\mathrm{y}=16 \\
\mathrm{z}=15 & & \mathrm{y}=18 \\
\mathrm{z}=17
\end{array}
$$



Mathematical reason why it is not possible to find solution values:
The solution values are undefined, because the outer product of the three coefficient values is zero ...
$\Rightarrow \quad \mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c}=0 \sigma_{x} \sigma_{y} \sigma_{z}=0$
... or in other words:
The solution values are undefined, because the determinant of the demand matrix $\mathbf{A}$ is zero ...

$$
\Rightarrow \quad \operatorname{det} \mathbf{A}=\operatorname{det}\left[\begin{array}{lll}
7 & 9 & 5 \\
6 & 8 & 4 \\
5 & 7 & 3
\end{array}\right]=168+180+210-196-162-200=0
$$

To find the solution values

$$
\begin{aligned}
& \mathrm{x}=(\mathbf{r} \wedge \mathbf{b} \wedge \mathbf{c}) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c}) \\
& \mathrm{y}=(\mathbf{a} \wedge \mathbf{r} \wedge \mathbf{c}) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c}) \\
& \mathrm{z}=(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{r}) /(\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c})
\end{aligned}
$$

GAALOP has to divide by the outer product of the coefficient vectors (or by the determinant of demand matrix $\mathbf{A}$ ), which is not possible. It is impossible to divide by zero.

## Problem 12:

a) Scheme of Falk:

b) $\mathbf{a}=7 \sigma_{\mathrm{x}}+6 \sigma_{\mathrm{y}}+5 \sigma_{\mathrm{z}} \quad \rightarrow \quad \mathrm{a}=7^{\star} \mathrm{e} 1+6^{\star} \mathrm{e} 2+5^{\star} \mathrm{e} 3$;
$\mathbf{b}=9 \sigma_{x}+8 \sigma_{y}+7 \sigma_{z} \quad \rightarrow \quad \mathrm{~b}=9^{*} \mathrm{e} 1+8^{*} \mathrm{e} 2+7^{*} \mathrm{e} 3$;
$\mathbf{c}=5 \sigma_{x}+4 \sigma_{y}+2 \sigma_{z} \quad \rightarrow \quad c=5 * e 1+4^{*} e 2+2^{*} e 3$;
$\mathbf{r}=422 \sigma_{\mathrm{x}}+362 \sigma_{\mathrm{y}}+283 \sigma_{\mathrm{z}} \quad \rightarrow \quad \mathrm{r}=422^{*} \mathrm{e} 1+362^{*} \mathrm{e} 2+283^{*} \mathrm{e} 3 ;$
GAALOP user interface:


c) Check of the expected solution values: \begin{tabular}{l}
21 <br>
20 <br>
<br>
\hline 7

 

<br>
\& \& <br>
\hline 6 \& 8 \& 4 <br>
\hline
\end{tabular}

$\Rightarrow$ The production vector $\mathbf{q}=\left[\begin{array}{l}21 \\ 20 \\ 19\end{array}\right]$ is a solution of the given system of linear equations.

## Problem 13:


a) Scheme of Falk:

			x
			y
2	8	18	1
14	4	12	0
12	6	16	0

This is the first part of the following complete calculation:

$\Rightarrow$ The given GAALOP program calculates the first column of the inverse of a matrix which consists of coefficient vectors $\mathbf{a}, \mathbf{b}$, and $\mathbf{c}$.
b) Check of results:
$\left.\begin{array}{rr|c} & & \\ & & \\ 10 \\ & & \\ \hline 2 & 8 & 18\end{array}\right) 2 \cdot 1+8 \cdot 10+18 \cdot(-4.5)=1$
$\Rightarrow$ The given values are correct solutions of the GAALOP problem.

