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Abstract 

According to Hestenes, geometry links the algebra to the physical world. Therefore the journey of 

economathematics told in this paper will present a closer analysis of the geometry of our world by 

questioning the Dirac belt trick: Obviously 4π periodicities are an elementary part of our world, 

and to describe this world, the mathematics of 4π periodicities – and thus Pauli algebras – are re-

quired. 

Geometry also links the algebra to the physics of socio-economical systems. Consequently the 

mathematics of 4π periodicities – and thus Pauli algebras – can be applied to describe economic 

systems. A simple product engineering example will show how matrix inverses can be found by 

applying Pauli algebras. 

But more and more introductory business mathematics textbooks present Generalized matrix in-

verses and Moore-Penrose matrix inverses as elementary part of the foundations of mathematical 

economics. A didactical approach to model these non-square matrix inverses with Pauli algebras 

will be presented. This didactical path will enable learners to understand that Moore-Penrose in-

verses only are scalar parts of more natural geometric matrix inverses which usually possess high-

er-dimensional terms, too. 

At the turning point of this journey an interesting economathematical picture emerges: Problems 

which might be solved by using linear algebra can equally effective and sometimes even in a much 

simpler way be solved with Pauli algebra or generalized Pauli algebras. 

 

1. A tremendous misunderstanding 

Having sent my OHP slides about generalized ma-

trix inverses based on Pauli algebra [1] to several 

colleagues, I received typical answers like: “The 

smell of relativistic quantum perfume is quite obvi-

ous. I liked it, but…” [3]. 

This is a tremendous misunderstanding! Pauli matri-

ces and Pauli algebras do not have the nice smell of 

quantum mechanics. The mathematics of Pauli ma-

trices and Pauli algebras will never smell out the 

riddles of the quantum world. 

Pauli algebras show the spell of our classical world, 

and we will be able to spell out the riddles of classi-

cal physics by applying Pauli algebras. 

Standard Pauli algebra not even is a relativistic 

mathematical language. It is the language of our 

classical, three-dimensional world with three purely 

spacelike directions. 

Only higher-dimensional generalizations of Pauli 

algebra – like Dirac algebra – deliver us the mathe-

matics of relativistic spacetimes. And again we will 

not be able to taste the smell of the quantum world. 

Pauli matrices and Dirac matrices are strictly classi-

cal objects. 

2.  A journey to Geometric Algebra 

To understand the economathematical relevance of 

Pauli algebra and generalized Pauli algebras we will 

go on a journey along the following paths shown in 

figure 1. 

 

                      Physics of Socio-Economic Systems 

 

          Didactics 

 

Hestenes          The physics of Pauli Algebra 

 

                   Pauli Algebra is geometry !! 

 

    Economathematics             Product Engineering 
 

Fig.1: The journey to Geometric Algebra of this paper. 

 

The sentence in the middle of figure 1 highlights the 

conceptual core of this journey: “Algebra equals 

geometry” – algebra will be geometry if the ideas of 

Grassmann and Pauli are blended into one strong 
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mathematical tool. Therefore this mathematical tool 

is called Geometric Algebra. 

To show this fascinating relation between algebra 

and geometry a simple product engineering example 

will be discussed in the following section. 

3.  A simple product engineering example 

In this first example the number of raw materials is 

identical to the number of final products, thus result-

ing in a square demand matrix. 

Non-square demand matrices with more raw materi-

al than final products will be discussed later (see 

sections 8 & 9) in a second example problem. 
 

 

First Example: Problem 

A firm manufactures two different final products P1 
and P2. To produce these products the following 
quantities of two different raw materials R1 and R2 
are required: 
 

     3 units of R1 and 5 units of R2 

                                      to produce 1 unit of P1 

     2 units of R1 and 4 units of R2 
                                      to produce 1 unit of P2 
 

Find the quantities of final products P1 and P2 which 
will be produced, if exactly 120 units of the first raw 
material R1 and 220 units of the second raw materi-
al R2 are consumed in the production process. 

 

Fig.2: First product engineering problem of part VII of the 

BSEL Geometric Algebra Crash Course [1, p. 16]. 

 

The unknown quantities x of the first final product 

P1 and y of the second final product P2 can be found 

by solving the following system of two linear equa-

tions: 

3 x + 2 y = 120 

5 x + 4 y = 220                                           {1} 

To implement to conceptual core of our economath-

ematical journey, these algebraic equations {1} can 

now be geometricized by relating them to directions 

in space.  

3 x + 2 y = 120  will point into a first direction 

5 x + 4 y = 220  will point into a second direction 

The base vectors which represent these directions 

will be named – historically appropriate – x and y 

(and later z for a third direction). The wanted ge-

ometrization can then be achieved by simply multi-

plying the two linear equations {1} by these base 

vectors: 

3 x x + 2 y x = 120 x 

5 x y + 4 y y = 220 y                             {2} 

But what are base vectors? This is a controversial 

question, as there is a struggle – or even a war – 

going on about the meaning of the mathematical 

instruments we use to describe the world. 

Gian-Carlo Rota sadly exclaimed: “The neglect of 

exterior algebra is the mathematical tragedy of this 

century. … (Admired mathematicians) made sure 

that … no hint of mystifying concoctions of that 

crackpot Grassmann would be given out. … (Other 

admired mathematicians) did not believe in geome-

try and failed to provide the translation of geometry 

into algebra that exterior algebra makes possible. … 

Meanwhile we have to bear with mathematicians 

who are exterior algebra-blind” [4, p. 232/233]. 

Thus the first step to ensure that mathematicians, 

physicists and other scientists do not only learn 

castrated, exterior algebra-blind mathematics but 

encounter the full wealth of a complete and rich 

mathematical world, should be to present these mys-

tifying concoctions of Grassmann and his theory of 

extensions. 

What are now base vectors according to Grassmann? 

They surely have unit lengths 

[er  er] = 1             [5, p. 378, first equation], 

identical base vectors are parallel to each other 

[er  er] = 0              [5, p. 378, third equation], 

and different base vectors are perpendicular to each 

other 

[er  es] = 0             [5, p. 378, second equation], 

[er  es] = – [es  er]   [5, p. 378, fourth equation]. 

In modern form these inner and outer products are 

written according to the Pauli notation as 

i  i = 1                                                 {3a} 

i  i = 0                                                 {3b} 

i  j = 0                     i ≠ j                      {3c} 

i  j = – j  i         i ≠ j                      {3d} 

And there can be no doubt that with these equations 

Grassmann already had written down the basic 

foundations of Pauli algebra: 

i
2
 = (i  i + i  i) = 1                       {4a} 

i j = (i  j + i  j) = – j i    i ≠ j   {4b} 

It was this crackpot Grassmann who already had 

identified Pauli matrices (which had not been written 

as matrices in these days) with base vectors. 

Of course it is allowed to say as a physicist or as 

another non-mathematician scientist: Pauli matrices 

are base vectors of three-dimensional, Euclidean 

space. Only admired mathematicians who do not 

believe in geometry must be a little bit more reluc-

tant and have to say: Pauli matrices represent base 

vectors or three-dimensional, Euclidean space. 

But it does not matter, how you speak about Grass-

mann’s findings, the central fact is clear: This is not 

the nice and bewitching smell of quantum mechan-

ics, this is the spell of our classical world. 

These findings of Grassmann surely are disturbing 

for scientists who had been educated in an abstract 

quantum-mechanical way and who were told to 

neglect the mathematics of the classical world. 

Therefore Cambridge physicists Gull, Lasenby and 

Doran conclude that “our present thinking about 
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quantum mechanics is infested with the deepest 

misconceptions” [6, p. 1185]. And the fact that “the 

familiar Pauli matrix relation … is now nothing 

more than an expression of the geometric product of 

orthonormal vectors” will then “cause the greatest 

intellectual shock” [6, p. 1184]. 

4.  Solving the product engineering problem 

What is now Grassmann’s geometry-based way to 

find the solution of the given product engineering 

problem? 

To understand his strategy we simply have to look 

into the first edition of his important theory of exten-

sions [7]. It surely takes some time to get used to his 

peculiar style of writing and to grasp how “… the 

applicability of outer multiplication emerges with 

such a striking determination and firmness, … that 

algebra will gain a substantial different shape” 
1
 [7, 

p. 71]. 

But after having overcome all linguistic and syntax 

problems, a magnificent new mathematical world 

opens: Grassmann first constructed the two coeffi-

cient vectors 

a = 3 x + 5 y 

b = 2 x + 4 y                                           {5} 

and the resulting vector 

r = 120 x + 220 y                                    {6} 

then computed the oriented areas of the three paral-

lelograms which can be formed by these vectors: 

a  b =   2 xy 

r  b = 40 xy                                           {7} 

a  r = 60 xy 

and finally divided these oriented areas to get the 

two solution values x, y by the Geometric Algebra 

equivalent of Cramer’s rule: 

x = (a  b) 
– 1 (r  b) = 20 

y = (a  b) 
– 1 (a  r) = 30                           {8} 

As all oriented areas are parallel to each other, the 

post-divisions {9} will of course give the same re-

sults compared to the pre-divisions {8} 

x = (r  b) (a  b) 
– 1 = 20 

y = (a  r) (a  b) 
– 1 = 30                           {9} 

The expected answer to the product engineering pro-

blem of figure 2 is shown in figure 3. 

In Geometric Algebra based on Grassmann’s ideas 

the outer products of eqs. {7} have a clear and pre-

cise geometric meaning – they are oriented areas. 

                                                 
1
 Grassmann’s words in German: “Aber desto interes-

santer ist es, zu bemerken, wie in der Algebra (…) auch 
die Anwendbarkeit der äusseren Multiplikation mit ei-

ner so schlagenden Entschiedenheit heraustritt, dass ich 

wohl behaupten darf, es werde durch diese Anwendung 
auch die Algebra eine wesentlich veränderte Gestalt ge-

winnen“ [7, pp. 70/71].  

 

First Example: Answer 

If exactly 120 units of the first raw material R1 and 
220 units of the second raw material R2 are con-
sumed, 20 units of the first final product P1 and     
30 units of the second final product P2 will be pro-
duced. 

 

Fig.3: Answer of the first product engineering problem. 

 

In contract to that standard textbooks of matrix alge-

bra usually do not discuss this geometric back-

ground. Instead they present non-dimensional, pure-

ly algebraic scalar values, called determinants. 

Therefore Arnold desperately says: “The determi-

nant of a matrix is an (oriented) volume of the paral-

lelepiped whose edges are its columns. If the stu-

dents are told this secret – which is carefully hidden 

in the purified algebraic education, – then the whole 

theory of determinants becomes a clear chapter of 

the theory of poly-linear forms. If determinants are 

defined otherwise, then any sensible person will 

forever hate all the determinants …” [8]. 

Standard textbooks of matrix algebra thus create 

students who will forever hate determinants. 

 

                      Physics of Socio-Economic Systems 

 

          Didactics 

 

Hestenes          The physics of Pauli Algebra 

 

                   Pauli Algebra is geometry !! 

 

    Economathematics             Product Engineering 
 

Fig.4: The first, red marked part of our Geometric Algebra 

journey. 

 

At the end of this first part of our journey (see red 

path of fig. 4) the generalization of this solution 

strategy, already presented by Grassmann in [7, § 

45, pp. 70-72], will be discussed. 

If a system of n linear equations with n unknown 

variables xi,  i  {1, 2,… , n} is given, n coefficient 

vectors ai 

ai = a1i 1 + a2i 2 + … + ani n                 {10} 

and the resulting vector 

r = r1 1 + r2 2 + … + rn n                     {11} 

can be constructed. 

Then the oriented hyper-volumes of the n-dimensio-

nal hyper-parallelepipeds formed of all coefficient 

vectors and the resulting vector 

Vdet = a1  a2  …  ai  …  an                 {12} 

Vi   = a1  a2  …  r  …  an                {13} 
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can be found. The oriented hyper-volume of eq. 

{12} represents the determinant of the coefficient 

matrix A 

det A = Vdet n … 3 2 1                          {14} 

while the n different oriented hyper-volumes Vi of 

eqs. {13} (in which the coefficient vectors ai are 

replaced by the resulting vector r) represent the 

numerator determinants of Cramer’s matrices Ai 

det Ai = Vi n … 3 2 1                           {15} 

Finally the n solution values xi of the system of 

linear equations can be computed by simple divi-

sions of eqs. {12} and {13} or of eqs. {14} and {15}: 

xi =
 

A

A

det

det i  = Vdet

– 1 Vi
 = Vi Vdet

– 1
          {16} 

And as all oriented hyper-volumes are parallel to 

each other, pre-division and post-division {16, right 

side} will get identical results again. 

5.  Didactical intermezzo: The Dirac belt trick 

According to Hestenes, geometry links the algebra 

to the physical world, so a mathematical language 

which reflects this linkage is required to describe the 

physical world [9]. 

Because of that the journey of economathematics 

told in this paper will now take a turn to the byroad 

of didactics (see blue path of figure 5) before the 

route on the main road (see green path of figure 5) 

will be continued. 

 

                      Physics of Socio-Economic Systems 

 

          Didactics 

 

Hestenes          The physics of Pauli Algebra 

 

                   Pauli Algebra is geometry !! 

 

    Economathematics             Product Engineering 
 

Fig.5: Second, blue marked and third, green marked parts 

of our Geometric Algebra journey. 

 

It is obvious that human eyes are blind to spin – and 

we all are blind to spin, because the retina of a hu-

man eye is a two-dimensional curved plane. There-

fore only information about a two-dimensional, 

distorted picture reaches our brain. The visual and 

thus the mathematical models our brain constructs 

are sometimes incomplete, they are partly unsuited 

for some situations or they are even faulty. 

Dirac’s belt trick [10, p. 1149, fig. 41.6], [11, p. 

12/13] (or scissor problem [12, p. 43, fig. 1-13]) 

shows this incompleteness and faultiness as our 

human brains usually do not expect to have a topo-

logical  situation which is identical to the original 

situation if an object attached with strings to the  sur- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.6: Visualization of Dirac’s belt trick. 

 

roundings is rotated by 4 . But they are identical 

and the attached object of figure 6 indeed equals a 

spin ½ particle. The necessary conclusions we 

should draw are straightforward: 

 4  symmetries are nothing exclusively quantum 

mechanical, 

 4  symmetries are an essential part of our every-

day world (our space) we live in. 

 We need an appropriate mathematical language 

to describe 4  symmetries. 

This language is Geometric Algebra. The basic ob-

jects of three-dimensional Euclidean space are then 

conclusively encoded by Pauli Algebra: Pauli matri-

ces represent base vectors, and products of two dif-

ferent base vectors are base bivectors, which repre-

sent the oriented unit area elements of eqs. {4b}, 

shown in figure 7. 

Hestenes then not only concludes that “mathematics 

is too important to be left to the mathematicians”, 

but also states that “the most impressive benefits of 

Geometric Algebra arise from surprising new in-

sights into the structure of physics” [9, p. 107]. 
 

 

 

 

 

Fig.7: Bivector anti-commutativity xy = – yx describes 

algebraically the geometric orientation of area elements. 

x 

x 

xy                                   yx y                   y 
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6.  Inverse matrices 

New insights into the structure of the given product 

engineering problem of figure 2 can be gained by 

solving this problem with the help of the inverse (or 

inverses) of the demand matrix A 

A = 









45

23
                                              {17} 

To find this inverse (or more precise: these two 

identical inverses A 

–
 
1
 as pre-inverse and A  

–
 
1
 as 

post-inverse), 

A
–

 
1
 = 










21

21

yy

xx
 = A

–
 
1
 = 















21

21

yy

xx

 

      {18} 

the two systems of linear equations 

a x1 + b y1 = x 

a x2 + b y2 = y                                         {19} 

have to be solved. According to eqs. {8} and {9}, 

the solutions will be 

x1 = (a  b) 
–

 
1
 (x  b) 

     = x1 = (x  b) (a  b) 
–

 
1
 =    2 

y1 = (a  b) 
–

 
1
 (a  x) 

     = y1 = (a  x) (a  b) 
–

 
1
 = – 2.5         

{20}
 

x2 = (a  b) 
–

 
1
 (y  b) 

     = x2 = (y  b) (a  b) 
–

 
1
 = – 1 

y2 = (a  b) 
–

 
1
 (a  y) 

     = y2 = (a  y) (a  b) 
–

 
1
 =     1.5 

Thus the two identical inverse matrices {18} are 

A
–

 
1
 = A

–
 
1
 = 














2/32/5

12

 

                    {21} 

and the production vector of the already known 

solution according to figure 3 can be computed to 

p


 = A
–

 
1
 









220

120
 = A

–
 
1
 









220

120
 = 









30

20

  

  {22} 

Again this can be generalized, and the equations to 

find the elements of the inverse(s) A 

–
 
1
 = A 

–
 
1
 = (xij) 

of an (n x n) square matrix A can be constructed 

analogous to eqs. {12} – {16}: 

Vdet = a1  a2  …  ai  …  an                  {23} 

Vij   = a1  a2  …  j  …  an               {24} 

xij = Vdet

– 1
 Vij = xij = Vij Vdet

– 1
                 {25} 

And as all oriented hyper-volumes are parallel to 

each other, pre-divisions and post-divisions of eq. 

{25} will of course get identical results again. 

7. Economathematical intermezzo: Generalized 

matrix inverses 

More and more introductory business mathematics 

textbooks present Moore-Penrose generalized matrix 

inverses as elementary part of the foundations of 

mathematical economics, see for example [13, chap. 

7] or [14, chap. 6]. 

And  more  and  more  often  Generalized  matrix  in- 

verses are regularly discussed in introductory cours-

es e.g. at University of Applied Sciences Schmalkal-

den, at Technical University Dortmund, or at Leib-

niz University Hannover [14]. 

Unfortunately in most of these textbooks and busi-

ness mathematics courses Generalized matrix in-

verses are introduced by purely algebraic reasoning. 

Usually the discussion of Moore-Penrose general-

ized matrix inverses is based on the four – algebraic 

– Moore-Penrose conditions: 

A A
+

 A = A               A
+
 A A

+
 = A

+
 

(A
+
 A)

T
 = A

+
 A         (A A

+
)
T
 = A A

+
       {26} 

This restriction to a purely algebraic reasoning is a 

didactical disadvantage, as geometrical insights are 

then neglected and the geometry of our physical and 

of our economathematical world is ignored. 

To open this situation for a wider and more geomet-

rical view and for changing the tragedy described by 

Rota into a happy ending, Generalized matrix in-

verses will be discussed by applying exterior algebra 

in the following. 

And to show how it is possible to model non-square 

matrix inverses with Pauli algebras, the product 

engineering example of section 3 will now be ex-

tended. 

8.  A second product engineering example 

In this second example problem there are more raw 

materials than final products, thus resulting in a non-

square demand matrix. 
 

 

Second Example: Problem 

A firm manufactures two different final products P1 
and P2. To produce these products the following 
quantities of three different raw materials R1, R2, 
and R3 are required: 
 

     3 units of R1,  5 units of R2,  and  4 units of R3 

                                          to produce 1 unit of P1 

     2 units of R1,  4 units of R2,  and  8 units of R3 
                                          to produce 1 unit of P2 
 

Find the quantities of final products P1 and P2 which 
will be produced, if exactly 120 units of the first raw 
material R1, 220 units of the second raw material 
R2, and 320 units of the third raw material R3 are 
consumed in the production process. 

 

Fig.8: Second product engineering problem of part VII of 

the BSEL Geometric Algebra Crash Course [1, p. 33]. 

 

The unknown quantities x of the first final product 

P1 and y of the second final product P2 can be found 

by solving the following overconstrained system of 

three linear equations: 

3 x + 2 y = 120 

5 x + 4 y = 220                                         {27} 

4 x + 8 y = 320 

To implement the conceptual core of our econo-

mathematical journey again, these algebraic equa-
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tions {27} can be geometricized by relating them to 

directions in space, which were represented by now 

three base vectors or Pauli matrices: 

3 x x + 2 y x = 120 x 

5 x y + 4 y y = 220 y                           {28} 

4 x z + 8 y z = 320 z 

The two coefficient vectors a, b and the resulting 

vector r then are: 

a = 3 x + 5 y + 4 z 

b = 2 x + 4 y + 8 z                               {29} 

r = 120 x + 220 y + 320 z 

If the two coefficient vectors are not linearly de-

pendent and if the resulting vector and the two coef-

ficient vectors are linearly dependent, the system of 

linear equations will be consistent and a solution 

will exist. 

This algebraic condition can also be stated geometri-

cally: If the two coefficient vectors do not point into 

the same direction and if the two coefficient vectors 

and the resulting vector are lying in the same plane, 

the system of linear equations will be consistent and 

a solution will exist. 

Obviously, the two coefficient vectors are not paral-

lel as their outer product does not equal zero. And all 

vectors are lying in the same plane, as the bivector 

directions of their outer products {30} are identical: 

a  b  =   2 xy + 24 yz – 16 zx 

          =   2 (xy + 12 yz – 8 zx) 

r  b  = 40 xy + 480 yz – 320 zx 

          = 40 (xy + 12 yz – 8 zx)       {30} 

a  r  = 60 xy + 720 yz – 480 zx 

          = 60 (xy + 12 yz – 8 zx) 

Pre- or post-divisions {31} of the outer products will 

then give the quantities produced (see fig. 9). 

x = (a  b) 

–
 
1
 (r  b) = (r  b) (a  b) 

–
 
1
 = 20 

y = (a  b) 

–
 
1
 (a  r) = (a  r) (a  b) 

–
 
1
 = 30 {31} 

 

 

Second Example: Answer 

If exactly 120 units of the first raw material R1, 220 
units of the second raw material R2, and 320 units 
of the third raw material R3 and are consumed,     
20 units of the first final product P1 and 30 units of 
the second final product P2 will be produced. 

 

Fig.9: Answer of the second product engineering problem. 

 

Of course the outer products {30} represent deter-

minants. If these determinants are defined according 

to eq. {14}, they are no longer scalars, but vectors. 

det 

















84

45

23

 = (a  r) zyx                    {32} 

                    = 24 x – 16 y + 2 z 

Therefore Grassmann’s solution strategy shown      

in eqs. {10} to {16} still is valid for non-square 

matrices and overconstrained systems of linear equa-

tions. 

9.  Finding non-square matrix inverses 

In a similar way, eqs. {17} to {25} still are valid 

with the only difference, that the pre-inverse A 

–
 
1
 and 

the post-inverse A 

–
 
1
 are no longer identical. We now 

have to carefully distinguish between pre-multipli-

cation and post-multiplication and between pre-

division and post-division. 

To find these two Generalized matrix inverses of the 

non-square matrix A 

A = 

















84

45

23

                                              {33} 

the three (double) systems of linear equations 

a x1 + b y1 = a x1 + b y1 = x 

a x2 + b y2 = a x2 + b y2 = y                   {34} 

a x3 + b y3 = a x3 + b y3 = z 

now have to be solved to get the 12 elements of 

A
–

 
1

 = 









321

321

y  y  y

x  x  x
 ≠ A

–
 
1

 = 














321

321

y  y  y

x  x  x

    

{35} 

With the help of the duals N, M of the two coeffi-

cient vectors a, b (which can be found by multiply-

ing by the unit trivector or pseudoscalar I = xyz) 

N  = I a = 4 xy + 3 yz + 5 zx 

M = I b = 8 xy + 2 yz + 4 zx         {36} 

the elements of the Generalized matrix inverses can 

be written as 

x1 = (a  b)
 
–

 
1
 (x  b) = 

418

1
 (   68 – 12 M) 

y1 = (a  b)
 
–

 
1
 (a  x) =

 

418

1
 (– 37 + 12 N) 

x2 = (a  b)
 
–

 
1
 (y  b) = 

418

1
 (  94 + 8 M) 

y2 = (a  b)
 
–

 
1
 (a  y) =

 

418

1
 (– 45 – 8 N) 

x3 = (a  b)
 
–

 
1
 (z  b) = 

418

1
 (– 64  – M) 

y3 = (a  b)
 
–

 
1
 (a  z) =

 

418

1
 (84 + N)    {37} 

or with reversed bivector terms as 

x1 = (x  b) (a  b)
 
–

 
1
 = 

418

1
 (   68 + 12 M) 

y1 = (a  x) (a  b)
 
–

 
1
 = 

418

1
 (– 37 – 12 N) 

x2 = (y  b) (a  b)
 
–

 
1
 = 

418

1
 (  94 – 8 M) 

y2 = (a  y) (a  b)
 
–

 
1
 = 

418

1
 (– 45 + 8 N) 
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x3 = (z  b) (a  b)
 
–

 
1
 = 

418

1
 (– 64  + M) 

y3 = (a  z) (a  b)
 
–

 
1
 = 

418

1
 (84 – N)      {38} 

Thus the two Generalized matrix inverses are 

A
–

 
1

 = 













NNN

MMM

84       845    1237

64   894      1268    

418

1

  

  

{39} 

and 

A
–

 
1

 = 













NNN

MMM

84       845    1237

64   894      1268    

418

1

  

  

{40} 

Again the production vector of the already known 

solution according to figure 9 can be computed to 

p


 = A
–

 
1
 

















320

220

120

 = A
–

 
1
 

















320

220

120

 = 








30

20

  

   {41} 

It is interesting to see, that all bivector terms cancel 

because 

– 12 · 120 + 8 · 220 – 320 = 0                  {42} 

and the overconstrained consistent system of linear 

equations results as expected with pure scalar solu-

tion values. 

This mathematical procedure can be generalized 

again, and the equations to find the elements of the 

inverses A 

–
 
1
 = (xij) ≠ A 

–
 
1
 = (xij) of a non-square 

matrix A can be constructed analogous to eqs. {23} 

– {25}: 

Vdet = a1  a2  …  ai  …  an                  {43} 

Vij   = a1  a2  …  j  …  an               {44} 

xij = Vdet

– 1
 Vij ≠ xij = Vij Vdet

– 1
                 {45} 

But now the oriented hyper-volumes are not parallel 

to each other, and pre-divisions and post-divisions of 

eq. {45} will get different results. 

10.  Constructing Moore-Penrose matrix inverses 

Obviously the Generalized matrix inverses A 

–
 
1
 and 

A 

–
 
1
 are not Moore-Penrose matrix inverses A

+
. They 

can be called Pauli Algebra generalized matrix in-

verses. 

It can be seen that only the scalar parts of Pauli Al-

gebra generalized matrix inverses are identical to 

Moore-Penrose matrix inverses. Therefore Moore-

Penrose matrix inverses A
+
 can be defined as 

A
+
 = 

2

1
 (A

–
 
1
 + A

–
 
1
)                                  {46} 

      = 

















332211

332211

yyyyyy

xxxxxx
 

2

1
 

and the second product engineering problem will 

have  the following Moore-Penrose matrix inverse: 

A
+
 = 














84       45    37

64    94       68   
                       {47} 

Just for fun an anti-Moore-Penrose matrix inverse 

A
–
 can also be found 

A
–
 = 

2

1
 (A

–
 
1
 – A

–
 
1
)                                  {48} 

      = 

















332211

332211

yyyyyy

xxxxxx
 

2

1
 

and the second product engineering problem will 

have  the following anti-Moore-Penrose matrix in-

verse: 

A
–
 = 














NNN

MMM

       8    12  

   8      12

  

  

                    {49} 

But while the Moore-Penrose matrix inverse A
+
 can 

be used to get the solution of figure 9 again 

p


 = A
+
 

















320

220

120

 = 








30

20

                            

{50} 

anti-Moore-Penrose matrix inverse A
–
 seem to be 

rather useless as all values {42} disappear to zero 

       A
–
 

















320

220

120

 = 








0

0

                               

{51} 

11. Teaching Pauli Algebra generalized matrix 

inverses 

Pauli Algebra generalized matrix inverses have been 

taught as seventh part [1], [2] of a Geometric algebra 

lecture series [15], [16], [17], [18] with English-

speaking students at BSEL at winter semester 2017/ 

2018. The slides of the different lecture series parts 

can be downloaded from PhyDid, see electronic re-

sources at [19]. 

As in this special winter semester lecture time was 

too short to discuss all previous lecture slides in 

detail, a quick start into Geometric Algebra was 

made by using GAALOP as a Geometric Algebra 

pocket calculator substitute [20], [21]. 

After this quick start, the students had been able to 

solve systems of linear equations and to find invers-

es of square matrices by applying Geometric Alge-

bra solution strategies (see sections 4 and 6 of this 

paper). 

Thus a good basic knowledge of Geometric Algebra 

was already established before the discussion of 

non-square matrix inverses started which required 

the time of two lesson hours (2 x 45 min.). 

To be able to understand and to comprehend all 

steps of finding Pauli Algebra generalized matrix 

inverse elements, only pre-division non-square ma-

trix elements {37} have been discussed at this 

course [21, pp. 38 – 43]. 

Based on the vivid discussion and on comments the 

students made, it can be concluded that this seventh 

part of the lecture series was successful. 
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12. This is geometry 

We are living in a geometrical world. Therefore we 

can use geometry to solve systems of linear equa-

tions like 

x a + y b = r                                             {52} 

of the first or second example problem (figure 2 & 

8). For example, we only have to reflect eq. {52} at 

an axis into the direction of coefficient vector a by 

sandwiching [22], [23] eq.{52} by this vector a: 

x a
2
 a + y a b a = a r a                             {53} 

Another geometrical operation, a dilation of eq. {52} 

can be constructed by simply multiplying by a
2
 = a

2
 

to get 

x a
2
 a + y a

2
 b = a

2
 r                                 {54} 

Now subtracting eq. {54} from eq. {53} results in 

y (a b a – a
2
 b) = a r a – a

2
 r                    {55} 

Thus the solution value y then can be found straight-

forward [18] as 

y = (a b a – a
2
 b) 

– 1
 (a r a – a

2
 r)              {56} 

In a similar, geometry-based way, the solution value 

x can be constructed as 

x = (b a b – b
2
 a) 

– 1
 (b r b – b

2
 r)             {57} 

All this is geometry. And it explains, why Grass-

mann was able to write down his equations, which 

are hidden behind eqs. {56} and {57}, e.g. 

x = (b (a  b)) 

– 1
 (b (r  b)) 

   = (a  b) 

– 1
 (r  b)                                 {58} 

As a physicist my mathematical world view is based 

on geometry. Therefore I even consider the elements 

of standard matrix inverses {20} or Generalized 

matrix inverses {37}, {38} as elements which can be 

seen through the spectacles of geometry analogous 

to eqs. {52} to {58}. 

For example, the first element x11 of a matrix inverse 

is constructed geometrically by a reflection of the 

system of linear equations 

x11 a + x12 b = x                                      {59} 

at an axis into the direction of coefficient vector b 

x11 b a b + x12 b
2
 b = b x b                     {60} 

and by a dilation of eq. {59} by the factor b
2
 = b

2
 

x11 b
2
 a + x12 b

2
 b = b

2
 x                         {61} 

Now again subtracting eq. {61} from eq. {60} re-

sults in 

x11 (b a b – b
2
 a) = b x b – b

2
 x            {62} 

Thus the value of the first matrix element can be 

computed as 

x11 = (b a b – b
2
 a) 

– 1
 (b x b – b

2
 x) 

      = (b (a  b)) 

– 1
 (b (x  b))               {63} 

      = (a  b) 

– 1
 (x  b) 

And this is not only algebra. This is based on ge-

ometry. This is geometry. 
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