# The Geometry of Moore-Penrose Generalized Matrix Inverses 

Martin Erik Horn<br>BSEL/HWR Berlin, FB 1 - Department of Business and Economics, FE Quantitative Methods

Email: e_hornm@doz.hwr-berlin.de

## Economathematical Starting Point

More and more introductory business mathematics textbooks pre sent Moore-Penrose generalized matrix inverses as elementary part of the foundations of mathematical economics. Generalized matrix inverses are regularly discussed in introductory courses e.g. at FH Schmalkalden \& TU Dortmund.

## Didactical Problem

Most textbooks introduce generalized matrix inverses by purely algebraic reasoning and the discussion of Moore-Penrose generalized matrix inverses is based on the four Moore-Penrose conditions:

$$
\begin{aligned}
\mathbf{A ~ A}^{+} \mathbf{A} & =\mathbf{A} & & \left(\mathbf{A}^{+} \mathbf{A}\right)^{\top}=\mathbf{A}^{+} \mathbf{A} \\
\mathbf{A}^{+} \mathbf{A} \mathbf{A}^{+} & =\mathbf{A}^{+} & & \left(\mathbf{A} \mathbf{A}^{+}\right)^{\top}=\mathbf{A} \mathbf{A}^{+}
\end{aligned}
$$

But to give a complete picture of these mathematical structures it is helpful to introduce and to describe Moore-Penrose generalized matrix inverses also by using geometric representations based on the ideas of Grassmann's theory of extensions.


Atter having discussed the basics of Geometic After having discussed the basics of Geometric
Algebra and the Geometric Algebra solution
s.ene scheme of systems of linear equations with the
students
tat
previous lessons, $(2 \times 45$ min.) was required to introduce Pauli a gebra generaized matrix inverses and
Penrose generalized matrix inverses.

## Overview of BSEL Geometric Algebra Crash Course:

Part 1: Basic Foundations of Geometric Algebra
Part 2: Solving Systems of Linear Equations with two or three Unknown Variables
Part 3: Direct Product \& Solving higher-dimensional Systems of Linear Equations
Part 4: Transformation of Coordinates \& Gaussian Method of Solving Systems of Linear Equations

Part 5: Eigenvalues and Eigenvectors
Part 6: Solving Systems of Linear Equations with Sandwich Products
Part 7: Generalized Matrix Inverses
Addendum: Solving Systems of Linear Equations with the Geometric Algebra Algorithms Optimizer (GAALOP)

## winter

semester 2014/2015
$\rightarrow$ DPG Wuppertal 2015
winter
semester 2015/2016
$\rightarrow$ DPG Hannover 2016
winter
semester 2016/2017
$\rightarrow$ DPG Dresden 2017
winter
semester 2017/2018
$\rightarrow$ DPG Würzburg \&
Berlin 2018

Second Starting Point from the Perspective of Physics: Pauli Algebra and Generalized Pauli Algebra (Geometric Algebra)

## Pauli Matrices represent base vectors of three-dimensional space. Generalized Pauli Matrices represent base vectors of higher-dimensional spaces.

With his theory of extensions Herman Günther Grassmann (1809 - 1877) already invented generalized Pauli Algebra and generalized Dirac Algebra. The solution of a system of linear equations can be found by applying his solution equations of the first edition of his Ausdehnungslehre of 1844.

Written in modern form, the solution of consistent systems of linear equations $\quad \mathbf{a} x+\mathbf{b} y=\mathbf{r}$ with two variables $x, y$ can be found with the following solution equations:
$x=(\mathbf{a} \wedge \mathbf{b})^{-1}(\mathbf{r} \wedge \mathbf{b}) \quad$ or $\quad x=(\mathbf{r} \wedge \mathbf{b})(\mathbf{a} \wedge \mathbf{b})^{-1}$
$y=(\mathbf{a} \wedge \mathbf{b})^{-1}(\mathbf{a} \wedge \mathbf{r})$ or $\quad y=(\mathbf{a} \wedge \mathbf{r})(\mathbf{a} \wedge \mathbf{b})^{-1}$

## Geometric Interpretation of the Solution Equations

Outer products of two vectors can be interpreted as oriented area elements. And as a change of the coordinate system does not change the geometric situation, all ratios of the areas of the oriented parallelograms $\mathbf{a} \wedge \mathbf{b}, \mathbf{r} \wedge \mathbf{b}$, and $\mathbf{a} \wedge \mathbf{r}$ do not depend on the coordinate system.


But a change of the coordinate system will change the algebraic description of the vectors, which now have three components instead of only two. Therefore the matrix inverse will have a different algebraic description, too. This generalized Pauli Algebra matrix inverse can be used to solve consistent systems of linear equations, even if theses systems have more equations than variables.

Conventional Matrix Inverses and Generalized Matrix Inverses
As Grassmann's solution equations can always be written as a matrix multiplication, the lead matrix of this matrix multiplication will be the matrix inverse:

$$
x=(\mathbf{a} \wedge \mathbf{b})^{-1}(\mathbf{r} \wedge \mathbf{b})=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\left(\sigma_{x} \wedge \mathbf{b}\right) r_{1}+\left(\sigma_{y} \wedge \mathbf{b}\right) r_{2}\right)
$$

$$
y=(\mathbf{a} \wedge \mathbf{b})^{-1}(\mathbf{a} \wedge \mathbf{r})=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\left(\mathbf{a} \wedge \sigma_{x}\right) r_{1}+\left(\mathbf{a} \wedge \sigma_{y}\right) r_{2}\right)
$$

Inverse of $a 2 \times 2$ square matrix: $\mathbf{A}^{-1}=\frac{1}{\mathbf{a} \wedge \mathbf{b}}\left(\begin{array}{ll}\sigma_{x} \wedge \mathbf{b} & \sigma_{y} \wedge \mathbf{b} \\ \mathbf{a} \wedge \sigma_{x} & \mathbf{a} \wedge \sigma_{y}\end{array}\right)$

If $(\mathbf{a} \wedge \mathbf{b}) \neq 0$, every element of $\mathbf{A}^{-1}$ will be a scalar.

## Conclusion:

Moore-Penrose generalized matrix inverses $\mathbf{A}^{+}$consist of the scalar terms of Pauli algebra generalized matrix inverses $\mathbf{A}^{-1}$, which usually possess higher-dimensional terms, too.
$\mathbf{A}^{+}=\left[\begin{array}{lll}\left\langle(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\sigma_{x} \wedge \mathbf{b}\right)\right\rangle_{0} & \left\langle(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\sigma_{y} \wedge \mathbf{b}\right)\right\rangle_{0} & \left\langle(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\sigma_{z} \wedge \mathbf{b}\right)\right\rangle_{0} \\ \left\langle(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{a} \wedge \sigma_{x}\right)\right\rangle_{0} & \left\langle(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{a} \wedge \sigma_{y}\right)\right\rangle_{0} & \left\langle(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\mathbf{a} \wedge \sigma_{z}\right)\right\rangle_{0}\end{array}\right]$
$x=(\mathbf{a} \wedge \mathbf{b})^{-1}(\mathbf{r} \wedge \mathbf{b})=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\left(\sigma_{x} \wedge \mathbf{b}\right) r_{1}+\left(\sigma_{y} \wedge \mathbf{b}\right) r_{2}+\left(\sigma_{z} \wedge \mathbf{b}\right) r_{3}\right)$ $y=(\mathbf{a} \wedge \mathbf{b})^{-1}(\mathbf{a} \wedge \mathbf{r})=(\mathbf{a} \wedge \mathbf{b})^{-1}\left(\left(\mathbf{a} \wedge \sigma_{x}\right) r_{1}+\left(\mathbf{a} \wedge \sigma_{y}\right) r_{2}+\left(\mathbf{a} \wedge \sigma_{z}\right) r_{3}\right)$
$\underset{\text { (fit the bivector a } \wedge \text { b is pre-multipied trom the elff) }}{\text { In }} \mathbf{A}^{-1}=\frac{1}{\mathbf{a} \wedge \mathbf{b}}\left(\begin{array}{lll}\sigma_{x} \wedge \mathbf{b} & \sigma_{y} \wedge \mathbf{b} & \sigma_{z} \wedge \mathbf{b} \\ \mathbf{a} \wedge \sigma_{x} & \mathbf{a} \wedge \sigma_{y} & \mathbf{a} \wedge \sigma_{z}\end{array}\right)$
$\underset{\text { (lf the bivector a } \wedge \wedge \text { b is post-multipied fiom the ight) }}{ } \mathbf{A}^{-1}=\left(\begin{array}{lll}\sigma_{x} \wedge \mathbf{b} & \sigma_{y} \wedge \mathbf{b} & \sigma_{z} \wedge \mathbf{b} \\ \mathbf{a} \wedge \sigma_{x} & \mathbf{a} \wedge \sigma_{y} & \mathbf{a} \wedge \sigma_{z}\end{array}\right) \frac{1}{\mathbf{a} \wedge \mathbf{b}}$
As all elements of $\mathbf{A}^{-1}$ are products of two different bivectors, every element will be a linear combination of a scalar and a bivector.
$\Rightarrow$ Pauli Algebra generalized matrix inverses are left-sided matrix inverses:
$A^{-1} A=A$
$\left(\mathbf{A}^{-1} \mathbf{A}\right)^{\top}=\mathbf{A}^{-1} \mathbf{A}$
$\mathbf{A}^{-1} \mathbf{A} \mathbf{A}^{-1}=\mathbf{A}^{-1}$
$\left(\mathbf{A}^{-1} \mathbf{A}^{\top}\right)^{\top} \neq \boldsymbol{A}^{-1} \mathbf{A}^{-1}$
$\mathbf{A}^{-1} \mathbf{A}=\mathrm{I} \neq \mathbf{A}^{-}$
The fourth Moore-Penrose condition is only met by the scalar terms of $\mathbf{A}^{-1}$.

# The Geometry of Moore-Penrose Generalized Matrix Inverses (Example Problem) 

Martin Erik Horn

BSEL/HWR Berlin, FB 1 - Department of Business and Economics, FE Quantitative Methods

Email: e_hornm@doz.hwr-berlin.de


## Business Mathematics Example

 Scheme of Falk:

To find the solution values $x$ and $y$ the generalized inverse of the matrix of total demand $D^{-1}$ will be pre-multiplied from the le

To construct the generalized matrix inverse $\mathrm{D}^{-1}$ the outer products of the coefficient vec $a=3 \sigma_{x}+5 \sigma_{y}+4 \sigma_{z}$
$b=2 \sigma_{x}+4 \sigma_{y}+8 \sigma_{z}$ $b=2 \sigma_{x}$
are require



Business Mathematics Example
Elements of the generalized matrix inverse:
$D^{-1}=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3} \\ y_{1} & y_{2} & y_{3}\end{array}\right]$
$=-\frac{1}{418}\left(\sigma_{x} \sigma_{y}+12 \sigma_{\sigma_{2}}-8 \sigma_{z} \sigma_{x}\right)\left(-5 \sigma_{x} \sigma_{y}+4 \sigma_{z} \sigma_{x}\right)$
$=-\frac{1}{418}\left(-5 \sigma_{x} \sigma_{y} \sigma_{x} \sigma_{y}+4 \sigma_{x} \sigma_{y} \sigma_{z} \sigma_{x}-60 \sigma_{y} \sigma_{z} \sigma_{x} \sigma_{y}\right.$
$\left.+48 \sigma_{y} \sigma_{z} \sigma_{z} \sigma_{x}+40 \sigma_{z} \sigma_{x} \sigma_{x} \sigma_{y}-32 \sigma_{z} \sigma_{x} \sigma_{2} \sigma_{x}\right)$
$=-\frac{1}{418}\left(5+4 \sigma_{y} \sigma_{z}-60 \sigma_{z} \sigma_{x}\right.$
$\left.-48 \sigma_{x} \sigma_{y}-40 \sigma_{y} \sigma_{z}+32\right)$
$=-\frac{1}{418}\left(37-48 \sigma_{x} \sigma_{y}-36 \sigma_{y} \sigma_{z}-60 \sigma_{z} \sigma_{x}\right)$
$=\frac{1}{418}\left(-37+48 \sigma_{x} \sigma_{y}+36 \sigma_{y} \sigma_{z}+60 \sigma_{z} \sigma_{x}\right)$
$=\frac{1}{418}(-37+12 N)$


## Moore-Penrose Generalized Matrix

Inverses of Second Example
The Paulia algebra generalized matrix in
verse $D^{-1}$ of this problem has been:
$\mathrm{D}^{-1}=\frac{1}{418}\left[\begin{array}{rrr}68-12 \mathrm{M} & 94+8 \mathrm{M} & -64-\mathrm{M} \\ -37+12 \mathrm{~N} & -45-8 \mathrm{~N} & 84+\mathrm{N}\end{array}\right]$
with $M=8 \sigma_{\gamma} \sigma_{y}+2 \sigma_{y} \sigma_{2}+4 \sigma_{2} \sigma_{x}$

Thus the Moore-Penrose gererizad
inverse will be
$\mathrm{D}^{+}=\frac{1}{418}\left[\begin{array}{rrr}68 & 94 & -64 \\ -37 & -45 & 84\end{array}\right]$
because Moore and Penrose have
decided to neglect all hivector
decided to neglect all bivector terms

Result of Second Example Revisited


If exactly 120 units of the first raw ma-
terial $R_{1}$ and 220 units of the material $R_{2}$ are consumed, 20 units of
and
ne the first final product $P_{1}$ and 30 units of
the second final product $P_{2}$ will be produced.




