
Economathematical Starting Point 
 

More and more introductory business mathematics textbooks pre- 

sent Moore-Penrose generalized matrix inverses as elementary 

part of the foundations of mathematical economics. Generalized 

matrix inverses are regularly discussed in introductory courses 

e.g. at FH Schmalkalden & TU Dortmund. 
 

Didactical Problem 
 

Most textbooks introduce generalized matrix inverses by purely 

algebraic reasoning and the discussion of Moore-Penrose gen- 

eralized matrix inverses is  based on the four Moore-Penrose 

conditions: 

 

 

But to give a complete picture of these mathematical structures 

it is helpful to introduce and to describe Moore-Penrose gener- 

alized matrix inverses also by using geometric representations 

based on the ideas of Grassmann’s theory of extensions. 

 

Second Starting Point from the Perspective of Physics: Pauli Algebra and  Generalized Pauli Algebra (Geometric Algebra) 
 

Pauli Matrices represent base vectors of three-dimensional space. 

Generalized Pauli Matrices represent base vectors of higher-dimensional spaces. 
(And Dirac Matrices represent base vectors of four- or five-dimensional spacetimes.) 

 

   More about the foundation of this perspective will be discussed at the short talk SOE 9.2  “Pauli Algebras in Economics: Economathematics from Geometry to Didactics and back” at Tuesday, March 13, 2018, 10:45 – 11:00 h in room MA 001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Geometric Interpretation of the Solution Equations 
 

Outer products of two vectors can be interpreted as oriented area elements. And as a change of the coordinate system does not change the geometric 

situation, all ratios of the areas of the oriented parallelograms a  b, r  b, and a  r do not depend on the coordinate system. 

 

 

                                  a1 x + b1 y = r1                                                                                                                                 a1 x + b1 y = r1 
 

                                  a2 x + b2 y = r2                                                                                                                                 a2 x + b2 y = r2 
 

                                                                                                                                                                                          a3 x + b3 y = r3 

 

 

 
 

But a change of the coordinate system will change the algebraic description of the vectors, which now have three components instead of only two. Therefore 

the matrix inverse will have a different algebraic description, too. This generalized Pauli Algebra matrix inverse can be used to solve consistent systems of 

linear equations, even if theses systems have more equations than variables. 
 

Conventional Matrix Inverses and Generalized Matrix Inverses 
 

As Grassmann’s solution equations can always be written as a matrix multiplication, the lead matrix of this matrix multiplication will be the matrix inverse: 
 

                 x = (a  b)– 1 (r  b) = (a  b)– 1 ((sx  b) r1 + (sy  b) r2)     x = (a  b)– 1 (r  b) = (a  b)– 1 ((sx  b) r1 + (sy  b) r2 + (sz  b) r3) 
 

                 y = (a  b)– 1 (a  r) = (a  b)– 1 ((a  sx ) r1 + (a  sy ) r2)     y = (a  b)– 1 (a  r) = (a  b)– 1 ((a  sx ) r1 + (a  sy ) r2 + (a  sz ) r3) 
 
 

Inverse of a 2 x 2 square matrix:   A– 1 =                                                                   Inverse of a 3 x 2 matrix:   A– 1 = 
                                                                                                                                                                                                                                                                 (if the bivector a  b is pre-multiplied from the left) 

 
 

                         If (a  b) ≠ 0, every element of A– 1 will be a scalar.                         Or alternatively:                  A– 1 = 
                                                                                                                                                                                                                                                                 (if the bivector a  b is post-multiplied from the right) 

 

                                                                                                                                   As all elements of A– 1 are products of two different bivectors, every 

                                                                                                                                   element will be a linear combination of a scalar and a bivector. 
 

                                                                                                                                     Pauli Algebra generalized matrix inverses 

                                                                                                                                        are left-sided matrix inverses: 
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Overview of BSEL Geometric Algebra Crash Course: 
 

Part 1: Basic Foundations of Geometric Algebra 

Part 2: Solving Systems of Linear Equations 

            with two or three Unknown Variables 

Part 3: Direct Product & Solving higher-dimen- 

            sional Systems of Linear Equations 
 

Part 4: Transformation of Coordinates & 

            Gaussian Method of Solving Systems 

            of Linear Equations 
 

Part 5: Eigenvalues and Eigenvectors 

Part 6: Solving Systems of Linear Equations 

            with Sandwich Products 
 

Part 7: Generalized Matrix Inverses 

Addendum: Solving Systems of Linear Equa- 

            tions with the Geometric Algebra Al- 

            gorithms Optimizer (GAALOP) 

 

 

 

 

 

 

 

 
 

      With his theory of extensions Herman Günther Grassmann 

      (1809 – 1877) already invented generalized Pauli Algebra 

      and generalized Dirac Algebra. The solution of a system of 

      linear equations can be found by applying his solution equa- 

      tions of the first edition of his Ausdehnungslehre of 1844. 
 

               Written in modern form, the solution of consistent sys- 

               tems of linear equations 

               with two variables x, y 

               can be found with the following solution equations: 
 

               x = (a  b)– 1 (r  b)    or    x = (r  b) (a  b)– 1 
 

               y = (a  b)– 1 (a  r)    or    y = (a  r) (a  b)– 1 
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After having discussed the basics of Geometric 

Algebra and the Geometric Algebra solution 

scheme of systems of linear equations with the 

students at previous lessons, a two hour lecture 

(2 x 45 min.) was required to introduce Pauli al- 

gebra generalized matrix inverses and Moore- 

Penrose generalized matrix inverses. 

 A A+A  = A                     (A+A)T = A+A 
 

A+A A+ = A+                   (A A+)T = A A+ 

Die Wissenschaft 
 

der 
 

e x t e n s i v e n   G r ö s s e 

 

oder 
 

die Ausdehnungslehre, 
 

eine neue mathematische Disciplin 
 

d a r g e s t e l l t  u n d  d u r c h  A n w e n d u n g e n  e r l ä u t e r t 

 
von 

Hermann Grassmann 
Lehrer an der Friedrich - Wilhelm - Schule zu Stettin 

 
Erster Theil, 

die lineale Ausdehnungslehre enthaltend. 

 
Leipzig, 1844. 

V e r l a g  v o n  O t t o W i g a n d 

a x + b y = r 

coefficient vectors:                        coefficient vectors: 
 

a = a1 sx + a2 sy                         a = a1 sx + a2 sy + a3 sz 
 

b = b1 sx + b2 sy                         b = b1 sx + b2 sy + b3 sz 
 

resulting vector:                         resulting vector: 
 

r  = r1 sx + r2 sy                         r  = r1 sx + r2 sy + r3 sz 
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1
   but   (A A–
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10 

       A– 1  A = I ≠ A A– 1 
 

The fourth Moore-Penrose condition 

is only met by the scalar terms of A–
 

1. 

Conclusion: 
 

Moore-Penrose generalized matrix inverses A+ consist of the scalar 

terms of Pauli algebra generalized matrix inverses A–
 

1, which usually 

possess higher-dimensional terms, too. 
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