GDM —=Jahrestagung
Heidelberg 2016

More Examples of Non-Square Matrix Inverses

— Extended version of the paper “Inverse von Rechteck-Matrizen” [5]
(Inverses of Rectangular Matrices), written in German for the annual meeting
of the Society of Mathematics Education (GDM) 2016 in Heidelberg —

Martin Erik Horn

Hochschule fiir Wirtschaft und Recht Berlin / Berlin School of Economics and Law
Badensche Str. 52, Fach No. 63, D — 10825 Berlin, Germany

MSB Medical School Berlin, Calandrellistr. 1-9, D — 12247 Berlin, Germany
mail@martinerikhorn.de

English Abstract

In conventional linear algebra the discussion of matrix inverses is usually limited to inverses of
square matrices. But Geometric Algebra opens a didactical path to find and to discuss (left-sided)
inverses of non-square matrices as well.

It is shown with examples from business mathematics how such inverses of non-square matrices
can be constructed and how they can be used to model economic situations.

German Abstract

Die konventionelle Lineare Algebra bezieht sich bei der Diskussion von Inversen in der Regel nur
auf quadratische Matrizen. Die Geometrische Algebra erdffnet einen didaktischen Weg, auch
(linksseitige) Inverse von Rechteck-Matrizen zu diskutieren.

Anhand von Beispielen aus der Wirtschaftsmathematik wird erdrtert, wie solche Inversen von
Rechteck-Matrizen konstruiert und zur Modellierung 6konomischer Sachverhalte eingesetzt wer-

den konnen.

1. Preliminaries

This paper builds on short talks given at the annual
meetings of the Society of Mathematics Education
(GDM — Gesellschaft fir Didaktik der Mathematik)
of last year [2] and of this year [5]. It is intended
to show that the left-sided inverse of a non-square
m X n matrix A = (a;) with m rows and n columns
(m > n) can be found as n x m matrix

This didactical approach has been implemented
successfully in universities of applied sciences with
mathematically interested and highly capable stu-
dents [3] as well as with students who show a more
reluctant attitude towards mathematics [6]. Thus
Geometric Algebra has proved its worth as a mathe-
matical language to model Linear Algebra in a mod-
ern way.

A'=(@Arasn...Ad) (@AdA ... AQGIAGI A A ... Ady) {1}

with n rows and m columns in a didactical easily
accessible way. This approach relies on two essen-
tial didactical foundations:

e While at present the interpretation of matrices is
mainly based on the row picture in schools and
universities, matrix A will be interpreted col-
umnwise in the following. Thus Matrix A con-
sists of n coefficient vectors a;.

e Following Geometric Algebra, vectors will be
described as linear combinations of generalized
Pauli matrices in the following. Thus vector a; is
written as

=20+ a0, ... Tag oy {2}

There every Pauli matrix o; represents a unit vec-
tor pointing into the direction of i.

2. Interlude motivated by physics education

As part-time mathematician with roots in physics the
author of this paper will follow the Babylonian tradi-
tion which Feynman characterizes as inherent of
physics and physics education: The old Babylonians
didn’t know any methods to write down equations.
Instead they produced one example after another —
That’s all! (,,Die alten Babylonier kannten keine
Methode fiir das Aufschreiben von Formeln. Statt-
dessen machten Sie ein Beispiel nach dem anderen —
das ist alles* [1, p. 70]).

The mathematical approach described in section 1
thus will be presented and discussed in the following
by showing and explaining examples — just in the
same way, students are taught mathematical strate-
gies in universities of applied sciences.
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3. Alinear algebra examination problem

At the written examination of learning module M 22
“Mathematics and Statistics” of students studying
for a bachelor’s degree “Medical Controlling and
Management* the following problem was asked:

To produce one unit of the first final product E;
5 units of raw material R; and 8 units of raw
material R, are required.

To produce one unit of the second final pro-
duct E, 2 units of raw material R; and 4 units
of raw material R, are required.

Find the quantities of the first and second final
products E; and E, which were produced if at
the production process exactly 60 units of raw
material R; and 100 units of raw material R,
had been consumed.

This problem can be modeled by a matrix equation
of the demand matrix A, production vector p, and
the total demand vector of raw materials r:

ool )l @

Usually students decide for a direct solution of this
problem by calculating the outer products of the
coefficient vectors and the resulting vector. An ex-
ample of such a solution is shown in figures 1-5.

First, the student identified the coefficient vectors a,
b and the resulting vector r, using the scheme of
Falk as a helpful mathematical tool (see fig. 1).

Then the student calculated the geometric product
ab. The bivector part of this geometric product can
be identified with the outer product a A b, which
represents the determinant of matrix A (see fig. 2).

After that the geometric products r b and a r and
thereupon the outer products r A b and a A r were
calculated. By comparing these bivectors with the
determinant bivector a A b, the student was able to
identify the solutions of x (see fig. 3) and of y (see
fig. 4).

Finally, the correct results were checked and an
answer was given (see fig. 5). While the mathemat-
ics of this solution is correct, the interpretation of the
student is faulty and confusing. But such interpreta-
tive problems concern the basic analysis of the logi-
cal structure of the question which the student is
expected to answer. This basic logical analysis
should be done by students before any mathematical
tool is applied and thus does not depend on the
mathematical tool chosen later.

Nearly all students solved the mathematical part of
this problem in a correct way, showing that it is
possible to teach and discuss linear algebra by using
Geometric Algebra as a highly efficient mathemati-
cal language.
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Fig.1: Identification of Pauli vectors a, b, and r
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Fig.2: Calculation of the outer product a A b which represents the
determinant of A.
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Fig.3: Calculation of outer product r A b and comparison of the
outer products 2) and 4) to identify the solution of x.
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Fig.4: Calculation of outer product a A r and comparison of the
outer products of 2) and 7) to identify the solution of y.
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Fig.5: Check of the correct results, while the answer is interpreted in
a confusing and faulty way by the student®.

! The arrangement of the student solution has been modified for better clarity.



4. Solving the linear algebra examination prob-
lem with the matrix inverse

Besides the direct solution discussed in the previous
section, it is possible to solve the given linear alge-
bra examination problem with the inverse of matrix
A. The definition of the inverse

AAlz{S 2}{& xz}:[l 0} @
8 41|y, VY, 0 1

shows, that two distinct systems of two linear equa-
tion with two different resulting Pauli vectors

R {5}
8 4lly,| |o P
5 2][x,] [0

= = G, 6
ol = o

emerge. The fictitious (but reasonable) interpretation
of the elements of the inverse matrix can be de-
scribed and explained by the hypothetical questions:

How many units of the final products E; and E,
would be produced, if at the production pro-
cess exactly 1 unit of the first raw material Ry
was consumed?

And how many units of the final products E;
and E, would be produced, if at the production
process exactly 1 unit of the second raw mate-
rial R, was consumed?

These elements of the inverse matrix A ' can be
found by the same mathematical idea discussed in
section 3: Outer products (or bivectors or oriented
area elements) are compared. The results then are:

X =(aAd) (oxnd)= 1 {7

V= (@na)  (Ac)=-2 {8}
and

Xo=(a Adp) (oynay)=—05=—1/2 {9}

Y= (a1 Ad) (ayncy) = 1.25= 5/4 {10}
These results are a simple application of eq. {1}.
The negative values indicate, that this hypothetical
consumption is not realized in real economic situa-

tions. Nevertheless it makes sense mathematically,
because the expected results

CAlps 1-1/2}| 60| |10 an
P -2 5/4(]100 5
can be found using these values of the inverse ma-

trix. Of course they are identical to the results (see
fig. 5, #9) found by direct calculation.

A more detailed explanation of this solution strategy
can be found in the literature [3], [6]. The OHP
slides, which had been used in several business
mathematics courses of universities of applied sci-
ences [4], [7] can be downloaded.

More Examples of Non-Square Matrix Inverses

5. Modified linear algebra examination problem

In real product engineering situations it will be a rare
coincident if the number of required raw materials
and the number of final products, which are pro-
duced, are equal. Generally more raw materials are
required to produce some final products, resulting in
a non-square demand matrix with more rows than
columns (m > n).

Therefore the linear algebra examination problem is
extended, and a third raw material is taken into ac-
count to model a more realistic situation:

To produce one unit of the first final product E;
5 units of raw material R4, 8 units of raw mate-
rial Ry, and one unit of raw material R; are
required.

To produce one unit of the second final pro-
duct E, 2 units of raw material R4, 4 units of
raw material R,, and 6 units of raw material
R; are required.

Find the gquantities of the first and second final
products E; and E, which were produced if at
the production process exactly 60 units of raw
material Ry, 100 units of raw material R,, and
40 units of raw material R; had been con-
sumed.

Again this problem might be solved directly, trans-
forming the non-square demand matrix B and the
total demand vector of raw materials r

5 2 « 60
r=Bp=(8 4 {}= 100 {12}
16 40
into Pauli vectors
b= 50,+ 80,+ o {13}
b= 20,+ 40,+ 60, {14}
r =60 o, + 100 , + 40 o, {15}

and calculating the outer products
b;Ab,=40,0,+4406,06,-280c,0, {16}
rab, =400,0, + 440 6,0, — 280 55, {17}
b; Ar =200,0, + 220 6,0, — 140 5,5, {18}

As every Pauli vector is parallel to the same plane

represented by unit bivector

b,Ab, b,Ab, b, Ab,

b, Ab,| T by Ab,| T by Aby|

B =

1
= —— (0,0, + 1l 0,0,— 7 030 19
3\/15 ( 1v2 23 3 1) { }
this system of three linear equations is consistent
and a unique solution exists. This solution can again
be found by comparing the outer products {17} &
{18} with determinant bivector {16}, resulting once
again in
x=10 and y=5 {20}
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6. Solving the modified linear algebra examina-
tion problem with a matrix inverse

As seen, the overconstrained, but consistent system
of three linear equations and only two variables {12}
can be solved directly by comparing outer products.
We might be happy by having found the solution.

But from a mathematical perspective, it is interesting
to look for another solution strategy which is based
on the idea to first find an inverse matrix B *. Using
this matrix inverse, the solution can then be calculat-
ed on the analogy of section 4.

Arguing by analogy one could claim that the defini-
tion of the right-sided inverse

5 2 100
BB '=|8 4{)(1 X2 Xﬂ:o 1 0f{21}
L el Yo Y 00 1

shows, that the three distinct systems of three linear
equation with three different resulting Pauli vectors

5 2] - 1
8 4 1}: 0| = n=o {22}
16 il g
5 2] T 0]
8 4||7%|=|1] = r=0, {23}
16 Y2 ] 0]
5 2] ] 0]
8 4 *I=l0| = r=o, {24}
16 Y 1]

will give the following elements of the right-sided
matrix inverse:

1 1 {46—22i—44j+66k 64+14i+28j—42k -58-2i-4j+6k

x1= (b, Ab,) " (o, A b)) {25}
= Hil (46 — 66 0,0, — 22 6,05 — 44 5,0,)
y1= (b, Ab,) " (b, AGy) {26}
6;4 (-15+11 0,0, + 55 0,0, + 88 0,45,)
and
~ 684| —15+55i+88j—11k
X = (b, Aby) " (5, A b)) {27}
= %84 (64 + 42 6,0, + 14 5,0, + 28 050,)
Yo = (b Ab,) ! (b, A Gy {28}
684 (-6-7 0,0, 350,0;— 56 050;)
and

Xs = (b, ADy) " (05 A b)) {29}
= 58d (-58 -6 0,0, 20,0; -4 0;0,)
ys= (b, Ab,) " (b, A G3) {30}
6;4 (123 + 0,0, + 5 6,0, + 8 550;)

But as Rota perhaps said, “many great teachers are a
bit like con men” [8, p. 9], it was withhold till now,
that the coefficient vectors b,, b, and the resulting
vectors ry, I, r; are no longer parallel to a joint
plane. Therefore a right-sided matrix inverse has
indeed not been found.

Instead the results {25} to {30} make up perfect
elements of a left-sided matrix inverse B~

5 2

1 X, X, X 10
B 'B= 8 4= {31}
Yi Yo Yal| o 01

Thus the result of the modified linear algebra exam-
ination problem as expected is

60

1 X, X, Xg 10
p=B r= 100 | = 132}
Yi Yo Ysl| 0| LO

7. Quaternionic interpretation

Inverses of non-square matrices can be constructed
and used to solve consistent systems of linear equa-
tions in the way shown above. They allow an alter-
native mathematical approach to systems of linear
equations.

In addition, they not only allow an alternative ap-
proach, but also an alternative view of systems of
linear equations. An essential property of the inverse
calculated above is mterestlng The elements of the
left-sided inverse B~ {25} to {30} are not real
numbers, but linear combinations of real numbers
and bivectors. Thus they show a quaternionic struc-
ture.

If the unit bivectors are identified with unit quater-
nions
i= 0,0,

=030, k=-oy0, {33}

the left-sided matrix inverse B~ can be written as

—-6-35i-56j+7k 123+5i+8j—k } {34)

This approach thus leads to a convincing motivation
for quaternions: Quaternionic numbers are necessary
to construct non-square matrix inverses.

And it shows, how quaternions can be generalized in
an easy and elegant way: We simply have to in-
crease the number of raw materials and of final
products to get higher grade elements of inverse
matrices. These higher grade elements might then be
identified with generalized quaternions.



8. Rotating systems of linear equations

We now have two different systems of linear equa-
tions {3} and {12} which possess identical solutions
{11} and {32}.

If solutions are identical, why shouldn’t be systems
of linear equations be identical, too? As a physicist
with a strong emotional commitment to relativity, it
makes sense to ask whether two systems of linear
equations might be nothing else than one and only
one system which we look at from two different
perspectives.

Thus it might be possible to rotate the system of li-
near equations with Pauli vectors b,, b,, r,{13},
{14}, {15} which are parallel to a plane represented
by unit bivector B {19} into a system of linear equa-
tions with Pauli vectors which are parallel to a plane
represented by unit bivector

A =00, {35}
The axis of rotation it then represented by unit vec-
tor A which points into the direction of the dual of
the commutator product of bivectors A and B, while
the plane, in which the rotation takes place, is repre-
sented by unit bivector N which is parallel to the
commutator product:

(7 0,05 + 11 0,40,) {36}

F (7o,+11c,) {37}

1
=lA= — (7To,0,+1l o0 38
\/ﬁ( 2V3 31) { }

The angle of rotation can be found by comparing the
unit vectors of both planes

A=AR= :]§%6f(11 5,75, 39}
fy=Bfiz=—— (11o,-70,-170 oy
perpendicular to the axis of rotation:
003a=naonb=ﬁ=ﬁ {41a}
= o~ 85.6142° {41b}

Thus the rotor to permit this rotation is then given by
n,+n, _ A, +A, a

R=n, .
. \n +nb\
1 A A
= 72(1”‘@1”1)) {42a}
+7
V171

_1++4171+ 70,0, +110,0,

V2 171+ 171

{42b}

with

More Examples of Non-Square Matrix Inverses

cos % _ 1+ 1 / 1 (432}
2 V2 VT

= al/2~42.8071° {43b}

Now the consistent system of three linear equations

of plane B {12} can be rotated into a system of only

two linear equations lying in the xy-plane with Pauli
vectors

¢, =Rb;R {44}
=10 F(( 6+5v171) o, + (15+8V171) 5, )
c,=Rb,R {45}
1+F(( 64-+ 24171 o, + (46 + 44171) 5, )
rr=RrR {47}
1
- m((—380+60\/ﬁ) 5, +(380 +100171) o,

From a mathematical point of view this rotated sys-
tem {48} of two linear equations

cX+cy=r {48}

is completely equivalent to the system {12}, {49} of
three linear equations

b, x+b,y=r {49}

as the geometric properties of all vectors are identi-
cal. They include identical angles, possess identical
lengths and will result in an identical solution {20},
{53}.

But from an economical point of view the rotated
system of linear equations of course describes a
completely different product engineering situation,
as the ‘rotated’ problem includes negative consump-
tion rates for the second raw material. Thus the se-
cond raw material was not consumed, but produced
when producing the second final product.

The corresponding ‘rotated’ problem can then be
stated as:

To produce one unit of the first final product E;
4.2186 units of raw material R; and 8.4973
units of raw material R, are required.

To produce not only one unit of the second fi-
nal product E; but also 2.6886 units of the first
raw material Ry, 6.9837 units of raw material
R, are required.

Find the quantities of the first and second final
products E; and E, which were produced if at
the production process 28.7427 units of the
first raw material R; had been produced and
119.8910 units of the second raw material R,
had been consumed.

The solution of this problem can be found by rotat-
ing the outer products {16}, {17}, {18} into the xy-
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plane
A =R(iAb,)R=12V19 6,0, {50}
rrac;=R(rAb,)R=12019 6,5, {51}
CiAr =R(rab,)R=60419 6,6, {52}
resulting as expected in
x =10 and y=5 {53}
As these results are scalars, it is even possible to

declare these results as the outcome of a rotation of
scalars

X=RXR=xRR=10 {54a}
y=RyR=yRR=5 {54b}
which do not change when rotated.

Unfortunately the values of r’ {47} and r {3} and
the angles between their coefficient vectors are dif-
ferent. Therefore the two equivalent systems of
linear equations {48}, {49} are not equivalent to the
first simple system of linear equations {3}.

9. Right-sided matrix inverses

If a matrix consists of more columns than rows the
left-sided inverse equals to zero. The coefficient
vectors will be not linear independent and the outer
product will disappear.

As the matrix equation then produce less equations
than existing unknowns no unique solution can be
found.

But in this case a right-sided matrix inverse can be
defined. This right-sided matrix inverse can simply
be constructed by transposing the matrix equation,
thus resulting again in a transposed matrix which
possess more rows than columns.

10. Outlook

If a system of n linear equations can be described by
a matrix A which consists of n linear independent
coefficient vectors, we are able to find a matrix
inverse as described in the previous sections (and
shown again in the attachment).

This system of n linear equations

r=Ap {55}
is called consistent, if the resulting vector r and the
coefficient vectors are not linear independent. Then
a unique solution vector p of the system of linear

equations can be found by pre-multiplication of the
matrix inverse A

p= Alr {56}
The system of n linear equations {55} is called in-
consistent, if the resulting vector r and the coeffi-
cient vectors are linear independent. Then a unique
solution with real elements does not exist. But solu-

tion vector p {56}, which will have generalized
quaternionic elements, will exist.

Therefore it makes sense to call solution vector p

{56} a solution of the inconsistent system of linear
equations, which will be discussed in [9].

11. Literature

[1] Feynman, Richard (2006): Physik. »The Lost
Lectures«. Miinchen: Pearson Studium.

[2] Horn, Martin Erik (2015): Ein physikdidakti-
scher Blick auf die Lineare Algebra. In: Franco
Caluori, Helmut Linneweber-Lammerskitten,
Christine Streit (Eds.), BzZMU — Beitrage zum
Mathematikunterricht 2015, Band 1, pp. 408-
411, Minster: WTM.

[3] Horn, Martin Erik (2015): Lineare Algebra in
physikdidaktischer Ausprédgung. PhyDid B —
Didaktik der Physik, Beitrage zur DPG-
Frihjahrstagung in Wuppertal 2015. URL
[17.12.2015]: http://phydid.physik.fu-
berlin.de/index.php/phydid-b/article/view/626,
http://www.phydid.de/index.php/phydid-
b/article/view/626/756.

[4] Horn, Martin Erik (2015): Modern Linear Al-
gebra. A Geometric Algebra Crash Course.
OHP Slides of mathematics course 200691.01
— Mathematics for Business and Economics,
BSEL/HWR Berlin, published as attachment
of [3]. URL [17.12.2015]:

Part I:
http://www.phydid.de/index.php/phydid-
b/article/view/626/794,

Part II:
http://www.phydid.de/index.php/phydid-
b/article/view/626/795,

Part Il1:
http://www.phydid.de/index.php/phydid-
b/article/view/626/796.

[5] Horn, Martin Erik (2016): Inverse von Recht-
eck-Matrizen. Submitted to: Institut fir Ma-
thematik und Informatik Heidelberg (Eds.),
BzMU — Beitrdge zum Mathematikunterricht
2016, Minster: WTM.

[6] Horn, Martin Erik (2016): Die Geometrische
Algebra im Schnelldurchgang. Submitted to:
PhyDid B — Didaktik der Physik, Beitrage zur
DPG-Friihjahrstagung in Hannover 2016.

[71 Horn, Martin Erik (2016): Moderne Lineare
Algebra — Ein Uberblick. OHP-Folien des Mo-
duls M22 — Mathematik und Statistik, MSB.
Submitted as attachment of [6].

[8] Rota, Gian-Carlo (1997): Indiscrete Thoughts.
Boston, Basel, Berlin: Birkh&user.

[91 Horn, Martin Erik (2016): Solving Inconsistent
Systems of Linear Equations. In preparation,
will be uploaded soon at www.vixra.org.



http://phydid.physik.fu-berlin.de/index.php/phydid-b/article/view/626
http://phydid.physik.fu-berlin.de/index.php/phydid-b/article/view/626
http://www.phydid.de/index.php/phydid-b/article/view/626/756
http://www.phydid.de/index.php/phydid-b/article/view/626/756
http://www.phydid.de/index.php/phydid-b/article/view/626/794
http://www.phydid.de/index.php/phydid-b/article/view/626/794
http://www.phydid.de/index.php/phydid-b/article/view/626/795
http://www.phydid.de/index.php/phydid-b/article/view/626/795
http://www.phydid.de/index.php/phydid-b/article/view/626/796
http://www.phydid.de/index.php/phydid-b/article/view/626/796
http://www.vixra.org/

12. Attachment: More example problems

The following problems can be solved directly (see
section 5). Solutions which use non-square matrix
inverses are given below.

o Additional example problem 1:

To produce one unit of the first final product E;
5 units of raw material R; and 6 units of raw
material R, are required.

To produce one unit of the second final pro-
duct E, 3 units of raw material R; and 4 units
of raw material R, are required.

To produce one unit of the third final product
Ez 1 unit of raw material R; and 2 units of raw
material R, are required.

The total costs of raw materials to produce one
unit of the first final product E; are € 170.

The total costs of raw materials to produce one
unit of the second final product E, are € 110.
The total costs of raw materials to produce one
unit of the third final product E; are € 50.

Find the prices of the raw materials R; and R».

e Solution of additional example problem 1:

. 5 31
Demand matrix: D=
6 4 2

More Examples of Non-Square Matrix Inverses

Outer products (sub-determinants):
o,Ab= 40,0,-20,0,
c,Ab=-60,0,+20,05
o;Ab=-40,0;,+6 050,
anoc,=-30,0,+ 050
anoc,= 50,0,—- 0,0,
anocy= 30,0;—50;0;
Elements of inverse matrix:
x1=(anb) ' (o, Ab)
= é (8-20,0,-6 0,0, -4 5,0,)

%= (@nb) ' (o, ADb)
1
=0 (-4+4o0,0,+120,0,+8 0y0;)
Xs=(@nb) ' (o5 ADb)

1
T (-16 -2 6,0,-6 6,0, -4 5;0;)

yi=@nb) ' @ncy

_ % (-5+ 6,0, +5 6,0, + 36,0,
y,=(@nb) " (@ancy

= % (4 -2 0,0, 10 6,0, - 6 650,)
y.=(@an b)f1 (anoy)

1
=0 (13 + 5,0, + 5 0,05 + 3 5650,)

Inverse matrix:

(o)

12

pr=[x y]=2
¢'=[170 110 50]

Price vector:

Total cost vector:
System of linear equations: p'D=c’
Transposed system of linear equations:
5 6 170
T X
D'p=(3 4 [}:110 =c
1 2 y 50

Coefficient vectors: a =5c,+30,+ o
b=6c,+40,+20c,
Resulting vector: € =170c, + 11006, + 50 o4
Outer products (determinant):
anb=20,06,+20,0;—40;0,

11
(anb) = o (- 0,0, — 0,05 + 2 0,0,)

-5+0,0, +50,0, +30,0;

-1 1 ( 8-20,0, -60,0, —40,06, —4+40,0,+126,6,+80,0, —-16-20,0, —60,0, —40,0,

4-20,0, -100,0, — 60,0,

Solution of price vector:

170] g
=(0") ¢=(0") '|110] =
p=(D") c=(D) 50 20

= One unit of the first raw material R, costs € 10.

One unit of the second raw material R, costs € 20.

13+ 0,0, +50,0; + 30,0,

)



Horn

e Additional example problem 2:

To produce one unit of the first final product E;
7 units of raw material R4, 5 units of raw mate-
rial R,, 3 units of raw material R3, and one unit
of raw material R, are required.

To produce one unit of the second final pro-
duct E, 8 units of raw material R;, 6 units of
raw material R,, 4 units of raw material Rj,
and 2 units of raw material R, are required.

Find the quantities of the first and second final
products E; and E, which were produced if at
the production process exactly 2070 units of
raw material R;, 1530 units of raw material R,
990 units of raw material R3, and 450 units of
raw material R, had been consumed.

¢ Solution of additional example problem 2:

Demand matrix: D=

= w o1
N M OO

X
Production vector: p = { } =?
y

2070
Total demand of raw materials: r= 1530
990
450
System of linear equations:
7 8 2070
5 6||X 1530
Dp= = =r
3 4]y 990
1 2 450

Coefficient vectors: a =70,+50,+30;+ o,
b=8c,+60c,t40,+20,
Resulting vector:
r =2070 o, + 1530 5, + 990 5, + 450 5,
Outer products (determinant):
anb= 2oc,0,+40,6;+60,0,
+20,0;,+40,0,+20;0,

(an b)71 = f% (0,0, +2 6,05 +3 0,0,
+6,05 20,0, % 030,)
Outer products (sub-determinants):
o,Ab= 60,0,+40,0;+20,0,
o,Ab=-80,0,+40,0;+20,0,
o;Ab=-80,0,-60,0;+20;0,
o,Ab=-80,6,-60,0,—4 050,
ano,=-50,0,-30,0;— 0,0,
anoc,= 70,0,-30,0;— 0,0,
ano;= 70,0;+50,06;— 050,

anc,= 7o,0,+50,0,+30;0,

Elements of inverse matrix:
X =(@nb) ' (o, Ab)
1
=20 (20 -8 0,0, + 4 5,0, + 16 5,0,
-8 0,05 — 16 6,0, — 8 050,)
%, =(@nb) ' (o, ADb)
1

20 (0+1406,0,-126,0,-18 5,5,

+ 14 6,05 + 28 6,6, — 6 050,)
Xs=(@nb) (o5 b)
1

= 20 (-20-4 0,0, +12 6,0, - 12 5,0,

-4 0,0, - 8 0,0, + 36 550,)
x;=(@nb) ' (o, Ab)
1

=20 (-40-20,0,-40,0,+14 0,0,

-20,0,—-40,0,—22 0,6,)

y,=(anb) ' (@ncy)

1
=20 (-14+50,0,-40,6;,—-13 0,0,
+7 0,0, + 14 0,0, + 7 650,)
Y,=@nb)" (@ncy)
1
=20 (2-90,0,+100,0,+ 1500,
-13 6,05 - 24 5,0, + 5 055,)
y;=(@nb) " (@ncy
1

20 (18 + 306,0,-8 6,0, +9 5,0,

+5 0,05 + 6 0,0, — 31 550,)
Yi=(@nb)*(@@noy)
1
=20 (34 + 0,0, + 20,05 — 11 550,
+ 0,05 + 4 0,0, + 19 050,)

—1

Inverse matrix: D =

20-80,0, +40,0, +160,0, 146,06, -1206,6, -180,6, —-20-40,0, +120,06,-1206,6, -40-20,0, —40,0,+140,0,

1 -80,0, —160,5, —-80,0, +1406,0, + 280,06, — 60,0, -40,0, —80,0, +360,0, - 20,0, -40,0, —220,0,

40| -14+56,0, — 40,6, -136,6, 2-90,6,+106,6,+155,6, 18+ 30,6, 80,0, +90,G, 34+o0,0,+20,0,-1lo,G0,

+76,0, +140,6, + 70,0, -130,0, - 240,05, + 50,0, +50,0; + 60,0, —3lo,0, +0,0, +46,6, +190,0,



Solution of production vector:

2070

0=D'r=p" 1530 2[90}
990 180
450

= 90 units of the first final product E; and
180 units of the second final product E,
had been produced.

¢ Additional example problem 3:

To produce one unit of the first final product E;
7 units of raw material R4, 5 units of raw mate-
rial R,, and one unit of raw material R, are re-
quired.

To produce one unit of the second final pro-
duct E, 8 units of raw material Ry, 3 units of
raw material R3, and 2 units of raw material R,
are required.

To produce one unit of the third final product
E; 6 units of raw material R,, and 4 units of
raw material R; are required.

Find the quantities of the first, second and third
final products E;, E,, and E3 which were pro-
duced if at the production process exactly
2070 units of raw material Ry, 2610 units of
raw material R,, 1980 units of raw material R3,
and 450 units of raw material R, had been
consumed.

¢ Solution of additional example problem 3:

7 8 0
Demand matrix: D= 506
0 3 4
1 20
X
Production vector: p=|y| =7
Z
2070
Total demand of raw materials: r= 2610
1980
450

System of linear equations:

More Examples of Non-Square Matrix Inverses

7 8 0 « 2070
5 0 6 2610
Dp= y|= =r
0 3 4 , 1980
120 450
Coefficient vectors: a =706,+50,+ o,

b=80c,+30;+20,
c =60,+40;
Resulting vector:
r = 2070 o, + 2610 o, + 1980 5, + 450 5,

Outer products (determinant):
anbac=-286c,0,0,-36c,0,0,
— 24 6,050, — 58 0,050,

(arnbna C) (143 c,0,0; *+ 18 5,0,0,

43516
+12 0,040, + 29 0,0,40,)
Outer products (sub-determinants):
o, Abac=-186,0,0; — 12 5,6,0, - 8 5,050,
6, AbAC=-320,6,0;-8 0,050,
ogAabac= 480,0,0;+12 6,0;0,
o,AbAac= 480,0,0,+ 32 0,6;,0,— 18 5,055,
ano; AC=-200,0,0; +6 0,0,0, +4 0,650,
anoc,AnC= 280,0,0;+40,0,0,
aAo;AC=-426,0,0;—6 6,050,
anoc,AC=-420,0,6,— 28 5,050, - 20 6,050,
anbao,= 150,0,0;+ 10 6,6,0,— 3 6,0;0,
anbno,=-210,0,6;-60,0,6,-3 0,050,
aAbnaoy;=-400,0,0; -6 6,0;0, - 10 6,0,0,
anbao,=-400,0,0, +21 5,056, + 15 0,050,
Elements of inverse matrix:
x1=(@rbac) ' (o, AbAC)
~ 43516
- 928 6,0, + 1392 6,5,)
x,=(@nrbac) (c,AbAcC)
(4808 + 96 o,0, — 144 5,0, + 216 5,0,
+ 384 6,0, — 576 6,0,)
xs=(@abnac) (oAb AcC)

43516

~ 43516
- 576 o,0, + 864 5,0,)

x;=(@nrbac) (o, AbAc)

(- 726 + 1144 5,6, — 1716 5,0,

" 43516
+ 2574 ¢,6, + 4576 o,0, — 6864 c,0,)

(2886 — 232 5,0, + 348 5,06, — 522 5,0,

(-7212-144 5,0, + 216 5,0, — 324 5,5,



Inverse matrix:

Horn

ylz(a/\b/\c)fl(a/\cl/\c)

2704 + 11 174
= 13516 (270 6 0,0, — 6,05
- 580 o,0, + 812 5,0, — 1218 6,0,)
=(a/\b/\c)fl(a/\02/\c)
1

= 13516 (- 4120 -48 6,0, + 72 5,04

+ 240 o,0, — 336 0,0, + 504 5,5,)
:(a/\b/\c)’l(a/\c%/\c)
1
6180 + 72 —108
= 43516 ¢ 102 = 8 010
- 360 o,0, + 504 5,0, — 756 G,0,)

y4:(a/\b/\c)’1(a/\c4/\c)

= 13516 (1672 - 572 5,0, + 858 5,0,
+ 2860 6,0, —4004 c,5, + 6006 550,)

1

D =

zi=(@rbac) ' (@arbnrcy)

(-2289-87 5,0,-290 5,6, + 435 5,0,

~ 43516
+ 174 6,0, — 609 6,0, — 1160 c;0,)
ZZZ(a/\b/\C)fl(a/\b/\Gz)

= 13516 (3198 + 36 0,0, + 120 5,0, — 180 5,0,
- 72 6,0, + 252 0,6, + 480 G,0,)

23:(a/\b/\c)fl(a/\b/\03)

(6082 — 54 5,6, — 180 5,0, + 270 5,0,

+ 108 c,0, — 378 0,0, — 720 650,)

Z4:(a/\b/\C)71(a/\b/\G4)

43516

(33 +429 o,0, + 1430 6,0, — 2145 5,0,

~ 43516
— 858 6,0, + 3003 6,0, + 5720 c40,)

2886 — 2320,0, +3480,6, —5220,0,
—-9280,0, +13926,0,

2704 +1160,0, —1740,6, —5800,0,
43516 +8120,0, -12180,0,

—2289-870,6, — 29000, +4350,0,

+1746,0, - 6090,5, —11600,0,

4808 + 960,06, —1440,0, + 2160,0,
+3846,0, —5760,0,
—4120-480,0, + 720,0, + 2400,0,
—-3360,0, +5040,0,
3198 + 360,0, +1200,6, —1800,0,
- 726,06, +2520,6, +4800,0,

Solution of production vector:

—7212-144c6,0, + 2160,6, —3246,0,
-5760,0, +8640,0,
6180 + 720,06, —1080,0, —3600,0,
+5040,0, —7560,0,
6082 —546,0, —1800,6, + 2700,0,
+1086,0, —3780,0, — 72000,

—726-11446,6, —171606,0, — 25740,G,
+45766,6, —68640,0,
1672 -5720,0, +8580,0, + 28600,G,
—400406,0, +60060,0,

33+4290,0, +14300,0, — 214506,0,
—8580,0, +30030,6, +57200,0,

2070
2610 | [ 3640 90
p=D'r=D" 1080 | = Z351| 7832880 =| 180
s 15665760 | | 360

90 units of the first final product Ej,
180 units of the second final product E,,
and 360 units of the third final product Ej
had been produced.
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