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English Abstract 

In conventional linear algebra the discussion of matrix inverses is usually limited to inverses of 

square matrices. But Geometric Algebra opens a didactical path to find and to discuss (left-sided) 

inverses of non-square matrices as well. 

It is shown with examples from business mathematics how such inverses of non-square matrices 

can be constructed and how they can be used to model economic situations. 

 

German Abstract 

Die konventionelle Lineare Algebra bezieht sich bei der Diskussion von Inversen in der Regel nur 

auf quadratische Matrizen. Die Geometrische Algebra eröffnet einen didaktischen Weg, auch 

(linksseitige) Inverse von Rechteck-Matrizen zu diskutieren. 

Anhand von Beispielen aus der Wirtschaftsmathematik wird erörtert, wie solche Inversen von 

Rechteck-Matrizen konstruiert und zur Modellierung ökonomischer Sachverhalte eingesetzt wer-

den können.  

 

1. Preliminaries 

This paper builds on short talks given at the annual 

meetings of the Society of Mathematics Education 

(GDM – Gesellschaft für Didaktik der Mathematik) 

of last year [2] and of this year [5]. It is intended     

to show that the left-sided inverse of a non-square  

m x n matrix A = (aij) with m rows and n columns 

(m > n) can be found as n x m matrix 

 

 

with n rows and m columns in a didactical easily 

accessible way. This approach relies on two essen-

tial didactical foundations: 

 While at present the interpretation of matrices is 

mainly based on the row picture in schools and 

universities, matrix A will be interpreted col-

umnwise in the following. Thus Matrix A con-

sists of n coefficient vectors ai. 

 Following Geometric Algebra, vectors will be 

described as linear combinations of generalized 

Pauli matrices in the following. Thus vector aj is 

written as 

aj = a1j 1 + a2j 2 + … + a mj m                 {2} 

There every Pauli matrix i represents a unit vec-

tor pointing into the direction of i. 

This didactical approach has been implemented 

successfully in universities of applied sciences with 

mathematically interested and highly capable stu-

dents [3] as well as with students who show a more 

reluctant attitude towards mathematics [6]. Thus 

Geometric Algebra has proved its worth as a mathe-

matical language to model Linear Algebra in a mod-

ern way. 
 

 

2. Interlude motivated by physics education 

As part-time mathematician with roots in physics the 

author of this paper will follow the Babylonian tradi-

tion which Feynman characterizes as inherent of 

physics and physics education: The old Babylonians 

didn’t know any methods to write down equations. 

Instead they produced one example after another – 

That’s all!  („Die alten Babylonier kannten keine 

Methode für das Aufschreiben von Formeln. Statt-

dessen machten Sie ein Beispiel nach dem anderen – 

das ist alles“ [1, p. 70]). 

The mathematical approach described in section 1 

thus will be presented and discussed in the following 

by showing and explaining examples – just in the 

same way, students are taught mathematical strate-

gies in universities of applied sciences. 

A
– 1

 = (a1  a2  …  an)
– 1

 (a1  a2  …  ai–1  j  ai+1  …  an)                                                    {1} 
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3. A linear algebra examination problem 

At the written examination of learning module M 22 

“Mathematics and Statistics” of students studying 

for a bachelor’s degree “Medical Controlling and 

Management“ the following problem was asked: 
 

To produce one unit of the first final product E1 

5 units of raw material R1 and 8 units of raw 

material R2 are required. 

To produce one unit of the second final pro-

duct E2 2 units of raw material R1 and 4 units 

of raw material R2 are required. 

Find the quantities of the first and second final 

products E1 and E2 which were produced if at 

the production process exactly 60 units of raw 

material R1 and 100 units of raw material R2 

had been consumed. 
 

This problem can be modeled by a matrix equation 

of the demand matrix A, production vector p, and 

the total demand vector of raw materials r: 

r = A p = 








48

25









y

x
 = 









100

60 
             {3} 

Usually students decide for a direct solution of this 

problem by calculating the outer products of the 

coefficient vectors and the resulting vector. An ex-

ample of such a solution is shown in figures 1 - 5. 

First, the student identified the coefficient vectors a, 

b and the resulting vector r, using the scheme of 

Falk as a helpful mathematical tool (see fig. 1). 

Then the student calculated the geometric product    

a b. The bivector part of this geometric product can 

be identified with the outer product a  b, which 

represents the determinant of matrix A (see fig. 2). 

After that the geometric products r b and a r and 

thereupon the outer products r  b and a  r were 

calculated. By comparing these bivectors with the 

determinant bivector a  b, the student was able to 

identify the solutions of x (see fig. 3) and of y (see 

fig. 4). 

Finally, the correct results were checked and an 

answer was given (see fig. 5). While the mathemat-

ics of this solution is correct, the interpretation of the 

student is faulty and confusing. But such interpreta-

tive problems concern the basic analysis of the logi-

cal structure of the question which the student is 

expected to answer. This basic logical analysis 

should be done by students before any mathematical 

tool is applied and thus does not depend on the 

mathematical tool chosen later. 

Nearly all students solved the mathematical part of 

this problem in a correct way, showing that it is 

possible to teach and discuss linear algebra by using 

Geometric Algebra as a highly efficient mathemati-

cal language. 

bilateral binomial theorem – bilateral multinomial theo-

rem – pauli pascal triangle – pauli pascal pyramids 

 

 
 

Fig.1: Identification of Pauli vectors a, b, and r. 

 

 
 

Fig.2: Calculation of the outer product a  b which represents the 

determinant of A. 

 

 
 

Fig.3: Calculation of outer product r  b and comparison of the 

outer products 2) and 4) to identify the solution of x. 

 

 
 

Fig.4: Calculation of outer product a  r and comparison of the 

outer products of 2) and 7) to identify the solution of y. 

 

 
 

Fig.5: Check of the correct results, while the answer is interpreted in 

a confusing and faulty way by the student1. 
 

1
 The arrangement of the student solution has been modified for better clarity. 
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4. Solving the linear algebra examination prob-

lem with the matrix inverse 

Besides the direct solution discussed in the previous 

section, it is possible to solve the given linear alge-

bra examination problem with the inverse of matrix 

A. The definition of the inverse 

A A
– 1

 = 








48

25









21

21

yy

xx
 = 









10

01
   {4} 

shows, that two distinct systems of two linear equa-

tion with two different resulting Pauli vectors 










48

25









1

1

y

x
 = 









0

1
         r1 = x        {5} 










48

25









2

2

y

x
 = 









1

0
         r2 = y        {6} 

emerge. The fictitious (but reasonable) interpretation 

of the elements of the inverse matrix can be de-

scribed and explained by the hypothetical questions: 
 

How many units of the final products E1 and E2 

would be produced, if at the production pro-

cess exactly 1 unit of the first raw material R1 

was consumed? 

And how many units of the final products E1 

and E2 would be produced, if at the production 

process exactly 1 unit of the second raw mate-

rial R2 was consumed? 
 

These elements of the inverse matrix A
– 1

 can be 

found by the same mathematical idea discussed in 

section 3: Outer products (or bivectors or oriented 

area elements) are compared. The results then are: 

x1 = (a1  a2)
– 1

 (x  a2) =    1                   {7} 

y1 = (a1  a2)
– 1

 (a1  x) = – 2                   {8} 

and 

x2 = (a1  a2)
– 1

 (y  a2) = – 0.5 = – 1/2    {9} 

y2 = (a1  a2)
– 1

 (a1  y) =  1.25 =    5/4  {10} 

These results are a simple application of eq. {1}. 

The negative values indicate, that this hypothetical 

consumption is not realized in real economic situa-

tions. Nevertheless it makes sense mathematically, 

because the expected results 

p = A
– 1

 r = 












4/5    2

2/1  1   









100

60 
 = 









5 

10
 {11} 

can be found using these values of the inverse ma-

trix. Of course they are identical to the results (see 

fig. 5, # 9) found by direct calculation.  

A more detailed explanation of this solution strategy 

can be found in the literature [3], [6]. The OHP 

slides, which had been used in several business 

mathematics courses of universities of applied sci-

ences  [4], [7] can be downloaded. 

5. Modified linear algebra examination problem 

In real product engineering situations it will be a rare 

coincident if the number of required raw materials 

and the number of final products, which are pro-

duced, are equal. Generally more raw materials are 

required to produce some final products, resulting in 

a non-square demand matrix with more rows than 

columns (m > n). 

Therefore the linear algebra examination problem is 

extended, and a third raw material is taken into ac-

count to model a more realistic situation: 
 

To produce one unit of the first final product E1 

5 units of raw material R1, 8 units of raw mate-

rial R2, and one unit of raw material R3 are 

required. 

To produce one unit of the second final pro-

duct E2 2 units of raw material R1, 4 units of 

raw material R2, and 6 units of raw material 

R3 are required. 

Find the quantities of the first and second final 

products E1 and E2 which were produced if at 

the production process exactly 60 units of raw 

material R1, 100 units of raw material R2, and 

40 units of raw material R3 had been con-

sumed. 
 

Again this problem might be solved directly, trans-

forming the non-square demand matrix B and the 

total demand vector of raw materials r 

r = B p = 

















61

48

25










y

x
 = 

















40 

100

60 

            {12} 

into Pauli vectors 

b1 =   5 1 +     8 2 +     3                      {13} 

b2 =   2 1 +     4 2 +   6 3                      {14} 

 r  = 60 1 + 100 2 + 40 3                     {15} 

and calculating the outer products 

b1  b2 = 4 12 + 44 23 – 28 31       {16} 

r  b2   = 40 12 + 440 23 – 280 31 {17} 

b1  r   = 20 12 + 220 23 – 140 31 {18} 

As every Pauli vector is parallel to the same plane 

represented by unit bivector 

B =
 

21

21

bb

bb



  
=

 

21

21

bb

bb



  
=

 

21

21

bb

bb



  

    = 
193

1
 (12 + 11 23 – 7 31)       {19} 

this system of three linear equations is consistent 

and a unique solution exists. This solution can again 

be found by comparing the outer products {17} & 

{18} with determinant bivector {16}, resulting once 

again in 

x = 10        and        y = 5                          {20} 

^ 
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6. Solving the modified linear algebra examina-

tion problem with a matrix inverse 

As seen, the overconstrained, but consistent system 

of three linear equations and only two variables {12} 

can be solved directly by comparing outer products. 

We might be happy by having found the solution. 

But from a mathematical perspective, it is interesting 

to look for another solution strategy which is based 

on the idea to first find an inverse matrix B 

–
 
1
. Using 

this matrix inverse, the solution can then be calculat-

ed on the analogy of section 4. 

Arguing by analogy one could claim that the defini-

tion of the right-sided inverse 

B B 

– 1
 = 

















61

48

25










321

321

yyy

xxx
 = 

















100

010

001

 {21} 

shows, that the three distinct systems of three linear 

equation with three different resulting Pauli vectors 

















61

48

25










1

1

y

x
 = 

















0

0

1

         r1 = 1      {22} 

















61

48

25










2

2

y

x
 = 

















0

1

0

         r2 = 2      {23} 

















61

48

25










3

3

y

x
 = 

















1

0

0

         r3 = 3      {24} 

will give the following elements of the right-sided 

matrix inverse: 

x1 = (b1  b2)
– 1

 (1  b2)                          {25} 

    = 
684

1  (46 – 66 12 – 22 23 – 44 31)
 

y1 = (b1  b2)
– 1

 (b1  1)                          {26} 

    = 
684

1
 (– 15 + 11 12 + 55 23 + 88 31) 

and 

 

 

 

 

 

x2 = (b1  b2)
– 1

 (2  b2)                          {27} 

    = 
684

1  (64 + 42 12 + 14 23 + 28 31)
 

y2 = (b1  b2)
– 1

 (b1  2)                          {28} 

    = 
684

1  (– 6 – 7 12 – 35 23 – 56 31) 

and 

x3 = (b1  b2)
– 1

 (3  b2)                          {29} 

    = 
684

1  (– 58 – 6 12 – 2 23 – 4 31)
 

y3 = (b1  b2)
– 1

 (b1  3)                          {30} 

    = 
684

1  (123 + 12 + 5 23 + 8 31)
 

But as Rota perhaps said, “many great teachers are a 

bit like con men” [8, p. 9], it was withhold till now, 

that the coefficient vectors b1, b2 and the resulting 

vectors r1, r2, r3 are no longer parallel to a joint 

plane. Therefore a right-sided matrix inverse has 

indeed not been found. 

Instead the results {25} to {30} make up perfect 

elements of a left-sided matrix inverse B 

– 1
. 

B 

– 1
 B = 









321

321

yyy

xxx

















61

48

25

 = 








10

01
 {31} 

Thus the result of the modified linear algebra exam-

ination problem as expected is 

p = B 

– 1
 r = 









321

321

yyy

xxx

















40 

100

60 

 = 








5 

10
 {32} 

7. Quaternionic interpretation 

Inverses of non-square matrices can be constructed 

and used to solve consistent systems of linear equa-

tions in the way shown above. They allow an alter-

native mathematical approach to systems of linear 

equations. 

In addition, they not only allow an alternative ap-

proach, but also an alternative view of systems of 

linear equations. An essential property of the inverse 

calculated above is interesting: The elements of the 

left-sided inverse B 

– 1
 {25} to {30} are not real 

numbers, but linear combinations of real numbers 

and bivectors. Thus they show a quaternionic struc-

ture. 

If the unit bivectors are identified with unit quater-

nions 

i = 23          j = 31          k = – 12    {33} 

the left-sided matrix inverse B 

– 1
 can be written as 

 

 

 

This approach thus leads to a convincing motivation 

for quaternions: Quaternionic numbers are necessary 

to construct non-square matrix inverses. 

And it shows, how quaternions can be generalized in 

an easy and elegant way: We simply have to in-

crease the number of raw materials and of final 

products to get higher grade elements of inverse 

matrices. These higher grade elements might then be 

identified with generalized quaternions.  

B 

– 1
 = 














kj 8i 5123k 7j 56i 356k 11j 88i 5515

k 6j 4i 258k 42j 28i 1464k 66j 44i 2246
 

684

1
      {34} 

But a second look at it is promising [9]. 
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8. Rotating systems of linear equations 

We now have two different systems of linear equa-

tions {3} and {12} which possess identical solutions 

{11} and {32}. 

If solutions are identical, why shouldn’t be systems 

of linear equations be identical, too? As a physicist 

with a strong emotional commitment to relativity, it 

makes sense to ask whether two systems of linear 

equations might be nothing else than one and only 

one system which we look at from two different 

perspectives. 

Thus it might be possible to rotate the system of li-

near equations with Pauli vectors b1, b2, r2{13}, 

{14}, {15} which are parallel to a plane represented 

by unit bivector B {19} into a system of linear equa-

tions with Pauli vectors which are parallel to a plane 

represented by unit bivector 

A = 12                                                   {35} 

The axis of rotation it then represented by unit vec-

tor n̂  which points into the direction of the dual of 

the commutator product of bivectors A and B, while 

the plane, in which the rotation takes place, is repre-

sented by unit bivector N̂  which is parallel to the 

commutator product: 

A x B = – 
170

1
 (7 23 + 11 31)         {36} 

    = 
BA

BA I

ˆ  ˆ

)ˆ  ˆ(  

x

x  = 
170

1
 (7 1 + 11 2)      {37} 

    = I    = 
170

1
 (7 23 + 11 31)         {38} 

The angle of rotation can be found by comparing the 

unit vectors of both planes 

na = A n = 
170

1
 (11 1 – 7 2)               {39} 

nb = B n = 
171170

1


 (11 1 – 7 2 – 170 3)               

 

perpendicular to the axis of rotation: 

cos  = na  nb = 
171

1
 = 

193

1
            {41a} 

     85.6142°                                    {41b} 

Thus the rotor to permit this rotation is then given by 

R = 
ba

ba

ˆˆ

ˆˆ
ˆ

nn

nn
na




 = b

ba

ba ˆ
ˆˆ

ˆˆ
n

nn

nn




 

    = )ˆˆ1( 

171

2
2

1
bann



                      {42a}
 

   
 = 

1711712

 11 71711 1332




            {42b} 

with 

cos 
2


 = 

1711712

1711




 = 

171

1
1

2

1
  

    / 2  42.8071°                                       {43b} 

Now the consistent system of three linear equations 

of plane B {12} can be rotated into a system of only 

two linear equations lying in the xy-plane with Pauli 

vectors 

c1 = R b1 R
~

                                                      {44} 

    =  21  171815( 17156 
1711

1
))(  



 

c2 = R b2 R
~

                                                      {45} 

    =  21  171446( 171264 
1711

1
))(  



 

rʹ = R r R
~

                                                        {47} 

    =  21  171100380( 17160380 
1711

1
))(  



 

From a mathematical point of view this rotated sys-

tem {48} of two linear equations 

c1 x + c2 y = rʹ                                          {48} 

is completely equivalent to the system {12}, {49} of 

three linear equations 

b1 x + b2 y = r                                           {49} 

as the geometric properties of all vectors are identi-

cal. They include identical angles, possess identical 

lengths and will result in an identical solution {20}, 

{53}. 

But from an economical point of view the rotated 

system of linear equations of course describes a 

completely different product engineering situation, 

as the ‘rotated’ problem includes negative consump-

tion rates for the second raw material. Thus the se-

cond raw material was not consumed, but produced 

when producing the second final product. 

The corresponding ‘rotated’ problem can then be 

stated as: 
 

To produce one unit of the first final product E1 

4.2186 units of raw material R1 and 8.4973 

units of raw material R2 are required. 

To produce not only one unit of the second fi-

nal product E2 but also 2.6886 units of the first 

raw material R1, 6.9837 units of raw material 

R2 are required. 

Find the quantities of the first and second final 

products E1 and E2 which were produced if at 

the production process 28.7427 units of the 

first raw material R1 had been produced and 

119.8910 units of the second raw material R2 

had been consumed. 
 

The solution of this problem can be found by rotat-

ing the outer products {16}, {17}, {18} into the xy- 

 

solution of an inconsistent system of linear equations 

n̂  

N̂  n̂  

^ 

^ 

^            ^ 

^       ^ 

^        ^  ^ 

^        
^  ^ 

 

                                                                 {40} 

{43a} 



Horn 

6 

plane 

c1  c2 = R (b1  b2 ) R
~

= 12 19  12     {50} 

rʹ  c2 = R (r  b2 ) R
~

= 120 19  12     {51} 

c1  rʹ   = R (r  b2 ) R
~

= 60 19  12     {52} 

resulting as expected in 

x = 10        and        y = 5                          {53} 

As these results are scalars, it is even possible to 

declare these results as the outcome of a rotation of 

scalars 

x = R x R
~

= x R R
~

= 10                           {54a} 

y = R y R
~

= y R R
~

= 5                             {54b} 

which do not change when rotated. 

Unfortunately the values of rʹ {47} and r {3} and 

the angles between their coefficient vectors are dif-

ferent. Therefore the two equivalent systems of 

linear equations {48}, {49} are not equivalent to the 

first simple system of linear equations {3}. 

9. Right-sided matrix inverses 

If a matrix consists of more columns than rows the 

left-sided inverse equals to zero. The coefficient 

vectors will be not linear independent and the outer 

product will disappear. 

As the matrix equation then produce less equations 

than existing unknowns no unique solution can be 

found. 

But in this case a right-sided matrix inverse can be 

defined. This right-sided matrix inverse can simply 

be constructed by transposing the matrix equation, 

thus resulting again in a transposed matrix which 

possess more rows than columns. 

10. Outlook 

If a system of n linear equations can be described by 

a matrix A which consists of n linear independent 

coefficient vectors, we are able to find a matrix 

inverse as described in the previous sections (and 

shown again in the attachment). 

This system of n linear equations 

r = A p                                                     {55} 

is called consistent, if the resulting vector r and the 

coefficient vectors are not linear independent. Then 

a unique solution vector p of the system of linear 

equations can be found by pre-multiplication of the 

matrix inverse A
– 1

 

p = A
– 1

 r                                                  {56} 

The system of n linear equations {55} is called in-

consistent, if the resulting vector r and the coeffi-

cient vectors are linear independent. Then a unique 

solution with real elements does not exist. But solu-

tion vector p {56}, which will have generalized 

quaternionic elements, will exist. 

Therefore  it  makes  sense  to  call  solution  vector  p  

{56} a solution of the inconsistent system of linear 

equations, which will be discussed in [9]. 
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12. Attachment: More example problems 

The following problems can be solved directly (see 

section 5). Solutions which use non-square matrix 

inverses are given below. 
 

 Additional example problem 1: 
 

To produce one unit of the first final product E1 

5 units of raw material R1 and 6 units of raw 

material R2 are required. 

To produce one unit of the second final pro-

duct E2  3 units of raw material R1 and 4 units 

of raw material R2 are required. 

To produce one unit of the third final product 

E3  1 unit of raw material R1 and 2 units of raw 

material R2 are required. 

The total costs of raw materials to produce one 

unit of the first final product E1 are € 170. 

The total costs of raw materials to produce one 

unit of the second final product E2 are € 110. 

The total costs of raw materials to produce one 

unit of the third final product E3 are € 50. 

Find the prices of the raw materials R1 and R2. 
 

 Solution of additional example problem 1: 
 

Demand matrix: D = 








246

135
 

 

 

 

 

 

Price vector:  p
T
 =   yx  = ? 

Total cost vector: c
T
 =  50110170  

System of linear equations:  p
T
 D = c

T
 

Transposed system of linear equations: 

 D
T
 p = 

















21

43

65

 








y

x
 = 

















50

110

170

 = c 

Coefficient vectors:    a  = 5 1 + 3 2 +    3 

      b  = 6 1 + 4 2 + 2 3 

Resulting vector:    c  = 170 1 + 110 2 + 50 3 

Outer products (determinant): 

 a  b = 2 12 + 2 23 – 4 31 

 (a  b)
 – 

1
 = 

12

1
 (– 12 – 23 + 2 31)

 

Outer products (sub-determinants): 

 1  b =    4 12 – 2 31 

 2  b = – 6 12 + 2 23 

 3  b = – 4 23 + 6 31 

 a  1 = – 3 12 +    31 

 a  2 =    5 12 –    23 

 a  3 =    3 23 – 5 31 

Elements of inverse matrix: 

 x1 = (a  b)
– 1

 (1  b) 

      = 
12

1
 (8 – 2 12 – 6 23 – 4 31)

 

 x2 = (a  b)
– 1

 (2  b) 

      = 
12

1
 (– 4 + 4 12 + 12 23 + 8 31)

 

 x3 = (a  b)
– 1

 (3  b) 

      = 
12

1
 (– 16 – 2 12 – 6 23 – 4 31)

 

 y1 = (a  b)
– 1

 (a  1) 

      = 
12

1
 (– 5 + 12 + 5 23 + 3 31)

 

 y2 = (a  b)
– 1

 (a  2) 

      = 
12

1
 (4 – 2 12 – 10 23 – 6 31)

 

 y3 = (a  b)
– 1

 (a  3) 

      = 
12

1
 (13 + 12 + 5 23 + 3 31)

 

 

 

 

 
 

Solution of price vector: 

  p = (D
T
 )

– 1

 c = (D
T
 )

– 1

 

















50

110

170

 = 








20

10
 

 

 One unit of the first raw material R1 costs € 10 . 

  One unit of the second raw material R2 costs € 20 . 

 

 

 

 

 

 

 

 

 

Inverse matrix: 

(D
T
 )

– 1

 = 













133221133221133221

133221133221133221

35  13   61024   35 5

46216812444628  

12

1  
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 Additional example problem 2: 
 

To produce one unit of the first final product E1 

7 units of raw material R1,  5 units of raw mate-

rial R2,  3 units of raw material R3, and one unit 

of raw material R4 are required. 

To produce one unit of the second final pro-

duct E2  8 units of raw material R1,  6 units of 

raw material R2,  4 units of raw material R3, 

and 2 units of raw material R4 are required. 

Find the quantities of the first and second final 

products E1 and E2 which were produced if at 

the production process exactly 2070 units of 

raw material R1,  1530 units of raw material R2, 

990 units of raw material R3, and  450 units of 

raw material R4 had been consumed. 
 

 Solution of additional example problem 2: 
 

Demand matrix: D = 



















21

43

65

87

 

Production vector: p = 








y

x
 = ? 

Total demand of raw materials: r = 



















450  

990  

1530

2070

 

System of linear equations: 

 D p = 



















21

43

65

87

 








y

x
 = 



















450  

990  

1530

2070

 = r 

Coefficient vectors:    a  = 7 1 + 5 2 + 3 3 +    4 

      b  = 8 1 + 6 2 + 4 3 + 2 4 

Resulting vector: 

 r  = 2070 1 + 1530 2 + 990 3 + 450 4 

Outer products (determinant): 

 a  b =     2 12 + 4 13 + 6 14 

   + 2 23 + 4 24 + 2 34 

 

 

 

 

 (a  b)
 – 

1
 = – 

40

1
 (12 + 2 13 + 3 14

 

 

Outer products (sub-determinants): 

 1  b =    6 12 + 4 13 + 2 14 

 2  b = – 8 12 + 4 23 + 2 24 

 3  b = – 8 13 – 6 23 + 2 34 

 4  b = – 8 14 – 6 24 – 4 34 

 a  1 = – 5 12 – 3 13 –    14 

 a  2 =    7 12 – 3 23 –    24 

 a  3 =    7 13 + 5 23 –    34 

 a  4 =    7 14 + 5 24 + 3 34 

Elements of inverse matrix: 

 x1 = (a  b)
– 1

 (1  b) 

      = 
40

1
 (20 – 8 12 + 4 13 + 16 14 

 

 x2 = (a  b)
– 1

 (2  b) 

      = 
40

1
 (0 + 14 12 – 12 13 – 18 14 

 

 x3 = (a  b)
– 1

 (3  b) 

      = 
40

1
 (– 20 – 4 12 + 12 13 – 12 14 

 

 x4 = (a  b)
– 1

 (4  b) 

      = 
40

1
 (– 40 – 2 12 – 4 13 + 14 14 

 

 y1 = (a  b)
– 1

 (a  1) 

      = 
40

1
 (– 14 + 5 12 – 4 13 – 13 14 

 

 y2 = (a  b)
– 1

 (a  2) 

      = 
40

1
 (2 – 9 12 + 10 13 + 15 14 

 

 y3 = (a  b)
– 1

 (a  3) 

      = 
40

1
 (18 + 3 12 – 8 13 + 9 14 

 

 y4 = (a  b)
– 1

 (a  4) 

      = 
40

1
 (34 + 12 + 2 13 – 11 14 

 

 

 

 

 

 

 

+ 23 + 4 24 + 19 34 ) 

+ 23 + 2 24 +    34) 

– 8 23 – 16 24 – 8 34 ) 

+ 14 23 + 28 24 – 6 34 ) 

– 4 23 – 8 24 + 36 34 ) 

– 2 23 – 4 24 – 22 34 ) 

+ 7 23 + 14 24 + 7 34 ) 

– 13 23 – 24 24 + 5 34 ) 

+ 5 23 + 6 24 – 31 34 ) 

Inverse matrix: D
– 1

 = 





















































  194     

11234

  3165    

98318

 52413   

151092

7147        

134514

2242        

144240

3684        

1212420

62814    

181214       

8168     

164820

40

1

434232

413121

434232

413121

434232

413121

434232

413121

434232

413121

434232

413121

434232

413121

434232

413121

 



More Examples of Non-Square Matrix Inverses 

9 

Solution of production vector: 

  p = D
– 1

 r = D
– 1

 



















450  

990  

1530

2070

 = 








180

90  

 

 

 90 units of the first final product E1 and   

180 units of the second final product E2  

had been produced . 

 

 

 Additional example problem 3: 
 

To produce one unit of the first final product E1 

7 units of raw material R1,  5 units of raw mate-

rial R2, and one unit of raw material R4 are re-

quired. 

To produce one unit of the second final pro-

duct E2  8 units of raw material R1,  3 units of 

raw material R3, and 2 units of raw material R4 

are required. 

To produce one unit of the third final product 

E3  6 units of raw material R2, and 4 units of 

raw material R3 are required. 

Find the quantities of the first, second and third 

final products E1, E2, and E3 which were pro-

duced if at the production process exactly 

2070 units of raw material R1,  2610 units of 

raw material R2,  1980 units of raw material R3, 

and  450 units of raw material R4 had been 

consumed. 
 

 Solution of additional example problem 3: 
 

Demand matrix: D = 



















021

430

605

087

 

Production vector: p = 

















z

y

x

 = ? 

Total demand of raw materials: r = 



















450  

1980

2610

2070

 

System of linear equations: 

Linksinverse   Rechtsinverse   Halbinverse 

Invertierung nichtquadratischer Matrizen 

 D p = 



















021

430

605

087

 

















z

y

x

 = 



















450  

1980

2610

2070

 = r 

Coefficient vectors:    a  =  7 1 + 5 2 +    4 

      b  =  8 1 + 3 3 + 2 4 

      c  =  6 2 + 4 3 

Resulting vector: 

 r  = 2070 1 + 2610 2 + 1980 3 + 450 4 

Outer products (determinant): 

 a  b  c = – 286 123 – 36 124 

                                                  – 24 134 – 58 234 

 (a  b  c)
 – 

1
 = 

43516

1
 (143 123 + 18 124

 

 

Outer products (sub-determinants): 

 1  b  c = – 18 123  – 12 124 – 8 134 

 2  b  c = – 32 123 – 8 234 

 3  b  c =    48 123 + 12 234 

 4  b  c =    48 124 + 32 134 – 18 234 

 a  1  c = – 20 123 + 6 124 + 4 134 

 a  2  c =    28 123 + 4 234 

 a  3  c = – 42 123 – 6 234 

 a  4  c = – 42 124 – 28 134 – 20 234 

 a  b  1 =    15 123 + 10 124 – 3 134 

 a  b  2 = – 21 123 – 6 124 – 3 234 

 a  b  3 = – 40 123 – 6 134 – 10 234 

 a  b  4 = – 40 124 + 21 134 + 15 234 

Elements of inverse matrix: 

 x1 = (a  b  c)
– 1

 (1  b  c) 

      = 
43516

1
 (2886 – 232 12 + 348 13 – 522 14 

 

 x2 = (a  b  c)
– 1

 (2  b  c) 

      = 
43516

1
 (4808 + 96 12 – 144 13 + 216 14 

 

 x3 = (a  b  c)
– 1

 (3  b  c) 

      = 
43516

1
 (– 7212 – 144 12 + 216 13 – 324 14 

 

 x4 = (a  b  c)
– 1

 (4  b  c) 

      = 
43516

1
 (– 726 + 1144 12 – 1716 13 

 

 

 

+ 12 134 + 29 234) 

– 928 24 + 1392 34) 

+ 384 24 – 576 34) 

– 576 24 + 864 34) 

+ 2574 14 + 4576 24 – 6864 34) 
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 y1 = (a  b  c)
– 1

 (a  1  c) 

      = 
43516

1
 (2704 + 116 12 – 174 13 

 

 y2 = (a  b  c)
– 1

 (a  2  c) 

      = 
43516

1
 (– 4120 – 48 12 + 72 13 

 

 y3 = (a  b  c)
– 1

 (a  3  c) 

      = 
43516

1
 (6180 + 72 12 – 108 13 

 

 y4 = (a  b  c)
– 1

 (a  4  c) 

      = 
43516

1
 (1672 – 572 12 + 858 13 

 

 

 

 

 

 

 

 

 

 

 

 

Solution of production vector: 

 p = D
– 1

 r = D
– 1

 



















450  

1980

2610

2070

 

 

 90 units of the first final product E1,         

180 units of the second final product E2, 

and 360 units of the third final product E3      

had been produced . 
 

 

 

 

 z1 = (a  b  c)
– 1

 (a  b  1) 

      = 
43516

1
 (– 2289 – 87 12 – 290 13 + 435 14 

 

 z2 = (a  b  c)
– 1

 (a  b  2) 

      = 
43516

1
 (3198 + 36 12 + 120 13 – 180 14 

 

 z3 = (a  b  c)
– 1

 (a  b  3) 

      = 
43516

1
 (6082 – 54 12 – 180 13 + 270 14 

 

 z4 = (a  b  c)
– 1

 (a  b  4) 

      = 
43516

1
 (33 + 429 12 + 1430 13 – 2145 14 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ 2860 14 – 4004 24 + 6006 34) 

– 580 14 + 812 24 – 1218 34) 

+ 240 14 – 336 24 + 504 34) 

– 360 14 + 504 24 – 756 34) 

+ 174 23 – 609 24 – 1160 34) 

– 72 23 + 252 24 + 480 34) 

+ 108 23 – 378 24 – 720 34) 

– 858 23 + 3003 24 + 5720 34) 

= 

















15665760

7832880 

3916440 

43516

1
 

 

 = 

















360

180

90  

 

Inverse matrix: D
– 1

 = 
 







































434232

413121

4342

413121

4342

413121

434232

413121

4342

413121

4342

413121

48025272      

180120363198

504336                        

24072484120

576384                       

216144964808

1160609174       

435290872289

1218812                       

5801741162704

1392928                        

5223482322886

43516

1

 







































434232

413121

4342

413121

4342

413121

434232

413121

4342

413121

4342

413121

57203003858   

2145143042933

60064004                      

28608585721672

68644576                         

257417161144726

720378108     

270180546082

756504                       

360108726180

864576                            

3242161447212

 


