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English Abstract 

While in three-dimensional space every higher-dimensional object can be written as outer product 

of vectors (in accordance with blades in Geometric Algebra), this mathematical depiction is not 

always possible in four-dimensional spaces or spacetimes. In such spaces or spacetimes objects 

called non-blades, which cannot be spanned by vectors in an elementary way, will exist. 

As our world can be interpreted as a four-dimensional spacetime, it is to be expected that apart 

from blades also non-blades will play a relevant role which should not be ignored in the mathe-

matical and conceptual description of our world. The transition from classical three-dimensional   

to relativistic four-dimensional structures is equivalent to a transition from blades to non-     

blades. 

It can be seen that the didactical structuring of this transition reaches far beyond the simple ques-

tion, what blades and non-blades geometrically are, and  the problem how blades and non-blades, 

interpreted as operators, effect on other geometric objects, will be central. 

 

German Abstract 

Während im dreidimensionalen Raum jedes höherdimensionale Objekt als äußeres Produkt mehre-

rer Vektoren (im Sinne von Blades der Geometrischen Algebra) dargestellt werden kann, ist dies 

in vierdimensionalen Räumen oder Raumzeiten nicht immer möglich. Wir finden hier auch Objek-

te (Non-Blades), die nicht elementar von Vektoren aufgespannt werden. 

Da unsere Welt als vierdimensionale Raumzeit gedeutet werden kann, ist zu erwarten, dass neben 

Blades auch Non-Blades bei der mathematischen Beschreibung unserer Welt eine konzeptuell 

nicht zu vernachlässigende Rolle spielen. Der Übergang von nicht-relativistisch dreidimensionalen 

zu relativistisch vierdimensionalen Strukturen ist somit auch ein Übergang von Blades zu Non-

Blades. 

Es zeigt sich, dass die didaktische Gestaltung dieses Übergangs weit über die Frage, was Blades 

und Non-Blades geometrisch sind, hinausweist und stattdessen die Problematik, wie Blades und 

Non-Blades als Operatoren auf andere geometrische Objekte wirken, in den Vordergrund rückt.  

 

1. Reshaping didactical structures 

Even more than hundred years after the formulation 

of Special and General Relativity, a satisfactory 

conceptual and didactical understanding of this 

complex of theories is not yet reached. We are cer-

tainly able to construct a sufficient three-dimen-

sional picture of our surroundings from the two-

dimensional information which is send from the 

retina of our eyes into our human brains. 

But the theory of relativity is founded on a four-

dimensional description of the world we live in. 

Therefore we are confronted with the task to shape 

these four-dimensional structures didactically in a 

way which enables learners to gain a deeper under-

standing of typical four-dimensional effects. 

Thus it is necessary to take into account phenomena 

which do not exist in three-dimensional worlds. In 

classical, non-relativistic everyday life, we do not 

experience such phenomena, and we should strive 

for making these phenomena accessible in modern 

learning processes. 

The didactical aim should be to make it possible one 

day that our human brains (which are moulded by 

three-dimensionality) are able to construct a suffi-

cient four-dimensional picture of relativity from the 

information which reaches our mind. 
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2. Objects which do not exist in three-dimen-

sional  space 

In three-dimensional spaces or spacetimes every     

k-dimensional geometric object (k-vector) can be 

written as an outer product of k non-parallel vectors. 

In Geometric Algebra [1], [2], [3] these outer prod-

ucts are called blades. 

As an example figure 1 shows an oriented area ele-

ment which can be represented as the outer product 

of vectors r1 = x + 2 y and r2 = z of Geometric Al-

gebra: 

N1 = (x + 2 y)  z = xz + 2 yz         {1} 

The base vectors x, y, z of three-dimensional 

space then are unit vectors 

x
2
 = y

2
 = z

2
 = 1                                      {2} 

pointing into perpendicular directions 

xy = – yx                                            {3a} 

yz = – zy                                            {3b} 

zx = – xz                                            {3c} 

Thus these base vectors obey Pauli algebra, and they 

can be represented by (or identified with) Pauli ma-

trices. 

In four- or even higher-dimensional spaces or space-

times k-vectors exist, which cannot be written in the 

form of an outer product. They are called non-

blades. An example for non-blades is shown in fig-

ure 2 with 

N2 = xy + 2 zw                                     {4} 

The central distinguishing feature between blades 

and non-blades is the way their components inter-

sect: If oriented area elements have a joint line of 

intersection, their sum will be a two-dimensional 

blade. If oriented area elements only have a joint 

point of intersection, their sum will be a two-

dimensional non-blade – a situation which can only 

be realized in geometries possessing four dimen-

sions at least. 

This four-dimensionality is indicated in figure 2 by 

four axes. In pure four-dimensional space these axes 

are spacelike axes and point into the direction of the 

spacelike base vectors w, x, y, z which can be 

identified with generalized Pauli matrices: 

w
2
 = x

2
 = y

2
 = z

2
 = 1                            {5} 

 

 

 

 

 

 

 

 

 

Fig.1: Example of a two-dimensional blade. 

In mixed four-dimensional spacetime with one time-

like and three spacelike axes the spacelike base vec-

tors x, y, z and the timelike base vector t obey 

Dirac algebra. So they can be identified with Dirac 

matrices: 

t
2
 = 1        x

2
 = y

2
 = z

2
 = – 1                   {6} 

and 

xt = – tx        xy = – yx                     {7a} 

yt = – ty        yz = – zy                      {7b} 

zt = – tz        zx = – xz                      {7c} 

The non-blade shown in figure 2 will then be 

N4 = xy + 2 zt                                         {8} 

as the fourth axis then is considered as a timelike 

axis. 

3. Effects of blades and non-blades 

Geometric objects always possess an operational 

ambiguity: They can be seen as objects on which is 

acted on (operands). And they can be seen as objects 

which act on other geometric objects (operators). As 

blades and non-blades are geometric objects, they 

possess this operational ambiguity too. Being inter-

preted as operators they will produce transfor-

mations of other geometric objects. 

These effects can be modeled mathematically in a 

very simple way by the sandwich product. For ex-

ample, the right- and left-sided sandwich multiplica-

tion of vector r by a two-dimensional blade N 

rref = – N r N 

–
 
1
                                           {9} 

will result in a reflection of vector r at the plane 

which is represented by the oriented area ele-     

ment N [4]. 

Figure 3 shows such a reflection at the plane repre-

sented by N1 {1}. The three original base vectors x, 

y, z of a right handed coordinate system 

xyz = I                                                 {10} 

are then reflected into three different base vec-     

tors ex, ey, ez (see eqs. {13}) of a left-handed coordi-

nate system 

exeyez = – I                                                {11} 

Together with the inverse plane N1
–

 
1
 

N1
–

 
1

 =       =                           = –    (xz + 2 yz) {12} 

 

 

 

 

 

 

 

 

 

Fig.2: Example of a two-dimensional non-blade. 

N1 
x 

y 

z 

w or t 
N2 or N4 

x 

y 

z 

 N1      xz + 2 yz          1 
 

N1
2
     (xz + 2 yz)

2
       5 
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the new base vectors will be 

ex = – (xz + 2 yz) x (xz + 2 yz) 

–
 
1
 

    = – 
5

3
 x + 

5

4
 y                                 {13a} 

ey =    
5

4
 x + 

5

3
 y                                 {13b} 

ez =  z                                                    {13c} 

Of course they again obey Pauli algebra: 

ex
2
 = ey

2
 = ez

2
 = 1                                      {14} 

and 

exey = – eyex                                            {15a} 

eyez = – ezey                                            {15b} 

ezex = – exez                                            {15c} 

Therefore the exemplary vector 

r = 1.8 x                                                  {16} 

of figure 3 is reflected into vector 

r = – 1.08 x + 1.44 y                             {17} 

 

 

 

 

 

 

 

 

 
 

Fig.3: Example of a reflection of a vector at a blade. 

 

In contrast to this well-known Euclidean behavior 

which we all experience in everyday life when we 

look into a plane mirror, the reflection of a vector at 

a non-blade shows some astonishing properties. 

Firstly, in pure four-dimensional space (without time 

direction) the reflection will be a hyperbolic reflec-

tion. And secondly, the reflection will result in a 

strange change of dimensionality. 

To discuss these properties the reflection of a vector 

r at a non-blade N2 {4} will be modeled again by the 

sandwich product of eq. {9}. The inverse non-blade 

N2
–

 
1
 equals 

N2
–

 
1

 =        =                            

        =   

        = 
3

1
 (xy – 2 zw)                          {18} 

Thus the new base vectors will be linear combina-

tions of vector and trivector parts. They are 

ex = – 
3

5
 x – 

3

4
 yzw                         {19a} 

ey = – 
3

5
 y + 

3

4
 zwx                         {19b} 

ez =    
3

5
 z + 

3

4
 wxy                         {19c} 

ew =   
3

5
 w – 

3

4
 xyz                         {19d} 

They again obey Pauli algebra with 

ex
2
 = ey

2
 = ez

2
 = ew

2
 = 1                             {20} 

and 

exey = – eyex        exew = – ewex               {21a} 

eyez = – ezey        eyew = – ewey                {21b} 

ezex = – exez        ezew = – ewez                {21c} 

Therefore the exemplary vector r {16} is now re-

flected in figure 4 into 

r = – 3.00 x – 2.40 yzw                     {22} 

 

 

 

 

 

 

 

 

 
 

Fig.4: Example of a reflection of a vector at a non-blade. 

 

Reflections at non-blades obviously change the di-

mension of the reflected object. When reflected at 

non-blade N2 one-dimensional vectors become long-

er one-dimensional vectors  and  three-dimensional 

volume elements. This is indeed a strange feature of 

a reflection in four-dimensional space. Length is 

transformed into volume. 

4. Spacetime effects of blades and non-blades 

Special Relativity is founded on four-dimensional 

spacetime. Therefore the properties of reflections in 

spacetime will be discussed next by comparing the 

reflection of a vector at the two-dimensional space-

time blade N3 {23} and at the two-dimensional 

spacetime non-blade N4 {8}.  

The two-dimensional spacetime blade N3 will be 

N3 = xy + 2 ty                                       {23} 

The inverse of this spacetime plane N3
–

 
1
 then equals 

N3
–

 
1

 =         = 

        = 
3

1
 (xy + 2 ty)                              {24} 

 N1 

x 

r y 

z 

r  

 

 N2       xy + 2 zw 
 

N2
2
     (xy + 2 zw)

2
 

  (xy + 2 zw)    (5 + 4 xyzw) 
 

(– 5 + 4 xyzw) (5 + 4 xyzw) 

x 

y 

z 

w 

N2 
r 

r  

 N3        xy + 2 ty 
 

N3
2
      (xy + 2 ty)

2
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resulting in the following reflections of the four 

spacetime base vectors: 

ex = – 
3

5
 x – 

3

4
 t                                    {25a} 

ey =    y                                                   {25b} 

ez =  – z                                                   {25c} 

et =    
3

4
 x + 

3

5
 t                                    {25d} 

As expected spacetime vectors are reflected into 

spacetime vectors when reflected at spacetime 

blades. 

Eqs. {25} represent hyperbolic reflections as is 

shown in figure 5. E.g. vector 

r = 1.8 x                                                   {26} 

is hyperbolically reflected into vector 

r = – 3.00 x – 2.40 t                                {27} 

This hyperbolic reflection can be considered as a 

Lorentz reflection, as two reflections will make up a 

hyperbolic rotation which is identical to a Lorentz 

transformation. 

And it is important to note, that the two dark red 

lines of figure 5 are perpendicular to each other. 

Thus the component of the original vector r and the 

component of the reflected vector r parallel to the 

plane of reflection (represented by blade N3) is given 

by the orange vector in figure 5. 

The orthogonal components of r and r (see red and 

violet vectors of figure 5) thus are orthogonal to the 

line of intersection of blade N3 and the xt-plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5: Spacetime example of a reflection of a vector at         

a blade. 

This transformational behavior will be compared to 

the reflection of a vector at non-blade N4 {8} in the 

following. To find the sandwich product, the inverse 

non-blade N4
–

 
1
 is required. It equals 

N4
–

 
1

 =        =                            

        =   

        = – 
5

1
 (xy – 2 zt)                           {28} 

And again the new base vectors will be linear com-

binations of vector and trivector parts – a dimen-

sional change already observed in section 3 when 

the reflection of a vector in pure space was dis-

cussed. These new base vectors are 

ex = – 
5

3
 x – 

5

4
 yzt                              {29a} 

ey = – 
5

3
 y + 

5

4
 ztx                              {29b} 

ez =    
5

3
 z + 

5

4
 txy                              {29c} 

et =    
5

3
 t + 

5

4
 xyz                              {29d} 

They still obey Dirac algebra {6} & {7} with 

et
2
 = 1        ex

2
 = ey

2
 = ez

2
 = – 1                 {30} 

and 

exet = – etex        exey = – eyex                  {31a} 

eyet = – etey        eyez = – ezey                  {31b} 

ezet = – etez        ezex = – exez                   {31c} 

Therefore the exemplary vector r of 

eq. {26} is now reflected into vector 

r = – 1.08 x – 1.44 yzt      {32} 

Again, length is transformed into vol-

ume: when reflected at non-blade N4, 

one-dimensional vectors become shor-

ter one-dimensional vectors  and  three-

dimensional volume elements. 

But this time it is an Euclidean reflec-

tion. 

 

 

 

 

 

 

 

 

 

Fig.6: Spacetime example of a reflection  

of a vector at a non-blade. 

 N4       xy + 2 zt 
 

N4
2
     (xy + 2 zt)

2
 

 (xy + 2 zt)  (3 – 4 xyzt) 
 

(3 + 4 xyzt) (3 – 4 xyzt) 

x 

y 

z 

t 

N4 
r 

  r  
r  

line of intersection 

of blade N3 and xt-plane 

y 

x 

t 

z 

N3 

line of intersection 

of light cone and xt-plane 

hyperbola 

lines in xt-plane 

which are perpen- 

dicular to blade N3 

                              orthogonal component r of original vector r 

               parallel component of vectors r and r  

orthogonal component r  = – r of reflected vector r  

r – r 
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5. Change of perspective and didactical remodel-

ing 

Geometric Algebra combines geometric and algebra-

ic perspectives into a coherent and overall view on 

mathematics and physics. This supports learning 

processes in case students are taught who have very 

different views on the problem of modeling higher 

dimensional spaces and spacetimes. 

Most students either think algebraically and look for 

abstract algebraic relations or they think geometri-

cally and look for visual geometric descriptions of 

the mathematical and physical worlds they try to 

understand. 

A didactical remodeling of the transformational 

effects of objects which do not exist in three-

dimensional space should therefore deliver new 

insights for students of both kinds. Both perspectives 

– algebraic and geometric – can be considerably 

widened if the direct algebraic (see eqs.{19} & 

{29}) and direct geometric representations (see fig. 

4 & 6) are didactically restructured by representing 

them in complex (or complex-like) planes and Ar-

gand (or Argand-like) diagrams. 

In these extended Argand diagrams unit volume 

elements can be considered as real or complex base 

units which (looking at them from a geometric per-

spective) are perpendicular to or (looking at them 

from an algebraic perspective ) anti-commute with 

the corresponding base vectors. 

It is then possible to identify four different situa-

tions, which can be simplified algebraically (but 

complicated geometrically) with the help of the four-

dimensional oriented volume elements (also called 

pseudo-scalars) Is of pure four-dimensional space 

and Ist of four-dimensional spacetime: 

Is =xyzw     Is
2
 =xyzw)

2
 = 1     {33} 

Ist =xyzt         Ist
2
 =xyzt)

2
  = – 1     {34} 

The four different situations then are: 

 Real plane 

In three- or four-dimensional pure space the re-

flection of a vector at a blade will result in a re-

flection which can be represented in the real 

plane, because all the relevant base units either 

square to one (e.g. see reflection at blade N1,  

eqs. {13a, b}) 

x
2
 = 1      and      y

2
 = 1                         {35} 

or see the equivalent reflection described with 

generalized Dirac matrices x, y, z, w of pure 

four-dimensional space which then all square to 

minus one 

x
2
 = – 1      and      y

2
 = – 1                     {36} 

Thus a real plane possesses either two real axes 

or two imaginary axes. 

A real plane is shown in figure 7, and a similar 

mathematical behavior can be seen in pseudo-

real planes (see next sub-section). 

 Pseudo-real plane 

The reflection of a time-like vector at non-blade 

N4 (see eq. {29d}) and the reflection of a space-

like vector at non-blade N4 (see eqs. {29a, b, c}) 

will result in reflections, which can be represent-

ed in pseudo-real planes, because all the relevant 

base units either square to one 

t
2
 = 1      and      (xyz)

2
 = 1                   {37} 

or to minus one 

x
2
 = – 1      and      (yzt)

2
 = – 1            {38a} 

y
2
 = – 1      and      (ztx)

2
 = – 1            {38b} 

z
2
 = – 1      and      (txy)

2
 = – 1            {38c} 

A pseudo-real plane is shown in figure 8. Such 

planes can be drawn with a vector-like coordi-

nate axis and a trivectorial volume-like coordi-

nate axis for students with a more geometric 

view. 

Alternatively, pseudo-real planes can be modi-

fied for students with a more algebraic view by 

changing the base units which represent them. So 

pseudo-real planes can be given either as planes 

which have a real axis represented by a time-like 

base vector (e.g. t in{37}) and a pseudo-real ax-

is represented by a pseudo-vector, which is dual 

to the time-like base vector: 

xyz = Istt                                              {39} 

Or pseudo-real planes can be given as planes 

which have an imaginary axis represented by a 

space-like base vector (e.g. x, y, z in {38}) and 

a pseudo-imaginary axis represented by a pseu-

do-vector, which is dual to the corresponding 

space-like base vector: 

yzt  =    Istx                                         {40a} 

ztx  = – Isty                                        {40b} 

txy =     Istz                                        {40c} 

The algebraic implementation of imaginary and 

pseudo-imaginary axes in standard four-dimensi-

onal spacetime thus causes a change from a 

right-handed to a left-handed coordinate system, 

because the additional minus sign of eq. {40b} 

reverses the y-axis while all other axes remain 

unchanged compared to coordinate systems with 

trivectorial volume-like coordinates. 

 Complex plane 

In spacetime, reflections at blades which mix 

space and time components can be represented in 

complex planes, because time-like base vectors 

square to one while the space-like base vectors 

square to minus one (e.g. see reflection at blade 

N3, eqs. {25a, d}) 

t
2
 = 1      and      x

2
 = – 1                        {41} 

This complex plane is shown in figure 9. A simi-

lar mathematical behavior can be seen in pseudo-

complex planes, which will be discussed in the 

next sub-section. 
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 Pseudo-complex plane 

The reflection of vectors in pure four-dimensi-

onal space at non-blade N2 (see eqs. {19}) will 

result in reflections, which can be represented in 

pseudo-complex planes because one base unit 

squares to one and the other base unit squares to 

minus one, if base vectors of pure space are de-

scribed by generalized Pauli matrices: 

x
2
 = 1      and      (yzw)

2
 = – 1          {42a} 

y
2
 = 1      and      (zwx)

2
 = – 1          {42b} 

z
2
 = 1      and      (wxy)

2
 = – 1          {42c} 

w
2
 = 1      and      (xyz)

2
 = – 1          {42d} 

The same reflections can also be represented in 

pseudo-complex planes if base vectors are de-

scribed by generalized Dirac matrices: 

x
2
 = – 1      and      (yzw)

2
 = 1              {43a} 

y
2
 = – 1      and      (zwx)

2
 = 1             {43b} 

z
2
 = – 1      and      (wxy)

2
 = 1             {43c} 

w
2
 = – 1      and      (xyz)

2
 = 1              {43d} 

Such a pseudo-complex plane is shown in figure 

10, and it can be drawn as a plane of a vector-

like coordinate axis and a trivectorial volume-

like coordinate axis for students with a more ge-

ometric view. 

Alternatively, pseudo-complex plane can be 

modified for students with a more algebraic view 

by changing the base units which represent them. 

So pseudo-complex planes can be given either as 

planes which have a real axis and a pseudo-

imaginary axis as the base vectors representing 

the trivectorial coordinate axes can be written as 

yzw = – Isx                                      {44a} 

zwx =    Isy                                      {44b} 

wxy = – Isz                                      {44c} 

xyz =     Isw                                     {44d} 

Or pseudo-complex planes can be given as 

planes which have an imaginary axis and a pseu-

do-real axis as the base vectors representing 

trivectorial coordinate axes can be written with 

the modified four-dimensional volume element 

Ipc =xyzw         Ipc
2
 =xyzw)

2
  = 1   {45} 

as 

yzw =    Ipcx                                        {45a} 

zwx = – Ipcy                                        {45b} 

wxy =    Ipcz                                        {45c} 

xyz  =  – Ipcw                                       {45d} 

This time the algebraic implementation of real 

and pseudo-imaginary axes or of imaginary and 

pseudo-real axes will cause no change from a 

right-handed to a left-handed coordinate system, 

because always two {44a, c}, {44b, d} of the four 

axes reverse their direction which compensates 

the directional reversal. 

Obviously we live in a world with four different 

dimensions. And we surely experience three spatial 

dimensions and only one time dimension in every-

day life and in experiments of physics. 

An analysis of the different spacetime situations 

described by pseudo-real and pseudo-complex 

planes clearly shows, that four-dimensional pseudo-

complex situations are inextricably connected with 

spacetimes of an even number (0 or 2 or 4) of time-

like dimensions. Using the mathematics of pseudo-

complex planes makes only sense in pure four-

dimensional space, pure four-dimensional time or a 

mixed four-dimensional spacetime with two space-

like and two time-like dimensions. 

And it only makes sense to describe the world we 

live in by pseudo-real planes: The geometry of 

mixed spacetime with one time-like and three space-

like is inextricably connected with pseudo-real situa-

tions. Only there base vectors are represented by Di-

rac matrices via eqs. {37}, {38}, {39}, & {40}. 

Therefore it should be expected that pseudo-com-

plex relativity does not make sense. Relativity of one 

time and three space dimensions follows the geome-

try of pseudo-reality. 

6. These are indeed reflections! 

Should the sandwich product of a vector and a non-

blade really be called a reflection? At first glance, 

figures 4 and 6 do not look familiar to us: We never 

observe a long, one-dimensional string to show a 

picture which consists of a one-dimensional string 

and a three-dimensional parallelepiped when we 

look into mirrors existing in the world we all live in. 

So do figures 4 and 6 really describe reflections? 

This question can only be answered sufficiently 

when we change our perspective and remodel the 

mathematical situation didactically by using trivec-

torial coordinates or Argand-like diagrams discussed 

in the previous section. 

Comparing fig. 7, which shows a reflection in a real 

plane and fig. 8, which shows a reflection in a pseu-

do-real plane, both reflections have an identical 

structure: A vector is reflected into a vector at blade 

N1, indicated in fig. 7 by the intersecting line of N1 

and the xy-plane. And a vector is reflected into a 

vector plus pseudo-vector at non-blade N4. This non-

blade is indicated by the intersecting pseudo-line of 

non-blade N4, now written as 

N4 = xy + 2 zt = (y + 2 ztx) (– t)       {46} 

and the pseudo-real y (z t x)-plane. 

The components parallel to blade N1 (see fig. 7) and 

the components parallel to non-blade N4 (see fig. 8) 

remain unchanged, while the components orthogonal 

to blade N1 (fig. 7) and orthogonal to N4 (fig. 8) 

change their direction. 

Thus the algebraic remodeling is connected with a 

remodeling of the geometric picture of the sandwich 

product. 
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Fig.7: Reflection {13a} shown in a real plane. 

 

In a similar way figures 9 and 10 can be compared. 

Figure 9, which shows a reflection in a complex 

plane and fig. 10, which shows a reflection in a 

pseudo-complex plane, have an identical structure: 

A vector is reflected into a vector at blade N3, indi-

cated in fig. 9 by the intersecting line of N3 and the 

xt-plane. 

And a vector is reflected into a vector plus pseudo-

vector at non-blade N2. This non-blade is indicated 

by the intersecting pseudo-line of non-blade N2, now 

written as 

N2 = xy + 2 zw = (x + 2 yzw) y   {47} 

and the pseudo-real x (y z w)-plane. 

The components parallel to blade N3 (see fig. 9) and 

the components parallel to non-blade N2 (see fig. 10) 

remain unchanged, while the components orthogonal 

to blade N3 (fig. 9) and orthogonal to N2 (fig. 10) 

change their direction. 

Thus the algebraic remodeling is connected with a 

remodeling of the geometric picture of the sandwich 

product. The dimensional-changes of figures 4 & 6 

are now clearly identified as reflections. And by the 

way: Fig. 9 is equivalent to fig. 5 with a more reluc-

tant use of color. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9: Reflection {25a} shown in a complex plane. 

 

 

 

 

 

 

 

 

 

 

 

Fig.8: Reflection {29b} shown in a pseudo-real plane. 

 

7. Hyperbolic rotations 

Lorentz transformations are understood and modeled  

as spacetime rotations in Special Relativity. On the 

other hand rotations can be understood and modeled 

as two succeeding reflections. Thus Lorentz trans-

formations can be directly described by the reflec-

tions discussed in the previous sections. 

As a first example let’s have a look at a reflection at 

blade N3, followed by a second reflection at blade  

N5 = N5
–

 
1
 = yt                                         {48} 

The rotor is then given by 

N5N3 = yt (xy + 2 ty) = xt – 2            {49} 

(N5N3)
–

 
1
 = N3

–
 
1
N5

–
 
1
 = – 

3

1
 (xt + 2)        {50} 

This constitutes a four-dimensional rotation, which 

takes place in the xt-plane. Thus the components of 

vectors parallel to the xt-plane are not rotated around 

a one-dimensional axis, but they are rotated around a 

two-dimensional axis represented by bivector yz. In 

this way vectors are rotated around the yz-plane. 

Components parallel to the yz-plane remain un-

changed. 

The angle of rotation equals twice the angle  between 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.10: Reflection {19a} shown in a pseudo-complex  

plane. 
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ex 
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t 

N3 = (x + 2 t) y 
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the two blades N3 and N5. The rotated base vectors 

then are: 

ex =    
3

5
 x – 

3

4
 t                                    {51a} 

ey =    y                                                   {51b} 

ez =     z                                                   {51c} 

et = – 
3

4
 x + 

3

5
 t                                    {51d} 

This is a relativistic boost equivalent to a Lorentz 

transformation which takes place in the xt-plane. 

The old coordinate axes into x- and t-direction are 

transformed into coordinate axes which point into 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.11: Lorentz transformations {51a, d} shown in a 

complex plane. 

 

the direction of base vectors ex {51a} and et {51d} 

(see figure 11). The new coordinate system then 

moves with velocity 

v = – 
5

4
 c = – 0.8 c                                   {52} 

with respect to the old coordinate system. And the 

inverse transformations, which rotate the new base 

vectors back into the original coordinate system, are 

x =  
3

5
 ex + 

3

4
 et                                     {53a} 

y =   ey                                                    {53b} 

z =   ez                                                    {53c} 

t  =  
3

4
 ex + 

3

5
 et                                     {53d} 

In a similar way hyperbolic rotations around spatial 

non-blades can be modeled in pure four-dimensional 

space. 

As  an  example  let’s  have  a  look  at  a  reflection  at 

non-blade N2, followed by a second reflection at the 

blade 

N6 = N6
–

 
1
 = zw                                           {54} 

The rotor is then given by 

N6N2 = zw (xy + 2 zw) = xyzw – 2 {55} 

(N6N2)
–

 
1
 = N2

–
 
1
N6

–
 
1 

                      
 = xyzw + 2                               {56} 

This constitutes a four-dimensional rotation, which 

takes place in all four pseudo-complex planes simul-

taneously. Now vectors are not rotated into pure 

vectors, but they are rotated into linear combinations 

of vectors and trivectors. These rotated pseudo-base 

vectors are: 

ex =   
3

5
 x + 

3

4
 yzw                          {57a} 

ey =   
3

5
 y – 

3

4
 zwx                          {57b} 

ez =   
3

5
 z + 

3

4
 wxy                          {57c} 

ew =  
3

5
 w – 

3

4
 xyz                           {57d} 

And the inverse transformations rotate the new base 

vectors back into the original coordinate system with 

x =    
3

5
 ex – 

3

4
 eyezew                            {58a} 

y =    
3

5
 ey + 

3

4
 ezewex                           {58b} 

z =    
3

5
 ez – 

3

4
 ewexey                            {58c} 

w =   
3

5
 ew + 

3

4
 exeyez                            {58d} 

As all these transformations happen in a Galilean 

world, time remains unchanged. 

Now let’s suppose that there are physicists living in 

the new coordinate system who are only able to 

measure the lengths of objects. If they haven’t  in-

vented methods to measure trivectors, they will only 

be able to measure the one-dimensional “shadow” of 

objects which have length and volume. 

If a rod which has a length of ℓ = 1 cm in the origi-

nal coordinate system is now measured in the rotated 

coordinate system by these physicists with unit rul-

ers ex, ey, ez, ew, the new length of the rod will be 

shorter. 

As every unit ruler is expanded by 5/3 compared to 

the original unit rulers, the rod now has a length of 

ℓnew = 
5

3
 ℓ = 0.6 new cm                          {59} 

in the rotated coordinate system. 

If these physicists are able to measure lengths, they 

will be also able to measure positions of a moving 

rod. Thus they should observe a different inertia of 

x 
x 

ex 

hyperbola  

t 

t 

light 

cone 

et 

xnew 

tnew 
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the rod, as it will not move with the same velocity 

compared to a rod without trivector part. 

These physicists, who are not recognizing the cor-

rect cause for the unusual inertia of the rod, might be 

tempted to interpret all this as caused by a field 

which changes the motion of the rod. 

8. Euclidean rotations 

As a third example let’s have a look at a reflection at 

blade N1, followed by a second reflection at blade  

N7 = – N7
–

 
1
 = yz                                    {60} 

The rotor is then given by 

N7N1 = yz (xz + 2 yz) = xy – 2     {61} 

(N7N1)
–

 
1
 = N1

–
 
1
N7

–
 
1
 = – 

5

1
 (xy + 2)       {62} 

This constitutes a spatial rotation, which takes place 

in the xy-plane. Thus the components of vectors 

parallel to the xy-plane are rotated in an Euclidean 

way, while all components orthogonal to the xy-

plane (and therefore parallel to the wz-plane as the 

two-dimensional rotation axis) remain unchanged. 

The angle of rotation equals twice the angle between 

the two blades N1 and N7 and the rotated base vec-

tors will be 

ex =    
5

3
 x + 

5

4
 y                                 {63a} 

ey = – 
5

4
 x + 

5

3
 y                                 {63b} 

ez =   z                                                    {63c} 

ew =  w                                                   {63d} 

The inverse transformations are 

x =  
5

3
 ex – 

5

4
 ey                                    {64a} 

y =  
5

4
 ex + 

5

3
 ey                                    {64b} 

z =   ez                                                    {64c} 

w =  ew                                                   {64d} 

In a similar way Euclidean rotations around 

spacetime non-blades can be modeled in four-

dimensional spacetime. 

 

 

 

 

 

 

 

 

 

 

Fig.12: Spatial rotations {63a, b} shown in a real plane. 

As an example let’s have a look at a reflection at 

non-blade N4 {8}, followed by a second reflection at 

blade N5 = yt {48}. The rotor is then given by 

N5N4 = yt (xy + 2 zt) = xt – 2 yz    {65} 

(N5N4)
–

 
1
 = N4

–
 
1
N5

–
 
1
 = 

5

1
 (xt + 2 yz)     {66} 

This constitutes a four-dimensional rotation, which 

takes place in all four pseudo-real planes simultane-

ously. Now vectors are not rotated into pure vectors, 

but they are rotated into linear combinations of vec-

tors and trivectors. These rotated pseudo-base vec-

tors are: 

ex =    
5

3
 x + 

5

4
 yzt                              {67a} 

ey = – 
5

3
 y + 

5

4
 ztx                              {67b} 

ez = – 
5

3
 z – 

5

4
 txy                              {67c} 

et =    
5

3
 t + 

5

4
 xyz                              {67d} 

These transformations indeed look like rotations as 

the four base trivectors xyz, yzt, ztx, txy 

transform according to 

Vrot = N5N4 V N4
–

 
1
N5

–
 
1
                             {68} 

into the following rotated pseudo-base trivectors: 

exeyez =    
5

3
 xyz – 

5

4
 t                        {69a} 

eyezet  =    
5

3
 yzt – 

5

4
 x                        {69b} 

ezetex = – 
5

3
 ztx – 

5

4
 y                         {69c} 

etexey = – 
5

3
 txy + 

5

4
 z                        {69d} 

All these rotations are shown in figures 13, 14, 15, 

and 16. They rotate para-vectors
1
 about 60° (fig. 13), 

120° (fig. 14), 240° (fig.15), and again 60° (fig. 16). 

The inverse transformations can now easily be found 

by multiplying eqs. {67} & {69} first by the original 

base vectors and then by the rotated base vectors, 

e.g. see the back-rotation of eq. {67a}. 

x ex = – 
5

3
 + 

5

4
 xyzt = – 

5

3
 + 

5

4
 exeyezet {70} 

       x =    
5

3
 ex – 

5

4
 eyezet                              {71a} 

y = – 
5

3
 ey – 

5

4
 ezetex                             {71b} 

z = – 
5

3
 ez + 

5

4
 etexey                              {71c} 

t  =     

5

3
 et – 

5

4
 exeyez                             {71d} 

                                                           
1 Para-vector: Linear combination of a vector and a trivector. 

y 

x 
x 

ex 
y 

ey 
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Fig.13: Rotations {67a} and {69b} shown in a pseudo-real 

plane. 

 

 

 

 

 

 

 

 

 

 

 

Fig.14: Rotations {67b} and {69c} shown in a pseudo-real 

plane.  

 

 

 

 

 

 

 

 

 

 

 

Fig.15: Rotations {67c} and {69d} shown in a pseudo-real 

plane. 

 

 

 

 

 

 

 

 

 

 

xyz =    
5

3
 exeyez + 

5

4
 et                        {72a} 

yzt  =    
5

3
 eyezet + 

5

4
 ex                       {72b} 

ztx = – 
5

3
 ezetex + 

5

4
 ey                        {72c} 

txy = – 
5

3
 etexey – 

5

4
 ez                        {72d} 

Again physicists who live in such a transformed 

world and who are only able to measure distances 

might tell colleagues that the reason for the strange 

different kinematical behavior of objects should be a 

field. 

9. Outlook 

The transition from non-relativistic three-dimen-

sional to relativistic four-dimensional structures 

must also be thought as a transition from blades to 

non-blades: One-dimensional lines can be trans-

formed into three-dimensional space or spacetime 

elements. And three-dimensional space or spacetime 

elements can be transformed into one-dimensional 

lines. 

And we might be forced to rethink, what it means 

when we measure distances or volumes, as a dis-

tance in the first coordinate system might be partly a 

volume in another coordinate system. Our rulers not 

only change the scale, but they also change the di-

mension – and it is true, that “the algebra of the 

space that we do observe contains so many wonders 

that are not yet generally appreciated” [5, p. 1200]. 

We should think about theses wonders. And we 

should discuss them with our students. 
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Fig.16: Rotations {67d} and {69a} shown in a pseudo-real 

plane. 
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