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Abstract 

As reflections are an elementary part of model construction in physics, we really should look for a 

mathematical picture which allows for a very general description of reflections. The sandwich 

product delivers such a picture. 

Using the mathematical language of Geometric Algebra, reflections at vectors of arbitrary dimen-

sions and reflections at multivectors (i.e. at linear combinations of vectors of arbitrary dimensions) 

can be described mathematically in an astonishingly coherent picture.  

 

1. Reflections in physics and mathematics 

There is a severe difference between reflections in 

physics and reflections in mathematics. If we reflect 

an object (e.g. the arrow shown in figure 1) in a 

plane mirror, which is a simple optical situation in 

physics, the picture of the object and the original 

object are always supposed to have the same dis-

tance from the plane mirror, yet lying on different 

sides of the mirror. Thus we have to consider two 

kinds of information in this case: information about 

the position and information about the direction of 

object and picture. 

In mathematics, we only consider directional infor-

mation. Identical arrows at different positions in 

space represent the same vector (see figure 2). Vec-

tors (and multivectors in general) do not possess 

positional information. They are mathematical ob-

jects constructed purely by directions. Thus a reflec-

tion of a vector at a plane will result in a picture of 

the vector with arbitrary position in space (see figure 

3). An explicit value of the distance of the vector to 

the plane does not exist. 

Thus we are usually dealing with position vectors 

and position multivectors when discussing problems 

 

 

 

 

 

 

 

 

 

 

 

in physics, while we are dealing with vectors and 

multivectors when discussing problems in mathe-

matics. 

 

 

 

 

 

 

 

 

 

 

This even gives the impression that mathematics is 

behaving in a more natural scientific manner com-

pared to physics, as in science one should always 

change only one variable at a time when investigat-

ing problems or carrying out experiments. A mathe-

matical reflection only changes one variable (direc-

tion) while a reflection in physics changes two vari-

ables (position and direction) at a time. 

 

 

 

 

 

 

 

 

 

 Fig.1: Reflection of an arrow at a plane mirror    

in physics. 

shadow of the arrow (compo- 

                nent parallel to the 

                                   mirror) 

original arrow 
(object) 

reflected arrow 
(picture) 

Fig.2: Some arrows which represent vector r. 

r 

Fig.3: Reflection of vector r at a plane in   

mathematics. 

r 
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Many physicists therefore tend to discuss geometric 

situations using conformal concepts. In such situa-

tions Conformal Geometric Algebra (CGA) is espe-

cially helpful, as positional information of three-

dimensional space or four-dimensional spacetime is 

encoded as directional information of a five- or six-

dimensional conformal spacetime [1], [2], [3, chap. 

10], [4] in CGA. In this way the two different varia-

bles are condensed into one. 

Therefore only mathematical reflections will be 

considered in the following. 

2. Geometric representations of scalars 

In the preceding section the difference between 

vectors and position vectors was discussed. A simi-

lar relation exists between scalars and position sca-

lars. 

A scalar is a dimensionless vector without direction, 

called a point in geometry. 

We are usually dealing with points at fixed positions 

in physics. Often scientists represent a scalar by a 

very special point of a coordinate system: the origin. 

In this paper scalars are represented by all points of 

space. These mathematical scalars do not possess a 

position (see figure 4). Every point of space or 

spacetime will represent a given scalar. 

Different vectors might not only have a different 

direction, but a different 1-dimensional volume, 

 

 

 

 

 

 

 

 

 

 

 

called length, too. In a similar way different scalars 

possess different 0-dimensional volumes, called 

value of the scalars. 

Thus scalars cannot be distinguished by their posi-

tions (which are not defined), but only by their val-

ues. 

And as a scalar is a dimensionless object or point 

without direction, its picture will be the same dimen-

sionless object without direction. Thus scalars (or 

points) of value k will always be reflected into the 

identical scalar of same value k = kref (see figure 5). 

3. Basic entities of Geometric Algebra 

In three-dimensional space three base vectors are 

required to describe all possible vectors as linear 

combinations of the base vectors. These base vectors 

can be represented by Pauli matrices x, y, z [5, 

sec. 55], [6, sec. 2.6]. In higher-dimensional spaces 

of dimension n (some authors like to call them hy-

perspaces), n different base vectors are required. 

These base vectors can be seen as generalized Pauli 

matrices1, 2, 3, … , n as they obey Pauli alge-

bra. 

In four-dimensional spacetime four base vectors are 

required to describe all possible vectors as linear 

combinations of base vectors. These base vectors 

can be represented by Dirac matrices t, x, y, z [5, 

sec. 156], [6, chap. 5]. In higher-dimensional spaces 

of dimension n (some authors like to call them hy-

per-spacetimes), n different base vectors are re-

quired. These base vectors can be seen as general-

ized Dirac matrices1, 2, 3, … , n as they obey 

Dirac algebra. 

Thus we live in mathematical worlds with the fol-

lowing mathematical ingredients. In three-dimensio-

nal space there are: 

 Scalars (0-vectors) k, ℓ                                       

 dimensionless points, 

 Vectors (1-vectors) r, n                                      

 oriented one-dimensional line elements, 

 Bivectors (2-vectors) A, N                                 

 oriented two-dimensional area elements, 

 Trivectors (3-vectors) V, T                                

 oriented three-dimensional volume elements. 

 

 

 

 

 

 

 

 

 

 

 

In four-dimensional spacetime there are: 

 Scalars (0-vectors)  k, ℓ, vectors (1-vectors) r, n, 

bivectors (2-vectors) A, N, trivectors (3-vec- 

tors) V, T, 

 Quadvectors (4-vectors) Q, Q 

 oriented four-dimensional hyper volume ele-

ments. 

And in higher-dimensional spaces or spacetimes 

there are: 

 Scalars (0-vectors)  k, ℓ, vectors (1-vectors) r, n, 

bivectors (2-vectors) A, N, trivectors (3-vec- 

tors) V, T, quadvectors (4-vectors) Q, Q, 

 Pentavectors (5-vectors) P, P 

 oriented five-dimensional hyper volume ele-

ments, 

 Hexavectors (6-vectors) H, H 

 

2  

2 

Fig.4: Geometric representation of the scalar 2 (blue 

points) and the scalar 7 (black points). 
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Fig.5: Reflection of scalar k = 7 at a plane in ma- 

thematics which results in kref = 7. 
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 oriented six-dimensional hyper volume ele-

ments, 

 Septavectors (7-vectors) S, S 

 oriented seven-dimensional hyper volume  

elements, 

 … etc … 

 k-dimensional hypervectors (k-vectors) 

 oriented k-dimensional hyper volume ele-

ments. 

These higher-dimensional entities are required to 

describe Special Relativity as a four-dimensional 

geometry, Cosmological Special Relativity [7] or 

Conformal Geometric Algebra as five-dimensional 

geometries, Conformal Spacetime Algebra as a six-

dimensional geometry and Conformal Cosmological 

Algebra as a seven-dimensional geometric world 

(see figure 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Central message of this paper 

Every reflection can be modeled mathematically as a 

threefold multiplication forming a sandwich product. 

Using Clifford Algebra, matrix multiplication is not 

required to find a reflected object. 

And it makes sense to reverse this sentence: Every 

sandwich product can be considered as a reflection – 

at least in a formal way, e.g. a rotation equals a re-

flection at an oriented parallelogram. Thus sand-

wich products describe reflections (see figure 7). 

This is the central message of this paper. 

This description of reflections has a tremendous 

didactical advantage over other mathematical con-

structions: Both operators and operands are modeled 

within the same mathematical language. They are 

always considered as mathematical objects of Geo-

metric Algebra – linear combinations of vectors or 

linear combinations of geometric products of vec-

tors. 

 

 

 

 

The axis at which a vector is reflected at is written in 

the same way as the vector which is reflected. This 

makes it easy to find parallel and orthogonal com-

ponents of these vectors (see section 7). 

Of course we live in three-dimensional space. There-

fore only equations {1} to {4}, {9} to {12}, {17} to 

{20}, and {25} to {28} are directly accessible to 

experiments in physics. We will never be able to 

hold a five-dimensional hypercube in front of a 

three-dimensional mirror and look at the picture of 

this hypercube. But we are able to generalize obser-

vations we made and mathematical ideas we formed 

in our very narrow, constricted three-dimensional 

world we live in. 

These generalizations are inventions, and as long as 

these higher-dimensional mathematical inventions 

contain all known relations of three-dimensional 

space, they can be considered as reasonable or ra-

tional. 

Such a system of higher-dimensional, reasonable 

relations is given in the following section 5. They 

help us to understand the geometry of four-

dimensional spacetime, which is a very reasonable 

and rational invention, too. We are (at least at pre-

sent) not able to hold a 3d spacetime cube with two 

spacelike and one timelike edges in front of a two-

dimensional spacetime mirror with one spacelike 

and one timelike dimension and look at the picture 

of this 3d spacetime cube. 

But physicists are able to do some experiments in 4d 

spacetime. And they will find the mathematical 

structure of the equations given in section 5 helpful 

to describe the outcome of these experiments in a 

very coherent, clear and well-structured mathemati-

cal way. 

In a similar way I hope that the structure of these 

equations will one day help to describe and under-

stand conformal geometric algebras in a didactically 

well-structured way. 

Today the presentation of reflections sometimes 

lacks the coherence and clearness seen in equations 

{1} to {64}. For instance standard textbooks of 

Geometric Algebra often use a dual description for 

reflecting a vector. They describe reflections of a 

vector at a plane or at a hyper-plane by using the 

dual n of the plane or hyper-plane. Then equations 

like aref = – n a n [3, eq. 2.99, p. 40] may lead to a 

mathematical picture, which is confusing as it is 

written as a reflection at a vector, followed by the 

reflection at a point. In contrast to that, equations 

{1} to {64} are given without any reference to the 

dual of the operators.  

 

 

 

 

 

 

          reflected operand  =   operator              operand              operator 

– 1 
 

Fig.7: Sandwich products describe reflections: An operand is multiplied from left and right by an operator. 

multiplied 
by 

multiplied 
by 

 

(Standard) Geometric Algebra   3 dimensions 
 

Spacetime Algebra     4 dimensions 
 

Cosmological Spacetimevelocity Algebra 

& Conformal Geometric Algebra    5 dimensions 
 

Conformal Spacetime Algebra   6 dimensions 
 

Conformal Cosmological Algebra  7 dimensions 
 

Higher-dimensional Conformal Geo- 

metric Algebras                8 and more dimensions 
 

Fig.6: Dimensionalities of different Geometric Algebras. 
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5. Overview: Reflection formulas 

Reflection at a point (represented by scalar ℓ): 

Scalars: kref =    ℓ k ℓ 
–

 
1
            {1} 

Vectors: rref = – ℓ r ℓ 
–

 
1
            {2} 

Bivectors:  Aref =    ℓ A ℓ 
–

 
1
            {3} 

Trivectors: Vref = – ℓ V ℓ 
–

 
1
            {4} 

Quadvectors: Qref =    ℓ Q ℓ 
–

 
1
            {5}

 

Pentavectors: Pref = – ℓ P ℓ 
–

 
1
            {6} 

Hexavectors: Href =    ℓ H ℓ 
–

 
1
            {7} 

Septavectors: Sref = – ℓ S ℓ 
–

 
1
            {8} 

Reflection at an axis (represented by vector n): 

Scalars: kref =  n k n 
–

 
1
            {9} 

Vectors: rref =  n r n 
–

 
1
          {10} 

Bivectors:  Aref =  n A n 
–

 
1
          {11} 

Trivectors: Vref =  n V n 
–

 
1
          {12} 

Quadvectors: Qref =  n Q n 
–

 
1
          {13}

 

Pentavectors: Pref =  n P n 
–

 
1
          {14} 

Hexavectors: Href =  n H n 
–

 
1
          {15} 

Septavectors: Sref =  n S n 
–

 
1
          {16} 

Reflection at a plane (represented by bivector N): 

Scalars: kref =    N k N 
–

 
1
          {17} 

Vectors: rref = – N r N 
–

 
1
          {18} 

Bivectors:  Aref =    N A N 
–

 
1
          {19} 

Trivectors: Vref = – N V N 
–

 
1
          {20} 

Quadvectors: Qref =    N Q N 
–

 
1
          {21}

 

Pentavectors: Pref = – N P N 
–

 
1
          {22} 

Hexavectors: Href =    N H N 
–

 
1
          {23} 

Septavectors: Sref = – N S N 
–

 
1
          {24} 

Reflection at a 3d space or reduced spacetime 
(represented by trivector T): 

Scalars: kref =  T k T 
–

 
1
          {25} 

Vectors: rref =  T r T 
–

 
1
          {26} 

Bivectors:  Aref =  T A T 
–

 
1
          {27} 

Trivectors: Vref =  T V T 
–

 
1
          {28} 

Quadvectors: Qref =  T Q T 
–

 
1
          {29}

 

Pentavectors: Pref =  T P T 
–

 
1
          {30} 

Hexavectors: Href =  T H T 
–

 
1
          {31} 

Septavectors: Sref =  T S T 
–

 
1
          {32} 

Reflection at a 4d hyperspace or spacetime 
(represented by quadvector Q): 

Scalars: kref =    Q k Q 
–

 
1
          {33} 

Vectors: rref = – Q r Q 
–

 
1
          {34} 

Bivectors:  Aref =    Q A Q 
–

 
1
          {35} 

Trivectors: Vref = – Q V Q 
–

 
1
          {36} 

Quadvectors: Qref =    Q Q Q 
–

 
1
          {37}

 

Pentavectors: Pref = – Q P Q 
–

 
1
          {38} 

Hexavectors: Href =    Q H Q 
–

 
1
          {39} 

Septavectors: Sref = – Q S Q 
–

 
1
          {40} 

 

Reflection at a 5d hyperspace, hyperspacetime or 
spacetimevelocity  (represented by pentavector P): 

Scalars: kref =  P k P 
–

 
1
          {41} 

Vectors: rref =  P r P 
–

 
1
          {42} 

Bivectors:  Aref =  P A P 
–

 
1
          {43} 

Trivectors: Vref =  P V P 
–

 
1
          {44} 

Quadvectors: Qref =  P Q P 
–

 
1
          {45}

 

Pentavectors: Pref =  P P P 
–

 
1
          {46} 

Hexavectors: Href =  P H P 
–

 
1
          {47} 

Septavectors: Sref =  P S P 
–

 
1
          {48} 

Reflection at a 6d hyperspace or hyperspacetime 
(represented by hexavector H): 

Scalars: kref =    H k H 
–

 
1
          {49} 

Vectors: rref = – H r H 
–

 
1
          {50} 

Bivectors:  Aref =    H A H 
–

 
1
          {51} 

Trivectors: Vref = – H V H 
–

 
1
          {52} 

Quadvectors: Qref =    H Q H 
–

 
1
          {53}

 

Pentavectors: Pref = – H P H 
–

 
1
          {54} 

Hexavectors: Href =    H H H 
–

 
1
          {55} 

Septavectors: Sref = – H S H 
–

 
1
          {56} 

Reflection at a 7d hyperspace or hyperspacetime 
(represented by septavector S): 

Scalars: kref =  S k S 
–

 
1
          {57} 

Vectors: rref =  S r S 
–

 
1
          {58} 

Bivectors:  Aref =  S A S 
–

 
1
          {59} 

Trivectors: Vref =  S V S 
–

 
1
          {60} 

Quadvectors: Qref =  S Q S 
–

 
1
          {61}

 

Pentavectors: Pref =  S P S 
–

 
1
          {62} 

Hexavectors: Href =  S H S 
–

 
1
          {63} 

Septavectors: Sref =  S S S 
–

 
1
          {64} 

Similar equations with the same sandwich product 

structure can be found for reflections at higher-

dimensional hyperspaces and hyper-spacetimes. 

6. Reflection of points (scalars) and at points 

As points or scalars do not have any direction there 

will be no change of the non-existing direction, if 

points are reflected at an arbitrary geometrical ob-

ject. And the value of the point or scalar does not 

change either. 

Therefore equations {1}, {9}, {17}, {25}, {33}, 

{41}, {49}, and {57} simply state that 

kref  =  k                                                      {65} 

because scalars commute with every other mathe-

matical object. Therefore the operator and its inverse 

cancel if the operand (see figure 7) is a scalar. 

A point and its reflected picture are always identical. 

So it is not misleading to regard points as being 

somehow “parallel” to every other geometrical ob-

ject. It is always possible to place them completely 

inside other mathematical objects. 
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Let’s use a mathematically rather illegible, but at the 

same time sort of well-founded physics-based defi-

nition of “parallel” and “orthogonal”. If something is 

“parallel” to a geometric object, it will not change its 

direction or orientation when reflected at this geo-

metric object. If something is “orthogonal” to a 

geometric object, it will reverse its direction or ori-

entation when reflected at this geometric object. 

A reflection at a point or scalar changes the direction 

of a vector. Thus a vector has no “parallel” compo-

nent with respect to a point. 

rref = – ℓ r ℓ 
–

 
1
 = – r = – r                       {66} 

As a bivector can always be written as an outer 

product of two vectors in three-dimensional space, 

these two vectors will both change their direction 

when reflected at a point or scalar. Thus the direc-

tional changes cancel and a bivector does not change 

its orientation when reflected at a point. Therefore 

we have to conclude, that a bivector has no “orthog-

onal” component with respect to a point. 

Aref = ℓ A ℓ 
–

 
1
 = A = A                           {67} 

In three-dimensional space every trivector can be 

written as an outer product of three vectors. These 

three vectors will all change their direction when 

reflected at a point or scalar. Thus the orientation of 

a trivector is reversed when reflected at a point. 

Therefore a trivector has no “parallel” component 

with respect to a point. 

Vref = – ℓ V ℓ 
–

 
1
 = – V = – V                  {68} 

It is possible, to describe the reflection of higher-di- 

mensional k-vectors at points or scalars: 

Qref =   ℓ Q ℓ 
–

 
1
 =   Q =    Q                      {69} 

Pref = – ℓ P ℓ 
–

 
1
 = – P = – P                     {70} 

Href =   ℓ H ℓ 
–

 
1
 =   H =    H                     {71} 

Sref = – ℓ S ℓ 
–

 
1
  = – S = – S                     {72} 

7. Other reflections in three-dimensional space 

The idea that sandwich products describe reflections 

builds on the behavior of vectors in three-dimensio-

nal space. The base vectors x, y, z act as base 

reflections, changing the sign of components per-

pendicular to them: 

r’ =  x r x = x (x x + y y + z z) x 

          = + x x – y y – z z        {73} 

r’’ =  y r y = – x x + y y – z z        {74} 

r’’’ =  z r z = – x x – y y + z z        {75} 

The first sandwich product {73} represents a reflec-

tion at an axis pointing into x-direction. Equation 

{74} represents a reflection at an axis pointing into 

y-direction, and equation {75} represents a reflec-

tion at an axis pointing into z-direction. 

These equations can be generalized for reflections at 

an axis pointing into the direction of vector n {10}. 

The component of r and rref parallel to the axis of 

reflection can be found by adding these vectors. 

  r = 
2

1
(r + rref) 

      = 
2

 2

1

n
(r n n + n r n) = 

2
 2

1

n
(r n + n r) n 

      = 
2

1

n
(r  n) n                                          {76} 

The component of r (and likewise – rref) perpendicu-

lar to the axis of reflection can be found by subtract-

ing them (see figure 9). 

  r = 
2

1
(r – rref) 

      = 
2

 2

1

n
(r n n – n r n) = 

2
 2

1

n
(r n – n r) n 

      = 
2

1

n
(r  n) n                                         {77} 

 

 

 

 

 

 

 

 

Fig.8: Reflection of scalar k, vector r, bivector A, 

and trivector V at point or scalar ℓ. 

r rref  

ℓ 

A 

 

ℓ 

Aref 

 

ℓ 

V 

Vref 

 

kref  

k 

 

 

ℓ 

Fig.9: Reflection of vector r at an axis pointing 

into the direction of vector n. 

r 

rref 

n 

r 
r 
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Thus the reflected vector rref is the composition of 

the parallel component r plus the reversed orthogo-

nal component – r: 

rref = n r n 
–

 
1
 = 

2

1

n
n r n 

      = 
2

1

n
(n  r + n  r) n 

      = 
2

1

n
(– r  n + r  n) n = – r + r        {78} 

In a similar way the reflection of a vector at a plane, 

which is represented by bivector N (see figure 10), 

can be modeled. This time a minus sign has to be 

taken into account again as the base bivectors xy, 

yz,zx are considered as base reflections, chang-

ing the sign of components perpendicular to them: 

r’ = – yz r zy 

 = – yz (x x + y y + z z) zy 

 = – x x + y y + z z                        {79} 

r’’ = – zx r xz 

 = + x x – y y + z z                        {80} 

r’’’ = – xy r yx 

 = + x x + y y – z z                        {81} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These additional minus signs are a consequence of 

the symmetry of inner and outer products. While the 

inner product of two vectors is commutative, the 

inner product of a vector and a bivector is anti-

commutative. And while the outer product of       

two vectors is anti-commutative, the outer product 

of a vector and a bivector is commutative [3, sec. 

2.4.1]. 

We therefore get 

  rref = – N r N 
–

 
1
 = – 

2

1

N
N r N 

        = – 
2

1

N
(N  r + N  r) N 

        = 
2

1

N
(– r  N + r  N) N = – r + r    {82} 

with 

r = 
2

1
(r + rref) 

      = 
2

 2

1

N
(r N N – N r N) = 

2
 2

1

N
(r N – N r) N 

      = 
2

1

N
(r  N) N                                        {83} 

  r = 
2

1
(r – rref) 

      = 
2

 2

1

N
(r N N + N r N) = 

2
 2

1

N
(r N + N r) N 

      = 
2

1

N
(r  N) N                                        {84} 

If a vector which is “parallel” to a plane, is reflected 

at this plane, this vector will not change its direction. 

In a similar way we can think about reflections in     

a three-dimensional mirror in three-dimensional 

space. 

In our world which obviously has three spatial di-

mensions all vectors are inside this world: Vectors 

therefore are always “parallel” to trivectors. They do 

not change when reflected at three-dimensional 

space which is represented by trivector T. 

rref = T r T 
–

 
1
 = r                                      {85} 

For the same reason ever other geometrical object 

which exists in three-dimensional space, is “parallel” 

to three-dimensional space and will not change its 

direction or orientation when reflected at three-

dimensional space. 

kref  = T k T 
–

 
1
 = k                                     {86} 

Aref = T A T 
–

 
1
 = A                                   {87} 

Vref = T V T 
–

 
1
 = V                                   {88} 

Having now discussed all possible basic reflections 

of scalars (see eq. {65}  ) and vectors in three-dimen-

sional space, similar relations for basic reflections of 

bivectors and trivectors can be found in three-

dimensional space. 

As in three-dimensional space every bivector can be 

written as an outer product of two different vectors 

and every trivector as an outer product to three dif-

ferent vectors, for example we will get as reflection 

of bivector A = r1  r2 and trivector V = r1  r2  r3 

at an axis pointing into the direction of vector n: 

  Aref = r1ref  r2ref = (n r1 n 
–

 
1
)  (n r2 n 

–
 
1
)    {89}

 

                              = n (r1  r2) n 
–

 
1
 = n A n 

–
 
1
 

  Vref = r1ref  r2ref  r3ref                                 {90}
 

         = n (r1  r2  r3) n 
–

 
1
 = n V n 

–
 
1
 = – V 

Fig.10: Reflection of vector r at a plane represented 

by bivector N. 

r 

rref 

N 

r 

r 
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8. The rotational perspective on reflections 

Every reflection has something of a rotation in it. 

This rotational viewpoint of reflections will be dis-

cussed in the following at the example of a reflection 

at an axis, which is represented by a vector n of the 

x2x4-plane 

n = a 2 + b 4                                                {91} 

in four-dimensional space. Vectors can then be writ-

ten as 

r = x1 1 + x2 2 + x3 3 + x4 4                     {92} 

The axis of reflection n can be split into two trigo-

nometrical parts (a, b are scalars) with the definitions  

22 ba

a


 = cos                                          {93} 

22 ba

b


 = sin                                           {94} 

and therefore 

n = 22 ba  (cos  2 + sin  4)                {95} 

n
–

 
1
 = 

22 ba

1


 (a 2 + b 4)

 

       = 
22 ba

1



 (cos  2 + sin  4)           {96} 

The reflection at n is then given by 

rref = n r n
–

 
1
                                                    {97} 

      = (cos  2 + sin  4) r (cos  2 + sin  4) 

 =  – x1 1 + (x2 cos (2) + x4 sin (2)) 2 

     – x3 3 + (x2 sin (2) – x4 cos (2)) 4 

This is clearly a reflection at an axis which points 

into the direction of n (see figure 11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nevertheless figure 11 shows some rotations too. 

The blue vector r1 can be thought of being rotated 

about a small angle into vector r1ref. The red vector 

r2 is rotated about a much bigger angle into vector 

r2ref. 

These are rotations about different angles of rota-

tion, but this can be fixed with a simple trick: We 

only have to reflect the reflected vectors at another 

vector. If this second reflection vector is parallel to 

the x4-axis, the double reflection will result in the 

situation shown in figure 12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus the rotation 

rrot = n2 n1 r n1
–

 
1
 n2

–
 
1
                                    {98} 

is identical with a double reflection at the two axes 

n1 and n2. But the same reflection can be found by a 

reflection at the oriented parallelogram 

N21 = n2 n1 = n2  n1 + n2  n1                       {99} 
 

                            scalar    bivector 

with 

rpara = – N21 r N21
–

 
1
 = – n2 n1 r n1

–
 
1
 n2

–
 
1
     {100} 

followed by a reflection at a scalar 

rrot = – ℓ rpara ℓ
–

 
1
 = n2 n1 r n1

–
 
1
 n2

–
 
1
             {101} 

And there are still more possibilities to describe the 

same reflection {98}. It can also be found by a re-

flection at the oriented parallelepiped 

T321 = n3 n2 n1 = n3 (n2  n1 + n2  n1)        {102} 

                         = n3 (n2  n1) + n3 (n2  n1) 
 

                                     vector     vector + trivector 

with 

repi = T321 r T321
–

 
1
 = n3 n2 n1 r n1

–
 
1
 n2

–
 
1
 n3

–
 
1
 {103} 

followed by a reflection at the third vector n3: 

rrot = n3 repi n3
–

 
1
 = n2 n1 r n1

–
 
1
 n2

–
 
1
              {104} 

Taking this geometric point of view, rotations can be 

considered as multiple reflections of linear combina-

tions of vectors of arbitrary dimension. Rotations are 

reflections of parallelograms, parallelepipeds, hyper-

parallelepipeds, which are followed by a second 

reflection. It therefore makes sense to say that rota-

tions are combinations of reflections. 

 

cos
2
  + sin

2
  = 1 

Fig.11: Reflections of some vectors at axis n. 

x2 - direction 

n 

x4 - direction 

r1 

r1ref
 

r2 

r2ref
 

Fig.12: Two reflections result in a rotation. 

x2 - direction 

n 

x4 - direction 

r1 

r1rot 

r2 

r2rot 

n' 
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9. Hyperbolic rotations 

A reflection of the Euclidean vector r {92} at a 

linear combination of a scalar and a bivector {99}, 

{100} will result in a Euclidean rotation {98}, 

{101}. In a similar way hyperbolic rotations of Eu-

clidean vectors can be modeled. 

Now the Euclidean vector r {92} is reflected at a 

linear combination of a scalar and a vector 

M = ℓ + n                                                     {105} 

This multivector M can be split into two trigonomet-

rical parts again with  n =          and n̂ = n / n 

22 n


 = cosh                                      {106} 

22 n

n


 = sinh                                       {107} 

and therefore 

M = 
22 n (cosh  + sinh  n̂ )              {108} 

M  

–
 
1
 = 

22 n

1


(ℓ – n) 

        = n̂                            
n

1

22 
          {109} 

The reflection of r (with equations {76} & {77}) 

r = r + r                                                     {110} 

at the geometric object represented by M therefore 

results in 

rref =  M r M  

–
 
1
                                           {111} 

This is an interesting situation. If the vector part n 

decreases and finally disappears (n  0), the reflec-

tion should equal a reflection of a vector at a point 

{2} with negative sign. If the scalar part ℓ decreases 

and finally disappears (ℓ  0), the reflection should 

equal a reflection of a vector at an axis {10} with 

positive sign. 

Even if there is no direct graphic interpretation of 

multivector M {105} in a diagram, it will be of some 

importance for physics (see section 11). The mathe-

matical result of this reflection is impressing. Choos-

ing the positive alternative of equation {111} it is 

rref = (ℓ + n) (r + r) (ℓ + n)
–

 
1
 

      =  (ℓ
2
 – n

2
) r + (ℓ

2
 + n

2
) r + 2 n ℓ r 

      = r + cosh (2) r + sinh (2) n̂ r      {112} 

Obviously, this reflection changes the geometrical 

quality of the reflected vector. While the original 

vector r is a pure 1-vector, the result of the reflection 

rref is a linear combination of a 1-vector and a 2-vec-

tor (see figure 13). This hyperbolic reflection rotates 

one-dimensional space partly into two-dimensional 

space. 

And it rotates two-dimensional space partly into 

one-dimensional space as the oriented parallelogram 

A = n̂ r = n̂ (r + r )                                   {113} 

is rotated into 

Aref = (ℓ + n) n̂ (r + r) (ℓ + n)
–

 
1
 

      =  (ℓ
2
 – n

2
) n̂ r + (ℓ

2
 + n

2
) n̂ r +2 n ℓ r 

      = n̂ r + cosh (2) n̂ r + sinh (2) r  {114} 

when reflected at multivector M {105}. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Such changes of the dimensional quality of geomet-

ric objects are an astonishing mathematical feature 

of transformations in Geometric Algebra. 

As oriented plane elements like n̂ r have negative 

squares, they can be identified as imaginary direc-

tions of a coordinate system. Therefore reflections 

{112} and {114} can be visualized by Argand dia-

grams (see figure 13). 

Similar effects can be found in higher-dimensional 

space or spacetimes, when the reflections at blades 

and at non-blades are compared. 

10. Comparing blades and non-blades 

Blades of grade k are k-vectors which can be written 

as outer products of k vectors. Non-blades are k-

vectors which cannot be expressed as an outer prod-

uct of vectors. 

The step from a three-dimensional, purely spacelike 

Newtonian world to our modern four-dimensional 

spacetime world of Special Relativity is always a 

step from blades to non-blades. In three dimensions 

only blades exist. In spaces or spacetimes of four 

dimensions there are blades and non-blades. It is 

interesting to compare their operational behavior. 

As an example the operational behavior of the two 

bivectors 

N1 = a 12 + b 14                                    {115} 

     = 1  (a 2 + b 4) = 1  n = 1 n 

cosh
2
  – sinh

2
  = 1 

(if  ℓ > n) 

(cosh  – sinh     )           

2 

r 

Fig.13: Reflections at multivector M correspond to hy-

perbolic rotations. 

vector per- 

pendicular to n 

cosh (2) r + sinh (2) n r 

   cosh (2) n r 

+ sinh (2) r 

 

plane 

parallel to n  r 

n r 
 

 

 

“Euclidean light 

cone” 

2
n  
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N2 = c 12 + d 34                                    {116} 

of a four-dimensional space {92} will be compared 

in the following. 

Bivector N1 is a blade because it can be written as an 

outer product of unit vector 1 and the reflection 

vector n of equation {91}. Bivector N2 cannot be 

written as an outer product. 

Therefore the squares 

N1
2
 = – a

2
 – b

2
                                              {117} 

N2
2
 = – c

2
 – d

2
 + 2 c d 1234                   {118} 

and consequently the inverses of both bivectors N1, 

N2 possess a different structure. With equations {93} 

and {94} and with 

22 dc

c


 = cosh                                      {119} 

22 dc

d


 = sinh                                       {120} 

these bivector operators and their inverses are 

N1 = 22 ba  (cos  12 + sin  14)    {121} 

N1

–
 
1
 = – 

22 ba

1


 (a 12 + b 14)             {122} 

        = – 
22 ba

1


(cos  12 + sin  14)   

N2 = 
22 dc  (cosh  12 + sinh  34)  {123} 

N2

–
 
1
 = – 

22 dc

1


 (c 12 – d 34)              {124} 

        = – 
22 dc

1


(cosh  12 – sinh  34) 

The reflections of vector r {92} of four-dimensional 

space at these bivectors then result in 

r1ref = – N1 r N1
–

 
1
 = – 1 n r n

–
 
1
1             {125} 

       = (cos  2 + sin  4) 1 r 1 (cos  2 + sin  4) 

       =    x1 1 + (x2 cos (2) + x4 sin (2)) 2 

     – x3 3 + (x2 sin (2) – x4 cos (2)) 4 

r2ref = – N2 r N2
–

 
1
                                         {126} 

  = (cosh (2) – sinh (2) 1234) 

                          (x1 1 + x2 2 – x3 3 – x4 4) 

  =     (+ cosh (2) 1 + sinh (2) 234) x1 

      + (+ cosh (2) 2 – sinh (2) 341) x2 

      + (– cosh (2) 3 – sinh (2) 412) x3 

      + (– cosh (2) 4 + sinh (2) 123) x4 

Transformation {125} describes a reflection at plane 

N1, which can be identified geometrically as a first 

reflection at an axis pointing into the direction of n, 

followed by a second reflection at an axis pointing 

into the direction of  1, and then followed by a third 

reflection at a point. 

This  all  results  in  an  anti-rotation:  a  rotation  fol- 

lowed by a reflection at a point. 

This geometric situation corresponds to the usual 

situation in three-dimensional space: N1 is the sum 

of two planes, which possess a line of intersection 

pointing into the direction of 1. Therefore the two 

planes a 12 and b 14 can be combined into the 

one plane N1. 

Transformation {126} describes a reflection at the 

non-blade N2. This non-blade is a sum of two planes 

which only possess one point of intersection
1
. There-

fore the reflection at N2 cannot be considered as a 

series of several succeeding reflections, but as only 

one immediate reflection at the two planes and their 

common point of intersection. 

This equals a hyperbolic anti-rotation and rotates 

pure one-dimensional vector components into linear 

combinations of one-dimensional vectors and three-

dimensional trivectors. 

Spacelike unit trivectors square to minus one. Alge-

braically they can be seen as imaginary units. There-

fore the whole situation can be visualized by Argand 

diagrams again (see figure 14). 

A complete description of all these rotations can be 

found with the help of the four-dimensional pseudo-

scalar 

I4 = 1234                                                {127} 

when trivector 

V = x1 1 I4 + x2 2 I4 + x3 3 I4 + x4 4 I4   {128} 

    = x1 234 – x2 341 + x3 412 – x4 123 

is reflected at  the same bivector N2 {116}. It results 

in the hyperbolic anti-rotation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
1 Such a geometric situation is only possible in spaces or space- 
  times of four or more dimensions. 

cosh
2
  – sinh

2
  = 1 

(if  c > d) 

2 vectorial 

direction of 1 x1 1 

   x1 cosh (2) 1 

+ x1 sinh (2) 234 
x1 234 

 

trivectorial 

direction of 234 

Fig.14: The reflections of vector x1 1 and trivector x1 234 

at bivector c 12 + d 34  correspond to hyperbolic 

 anti-rotations. 
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V2ref = – N2 V N2
–

 
1
                                       {129} 

  = (cosh (2) – sinh (2) 1234) 

                      (x1 1 + x2 2 – x3 3 – x4 4) I4 

  =     (+ cosh (2) 234 + sinh (2) 1) x1 

      + (– cosh (2) 341 + sinh (2) 2) x2 

      + (– cosh (2) 412 – sinh (2) 3) x3 

      + (+ cosh (2) 123 – sinh (2) 4) x4 

Thus the complete reflection of a multivector 

M2 = r + V                                                   {130} 

      =   x1 1 + x1 234 + x2 2 – x2 341 

        + x3 3 + x3 412 + x4 4 – x4 123 

at the non-blade N2 may be modeled as 

M2ref = – N2 M2 N2
–

 
1
                                   {131} 

11. Worlds behind our world 

There is this standard mathematical world which 

reflects or rotates vectors into vectors (see section 8 

or the reflection at blades in section 10). This coin-

cides with our everyday experience of reflections or 

rotations. 

Long objects (like a straw or a broomstick) will 

remain long objects when reflected in a plane mirror 

or rotated about an axis. Pictures of such (nearly) 

one-dimensional objects like straws or broomsticks 

will always be “one-dimensional”. They will never 

transform into something broad and “two-dimensio-

nal”. Straws and broomsticks never become plates or 

carpets as they do not undergo a dimensional change 

in the world we live in. 

But there are mathematical worlds behind this stand-

ard world of mathematics, which allow dimensional 

changes. One-dimensional objects can be trans-

formed into linear combinations of one- and two-

dimensional objects by transformations. In these 

worlds, a one-dimensional broomstick grows into a 

longer one-dimensional broomstick and a two-di-

mensional carpet, when reflected at geometric ob-

jects like (ℓ + n) {105}. And a “two-dimensional” 

carpet grows into the sum of a broader, bigger carpet 

and and a broomstick. 

Broomsticks become carpets, and carpets become 

broomsticks. 

And “one-dimensional” broomsticks become longer 

one-dimensional broomsticks and “three-dimensio-

nal” cupboards, while “three-dimensional” cup-

boards become sums of even bigger cupboards and 

broomsticks, when reflected at non-blades {116}. 

At first sight it seems that these transformations are 

artificial mathematical speculations – mathematical 

operations which are not relevant for physics. 

At a second sight yet, it might make sense to consid-

er the philosophical position of Dirac and others: 

Mathematical laws seem to be inventions, but what-

ever we invent in mathematics (provided it is beauti-

ful) will be found in physics as a law of nature one 

day
2
. Following this philosophical position, dimen-

sional changes should exist, because they are beauti-

ful. 

And they are of tremendous structural and conceptu-

al importance already today as the foundation of 

relativity is firmly build on them. For example, the 

electric vector is rotated into a magnetic bivector, 

while the magnetic bivector is rotated into an elec-

tric vector when an electromagnetic field moves 

forward relativistically [9, sec. VIII], [10, sec. 6]. 

Magnetic and electric fields can be transformed into 

each other even though they are encoded mathemati-

cally by structures of different dimensionality. 

Similar effects should be expected when we describe 

our (three-dimensional) world in a conformal way. 

The geometry of a three-dimensional world can be 

encoded geometrically as a five-dimensional world 

using Conformal Geometric Algebra (CGA). 

The basic entities of Conformal Geometric Algebra 

are blades and can be constructed as outer products 

of points [12, sec.4.3.7]. The mathematics of this 

CGA world is tremendously effective in solving 

computer graphics problems [13] or other engineer-

ing problems in computer science [12]. 

As dimensional changes are not very relevant for 

computer graphics, computer scientists mainly dis-

cuss the geometry of blades or of versors and their 

transformation properties. 

But this might be different for physicists: relativity 

shows us that dimensional changes are side effects 

of relativistic transformations. Therefore it should be 

expected that reflections at non-blades will come to 

life in CGA too, if physical problems are modeled in 

a conformal way. 

The sandwich product thus will not only help us to 

understand the mathematics of conformal worlds, it 

will even help us to understand the physics of such 

conformal worlds one day. 
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