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Repetition: Basics of Geometric Al- 
 gebra in three-dimensional space 
 

1 + 3 + 3 + 1 = 2
3
 = 8  different base elements 

exist in three-dimensional space. 

 
One base scalar:                      1 
 

Three base vectors:            x, y, z 
 

Three base bivectors:     xy, yz, zx 
(sometimes called pseudovectors) 
 

One base trivector:                xyz 
(sometimes called pseudoscalar) 

 
Base scalar and base vectors square to one: 
 

                1
2
 = x

2
 = y

2
 = z

2
 = 1 

 
Base bivectors and base trivector square to 
minus one: 
 

  (xy)
2
 = (yz)

2
 = (zx)

2
 = (xyz)

2
 = – 1 
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Anti-Commutativity 
 

The order of vectors is important. It encodes 
information about the orientation of the re- 
sulting area elements. 
 
 
 
 
 
 
 
 
 
 
 
 
Base vectors anticommute. Thus the product 
of two base vectors follows Pauli algebra: 
 

                         xy = – yx 
 

                         yz = – zy 
 

                         zx = – xz 

 

x 

y xy 

x 

y yx 

right-handed orientation 
(anticlockwise orientation) 

 

positive orientation in a right- 
handed coordinate system 

left-handed orientation 
(clockwise orientation) 

 

negative orientation in a right- 
handed coordinate system 
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Scalars 
 

Scalars are geometric entities without direction. 
They can be expressed as a multiple of the base 
scalar: 

k = k 1 
 

Vectors 
 

Vectors are oriented line segments. They can be 
expressed as linear combinations of the base 
vectors: 
 

r = x x + y y + z z 

 
Bivectors 

 

Bivectors are oriented area elements. They can 
be expressed as linear combinations of the base 
bivectors: 
 

A = Axy xy + Ayz yz + Azx zx 

 
Trivectors 

 

Trivectors are oriented volume elements. They can 
be expressed as a multiple of the base trivector: 
 

V = Vxyz xyz 
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Geometric Multiplication of Vectors 
 

The product of two vectors consists of a scalar 
term and a bivector term. They are called inner 
product (dot product) and outer product (exterior 
product or wedge product). 
 

a b = a  b + a  b 
 
The inner product of two vectors is a commuta- 
tive product as a reversion of the order of two 
vectors does not change it: 
 

            a  b = b  a =     (a b + b a) 
 
The outer product of two vectors is an anti-com- 
mutative product as a reversion of the order of 
two vectors changes the sign of the outer pro- 
duct: 
 

            a  b = – b  a =     (a b – b a) 
 

  2

1
 

  2

1
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Geometric Multiplication of Vectors 
and Bivectors 

 

The product of a vector r and a bivectors A con- 
sists of a vector term and a trivector term. They 
are called inner product (dot product) and outer 
product (exterior product or wedge product). 
 

                    r A = r  A + r  A 
 

or                 A r = A  r + A  r 
 

In this case, the inner products  r  A  or  A  r 
are anti-commutative, while the outer products 

r  A  or  A  r  are commutative: 
 

 

        r  A = – A  r =     (r A – A r) 
 
 

        r  A =   A  r =     (r A + A r) 
 
 

  2

1
 

  2

1
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Associativity 
 

The geometric product of three vectors 
 

(a b) c = a (b c) = a b c 
 

and the outer product of three vectors 
 

(a  b)  c = a  (b  c) = a  b  c 
 

are associative. 
 

By the way: The pure inner product of three 
vectors is zero (and therefore again associa- 
tive) as spaces with dimensions smaller than 
zero are not supposed to exist: 
 

(a  b)  c = a  (b  c) = 0 
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Systems of Two Linear Equations 
 
      a1 x + b1 y = d1 
 

      a2 x + b2 y = d2 
 

Old column vector picture: 
 

 
      a =               b =               d = 
 
 

Modern Geometric Algebra picture: 
 

(a1 x + a2 y) x + (b1 x + b2 y) y = d1 x + d2 y 
 
 

Solutions: 
 

 

    x =           (d  b) = (a  b)
–

 

1
 (d  b) 

 
 

    y =           (a  d) = (a  b)
–

 

1
 (a  d) 

 

 


























2

1

2

1

2

1

d

d

b

b

a

a
                              

 

      a x + b y  =  d 
 

  ba

1

  

  ba

1

  
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Systems of Three Linear Equations 
 

a1 x + b1 y + c1 z = d1 
 

a2 x + b2 y + c2 z = d2         a x + b y + c z = d 
 

a3 x + b3 y + c3 z = d3 
 

Old column vector picture: 
 

 
a =              b =              c =              d = 
 
 
Modern Geometric Algebra picture: 
 

(a1 x + a2 y + a3 z) x + (b1 x + b2 y + b3 z) y 
 

     + (c1 x + c2 y + c3 z) z = d1 x + d2 y + d3 z 
 

Solutions:     x  =  (a  b  c)
–

 

1
 (b  c  d) 

 

                        y  =  (a  b  c)
–

 

1
 (c  a  d)    

 

                        z  =  (a  b  c)
–

 

1
 (a  b  d) 

 
This is the end of the repetition. More about 

the basics of Geometric Algebra can be found 
in the slides of the first and second parts. 

































































3

2

1

3

2

1

3

2

1

3

2

1

d

d

d

c

c

c

b

b

b

a

a

a
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Systems of Four Linear Equations 
 
To avoid confusion, the coordinates now will 
be called x1, x2, x3, and x4 (instead of x, y, z, ...). 
 

a1 x1 + b1 x2 + c1 x3 + d1 x4 = t1 
 

a2 x1 + b2 x2 + c2 x3 + d2 x4 = t2 
 

a3 x1 + b3 x2 + c3 x3 + d3 x4 = t3 
 

a4 x1 + b4 x2 + c4 x3 + d4 x4 = t4 
 

                           a x1 + b x2 + c x3 + d x4 = t 
 

Old column vector picture: 
 
 
 

a =           b =           c =           d =           t = 
 
 
 
Modern Geometric Algebra picture: 
 

Problem: Pauli Algebra only has three base 

                vectors x, y, z. But four base 

                vectors are required to construct 
                the coefficient vectors a, b, c, d, & t. 



























































































4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1

t

t

t

t

d

d

d

d

c

c

c

c

b

b

b

b

a

a

a

a

                                                  

 

? 
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A Closer Analysis of the Problem 
 
Pauli matrices are 2 x 2 matrices. Therefore 
Pauli matrices or products of Pauli matrices 
have four elements, which can be complex. 
 

 

    x =                   y =                  z =  

 
 

xy =                yz =               zx =  

 
 

     1 =                  xyz =  

 
 

  Only  4 x 2 = 8  linear independent 2 x 2  
                                               matrices exist. 
 

 
 

          =    (1 + z )                 =    (xyz + xy) 
 

 

          =    (x + zx)             =    (yz – y) 
 

etc … 










01

10

 






 

0i

i0

 








10

01

 










 i0

0i

 








0i

i0

 








 01

10

 










10

01

 








i0

0i

 

2

1

00

01
      








 2

1

00

0i
      








 

2

1

00

10
      








 2

1

00

i0
      








 

number of 
elements 

two alternatives: 
real or imaginary 
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To construct the coefficient vectors a, b, c, 
d, and t of a system of four linear equations, 
higher-dimensional matrices are required. 
 

Dirac has defined such 4 x 4 matrices. 
Consequently they are called Dirac matrices.  
 
 
 
 
 
 
 
 
 
 
 

  Wolfgang Pauli                P. A. M. Dirac 
      (1900 – 1958)                        (1902 – 1984) 

 
Dirac matrices are an important mathematical 
tool in physics. Usually they are symbolized 
by Greek gammas: 
 

x       y       z       t 

 
                                   (if spatial Dirac matrices square to – 1) 
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In this lesson we will first use another set 
of Dirac matrices originally constructed by 
Cartan. 
 
 See his very important book: 
 

     Élie Cartan: The Theory of Spinors. Unabridged 
     republication of the complete English translation 
     first published in 1966 (New York: Dover Publi- 
     cations, New York 1981. 

 
Therefore we will call our 4 x 4 matrices 
 

1       2       3       4 
 

to indicate that they all square to one: 
 

1
2
 = 2

2
 = 3

2
 = 4

2
 = 1 

Élie Cartan 
(1869 – 1951) 
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The Direct Product 
 
Dirac matrices are generalizations of Pauli 
matrices. 
 
In a first step we will construct three 4 x 4 

matrices 1, 2, 3 which behave mathe- 

matically totally identical to the three 2 x 2 

Pauli matrices x, y, z we have met in the 

first part of this GA lecture series. 
 
This can be done with the direct product, 
Zehfuss invented in 1858 and Kronecker 
reinvented at around 1883. 
 
 Literature: 
 

     Harold V. Henderson, Friedrich Pukelsheim, 
     Shayle R Searle: On the History of the Kronecker 
     Product. Linear and Multilinear Algebra, Vol. 14, 
     No. 2, 1983, pp. 113 – 120. 

 
The direct product transforms lower-dimen- 
sional matrices into higher-dimensional ma- 
trices. 
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Definition of the Direct Product 
 
Let A be an m x n matrix and let B be a 
p x q matrix. Then the direct product of 

A and B is the  mp x nq  matrix A  B: 
 

    A  B =
 


















BaBaBa

BaBaBa

BaBaBa

mn2m1m

n22221

n11211









 

 
Examples: 
 
 

 
 

    x  z =            z =              = 

 
 

 
 

z  x =              x =                = 

 
 
 

Obviously, the direct product is not commutative. 














0

0

z

z

 























0010

0001

1000

0100

 




















10

01

01

10
                     

 x =                  z = 










10

01

 












x

x

0

0

 























0100

1000

0001

0010

 










01

10
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Connection of Direct Multiplication 
and Matrix Multiplication 

 
The matrix product of two direct products 
 

 
 
 
 

can be found by straightforward calculation 
with the Falk scheme: 
 
                                c11D                         c12D 
 

                                c21D                         c22D 

 
 a11B   a12B       (a11c11 + a12c21) BD   (a11c12 + a12c22) BD 
 

 a21B   a22B       (a21c11 + a22c21) BD   (a21c12 + a22c22) BD 

 
 

As      A C = 












2222122121221121

2212121121121111

cacacaca

cacacaca

 
 

it follows that 
 

(A  B) (C  D) = (A C)  (B D) 
 

It can be shown that this rule is valid for higher-
dimensional matrices too, if A C and B D exist. 

A  B = 








BaBa

BaBa

2221

1211

 and  C  D = 








DcDc

DcDc

2221

1211
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Connection of Direct Multiplication 
and Matrix Multiplication 

 
If A C and B D exist (i.e. the number of col- 

umns of the lead matrix equals to the number 

of rows of the lag matrix), the matrix product 
of two direct products can be simplified into: 
 

(A  B) (C  D) = (A C)  (B D) 
 

The inverse of the direct product  A  B  can 
then be identified as 
 

                  (A  B)
–

 

1
 = A

–
 

1
  B

–
 

1
 

 

because 
 

      (A  B) (A  B)
–

 

1
 = (A A

–
 

1
)  (B B

–
 

1
) = 1 

 
 

      (A  B) (C  D)    = (A C)     (B D) 
 
  More about the mathematics of the direct 
      product can be found in: 
 

      Willi-Hans Steeb: Kronecker Product of Ma- 
      trices and Applications. B. I. Wissenschafts- 
      verlag, Mannheim, Wien, Zürich 1991. 

1               1 
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4 x 4 Pauli Matrices 
 

Cartan has chosen some 4 x 4 matrices as 
“matrices associated with the basis vectors”. 
The first three of his matrices are: 
 

1 = z  x 
 

2 = – z  y 
 

3 = x  1                     (see p. 133 of his book) 
 

All these matrices square to one: 
 

1

2
 = (z  x)

2
 = (z  x) (z  x) 

 

                         = z

2
  x

2
 = 1  1 = 1 

 

2

2
 = (– z  y)

2
 = (– z  y) (– z  y) 

 

                             = z

2
  y

2
 = 1  1 = 1 

 

3

2
 = (x  1)

2
 = (x  1) (x  1) 

 

                        = x

2
  1

2
 = 1  1 = 1 

 
 

                         2 x 2 identity 
                               matrix 4 x 4 identity 

matrix 



Modern Linear Algebra: Direct Product & Dirac Matrices (OHP Slides M. HORN)              19 

4 x 4 Pauli Matrices 

 
And these three matrices anticommute: 
 

12 = (z  x) (– z  y) 
 

        = – z

2
  (xy) = – 1  (xy) 

 

21 = (– z  y) (z  x) 
 

        = – z

2
  (yx) = 1  (xy) 

 

                12 = – 21 

 

23 = (– z  y) (x  1) 
 

        = (– zx)  (y 1) = – (zx)  y 
 

32 = (x  1) (– z  y) 
 

        = (– xz)  (1 y) = (zx)  y 

 

                23 = – 32 

 
And equivalently 
 

                31 = – 13 
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4 x 4 Pauli Matrices 
 

The following three 4 x 4 Dirac matrices 
 
 

1 = z  x=                = 

 
 
 
 

2 = – z  y =                = 

 
 
 
 

3 = x  1 =           = 

 
 

obey Pauli algebra: 
 

1

2
 = 2

2
 = 3

2
 = 1 

 

12 = – 21     23 = – 32     31 = – 13 
 

Therefore they can be considered as 4 x 4 
matrix representations of Pauli matrices. Thus 
they represent three spatial base vectors. 














x

x

0

0

 























0100

1000

0001

0010

 














y

y

0

0

 























0i00

i000

000i

00i0

 










01

10

 



















0010

0001

1000

0100
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Defining a Fourth 4 x 4 Base Vector 
 

To construct the coefficient vectors a, b, c, 
d, and t of the four-dimensional system of 
linear equations, a fourth 4 x 4 base vector 
is required. It can be defined as 
 

4 = y  1 

 
This vector again squares to one: 
 

4

2
 = (y  1)

2
 = (y  1) (y  1) 

 

                        = y

2
  1

2
 = 1  1 = 1 

 
And it anticommutes with the other three 
base vectors: 
 

                     41 = – 14 
 

                     42 = – 24 
 

                     43 = – 34 
 

Consequently, the four 4 x 4 Dirac matrixes 

1, 2, 3, and 4 are representations of 

base vectors of four-dimensional space. 
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Summary: Basics of Geometric Al- 
 gebra in four-dimensional space 
 

1 + 4 + 6 + 4 + 1 = 2
4
 = 16  different base ele- 

ments exist in four-dimensional space. 
 

One base scalar:                       1 
 

Four base vectors:            1, 2, 3, 4 
 

Six base bivectors: 
(or pseudobivectors if you like) 

 

Four base trivectors: 
(sometimes called pseudovectors) 
 

One base quadrovector:         1234 
(sometimes called pseudoscalar) 

 
Base scalar, base vectors and base quadro- 
vector square to one: 
 

  1
2
 = 1

2
 = 2

2
 = 3

2
 = 4

2
 = (1234)

2
 = 1 

 

Base bivectors and base trivectors square to 
minus one: 
 
 

12, 23, 34, 
    41, 24, 43 
 

123, 234, 
     341, 412 

                      (12)
2
 = (23)

2
 = (34)

2
 

= (41)
2
 = (24)

2
 = (43)

2
 = (123)

2
 

        = (234)
2
 = (341)

2
 = (412)

2
 = – 1 
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Outer Products of Four Vectors 
 

Remember former lessons (see repetition): 
 

a b = a  b + a  b 
 

Scalar:          a  b =     (a b + b a) 
 

Bivector:       a  b =     (a b – b a) 
 
 

(a  b) c = (a  b)  c + (a  b)  c 
 

Vector:        (a  b)  c =     ((a  b) c – c (a  b)) 
 

Trivector:      a  b  c =     ((a  b) c + c (a  b)) 
 
 

(a  b  c) d = (a  b  c)  d + (a  b  c)  d 
 
Bivector: 
 

(a  b  c)  d =     ((a  b  c) d + d (a  b  c)) 
 
Quadrovector (or quadvector, grade-4 vector): 
 

 a  b  c  d =     ((a  b  c) d – d (a  b  c)) 
 

The outer product of four vectors is an object 
of grade 4. And it is an associative product. 

  2

1
 

  2

1
 

  2

1
 

  2

1
 

1 
 

2 
 

1 
 

2 
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Systems of Four Linear Equations 
 
Now we are able to translate the column 
vectors of a system of four linear equations 
 

       a1 x1 + b1 x2 + c1 x3 + d1 x4 = t1 
 

       a2 x1 + b2 x2 + c2 x3 + d2 x4 = t2 
 

       a3 x1 + b3 x2 + c3 x3 + d3 x4 = t3 
 

       a4 x1 + b4 x2 + c4 x3 + d4 x4 = t4 
 

into the language of Geometric Algebra. 
 

       Coefficient vectors: 
 

       a = a1 1 + a2 2 + a3 3 + a4 4 
 

       b = b1 1 + b2 2 + b3 3 + b4 4 
 

       c = c1 1 + c2 2 + c3 3 + c4 4 
 

       d = d1 1 + d2 2 + d3 3 + d4 4 
 

       Vector of constant terms: 
 

       t = t1 1 + t2 2 + t3 3 + t4 4 

 

    a x1 + b x2 + c x3 + d x4 = t 
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Solving a System of Four Linear 
Equations in Geometric Algebra 

 

a x1 + b x2 + c x3 + d x4 = t 
 

First Step: 

Wedge product with vector b to get rid of b x2: 
 

                     (a x1 + b x2 + c x3 + d x4)  b = t  b 
 

(a  b) x1 + (b  b) x2 + (c  b) x3 + (d  b) x4 = t  b 

 

(a  b) x1 +     0        + (c  b) x3 + (d  b) x4 = t  b 
 

Second Step: 

Wedge product with vector c to get rid of c x3: 
 

      ((a  b) x1 + (c  b) x3 + (d  b) x4)  c = t  b  c 
 

(a  b  c) x1 + (c  b  c) x3 + (d  b  c) x4 = t  b  c 

 

(a  b  c) x1 +       0           + (d  b  c) x4 = t  b  c 

 

Third Step: 

Wedge product with vector d to get rid of d x4: 
 

   ((a  b  c) x1 + (d  b  c) x4)  d = t  b  c  d 
 

(a  b  c  d) x1 + (d  b  c  d) x4 = t  b  c  d 

 

(a  b  c  d) x1 +          0              = t  b  c  d 
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Solving a System of Four Linear 
Equations in Geometric Algebra 

 
To solve the system of four linear equations 
 

a x1 + b x2 + c x3 + d x4 = t 
 

we finally get the four wedge product equa- 
tions 
 

(a  b  c  d) x1 = t  b  c  d 
 

(a  b  c  d) x2 = a  t  c  d 
 

(a  b  c  d) x3 = a  b  t  d 
 

(a  b  c  d) x4 = a  b  c  t 

 
Thus the solutions are: 
 

x1 = (a  b  c  d)
–

 
1
 (t  b  c  d) 

 

x2 = (a  b  c  d)
–

 
1
 (a  t  c  d) 

 

x3 = (a  b  c  d)
–

 
1
 (a  b  t  d) 

 

x4 = (a  b  c  d)
–

 
1
 (a  b  c  t) 
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Geometric Interpretation of the Result 
 

   The product R of two vectors a and b 
     represents an oriented parallelogram. 
  
     R = a b 
 
 

   The product P of three vectors a, b, c 
     represents an oriented parallelepiped. 
 

     P = a b c 
 
 
 
 

   The product Q of four vectors a, b, c, d 
     represents an oriented, four-dimensional 
     hyper-parallelepiped, which can be visu- 
     alized best in four-dimensional space. 
 
     Q = a b c d 
 
 
 
 

a 

b 

a 

b 

c 
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Four-dimensional Hyper-Parallelepipeds 
 
Simply move the eight corners of the three- 
dimensional parallelepiped along a vector 
which points into the direction of the forth 
dimension … 
 
 
 
 
 
 
 
 
 
… to get an hyper-parallelepiped with now 

8 x 2 = 16  corners. 
 
 
 
 
 
 
 
 

a 

b 

c 

d 

a 

b 

c 

d 
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Four-dimensional Hyper-Parallelepipeds 
 

 
             Corners   Edges   Faces   Solids    
 
                 1           0          0          0          0 

 
                 2           1          0          0          0 

 
                 4           4          1          0          0 

 
                 8          12         6          1          0 

 
                16         32        24         8          1 
 
 
 
 

  More about visualizing higher-dimensional 
      figures can be found in the well-written, 
      popular scientific book: 
 

      Clifford A. Pickover: Surfing Through Hyper- 
      space. Understanding Higher Universes in Six 
      Easy Lessons. Oxford University Press, Ox- 
      ford, New York 1999. 

Points 
 

Line Seg- 
ments 
 

Parallelo- 
grams 
 

Parallel- 
epipeds 
 

Hyper- 
Parallel- 
epipeds 

 

Hyper- 
volumes 
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Geometric Interpretation of the Result 
 

   The product of two vectors a and b re- 
     presents an oriented parallelogram. 
     The outer product of these two vectors 

     a  b represents the area (i.e. the two- 
     dimensional “volume”) of this parallelo- 
     gram. 
 

   The product of three vectors a, b, and c 
     represents an oriented parallelepiped. 
     The outer product of these three vectors 

     a  b  c represents the volume of this 
     parallelepiped. 
 

   The product of four vectors a, b, c, and d 
     represents an oriented, four-dimensional 
     hyper-parallelepiped. 
     The outer product of these four vectors 

     a  b  c  d represents the four-dimen- 
     sional hyper-volume of this hyper-parallel- 
     epiped. 
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Geometric Interpretation of the Result 
 
The equation 
 

(a  b  c  d) x1 = t  b  c  d 
 

just says that we have to compare the hyper- 
volumes of the hyper-parallelepipeds a b c d, 
which represents the determinant of the co- 
efficient matrix, with the hyper-volume of the 
hyper-parallelepiped t b c d to find the value 
of x1. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Please mind the four orthogonal axes! 

x1 

x3 

a 
b 

c 

d 

t b 

c 

d 

x2 

x4 
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  Finding the Inverse of 4 x 4 Matrices 
 
 
 

A =                                     A
–

 

1
 = 

 
 
 

To find the inverse A
–

 

1
 of a 4 x 4 matrix A, 

the Falk scheme of matrix multiplication can 
now be split into four parts. 
 
                                    b11     b12     b13     b14 
 

                                    b21     b22     b23     b24 
 

                                    b31     b32     b33     b34 
 

                                    b41     b42     b43     b44 

 
a11    a12    a13    a14       1       0       0       0 

 

a21    a22    a23    a24       0       1       0       0 
 

a31    a32    a33    a34       0       0       1       0 
 

a41    a42    a43    a44       0       0       1       0 

 
Thus we get four systems of four linear 
equations. 





































44434241

34333231

24232221

14131211

44434241

34333231

24232221

14131211

bbbb

bbbb

bbbb

bbbb

aaaa

aaaa

aaaa

aaaa
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The first (blue) part results in the following 
system of linear equations given: 
 

     a11 b11 + a12 b21 + a13 b31 + a14 b41 = 1 
 

     a21 b11 + a22 b21 + a23 b31 + a24 b41 = 0 
 

     a31 b11 + a32 b21 + a33 b31 + a34 b41 = 0 
 

     a41 b11 + a42 b21 + a43 b31 + a44 b41 = 0 
 

As usual, this results in the following coeffi- 
cient vectors: 
 

       a = a1 1 + a2 2 + a3 3 + a4 4 
 

       b = b1 1 + b2 2 + b3 3 + b4 4 
 

       c = c1 1 + c2 2 + c3 3 + c4 4 
 

       d = d1 1 + d2 2 + d3 3 + d4 4 
 

And now we get four different vectors of 
constant terms: 
 

       tblue = 1 

       tgreen = 2 

       tred = 3 

       torange = 4 
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Finding the Inverse of 4 x 4 Matrices 
 

 Elements of the inverse matrix A
–

 

1
: 

 

b11 = (a  b  c  d)
–

 
1
 (1  b  c  d) 

 

b21 = (a  b  c  d)
–

 
1
 (a  1  c  d) 

 

b31 = (a  b  c  d)
–

 
1
 (a  b  1  d) 

 

b41 = (a  b  c  d)
–

 
1
 (a  b  c  1) 

 

b12 = (a  b  c  d)
–

 
1
 (2  b  c  d) 

 

b22 = (a  b  c  d)
–

 
1
 (a  2  c  d) 

 

b32 = (a  b  c  d)
–

 
1
 (a  b  2  d) 

 

b42 = (a  b  c  d)
–

 
1
 (a  b  c  2) 

 

b13 = (a  b  c  d)
–

 
1
 (3  b  c  d) 

 

b23 = (a  b  c  d)
–

 
1
 (a  3  c  d) 

 

b33 = (a  b  c  d)
–

 
1
 (a  b  3  d) 

 

b43 = (a  b  c  d)
–

 
1
 (a  b  c  3) 

 
     b14 = ...    etc. 
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Systems of Five Linear Equations 
 
In a straightforward way all this can be ge- 
neralized for systems of five linear equations: 
 

   a1 x1 + b1 x2 + c1 x3 + d1 x4 + e1 x5 = t1 
 

   a2 x1 + b2 x2 + c2 x3 + d2 x4 + e2 x5 = t2 
 

   a3 x1 + b3 x2 + c3 x3 + d3 x4 + e3 x5 = t3 
 

   a4 x1 + b4 x2 + c4 x3 + d4 x4 + e4 x5 = t4 
 

   a5 x1 + b5 x2 + c5 x3 + d5 x4 + e5 x5 = t5 
 

We only have to find a fifth base vector 5 

to get the required five coefficient vectors 
 

   a = a1 1 + a2 2 + a3 3 + a4 4 + a5 5 
 

   b = b1 1 + b2 2 + b3 3 + b4 4 + b5 5 
 

   c = c1 1 + c2 2 + c3 3 + c4 4 + c5 5 
 

   d = d1 1 + d2 2 + d3 3 + d4 4 + d5 5 
 

   e = e1 1 + e2 2 + e3 3 + e4 4 + e5 5 
 

and the vector of constant terms 
 

   t = t1 1 + t2 2 + t3 3 + t4 4 + t5 5 
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Solving a System of Five Linear 
Equations in Geometric Algebra 

 

a x1 + b x2 + c x3 + d x4 + e x5 = t 
 

First Step: 

Wedge product with vector b to get rid of b x2: 
 

            (a x1 + b x2 + c x3 + d x4 + e x5)  b = t  b 
 

(a  b) x1 + (c  b) x3 + (d  b) x4 + (e  b) x5 = t  b 

 

Second Step: 

Wedge product with vector c to get rid of c x3: 
 

((a  b) x1 + (c  b) x3 + (d  b) x4 + (e  b) x5)  c = t  b  c 
 

      (a  b  c) x1 + (d  b  c) x4 + (e  b  c) x5 = t  b  c 

 

Third Step: 

Wedge product with vector d to get rid of d x4: 
 

((a  b  c) x1 + (d  b  c) x4 + (e  b  c) x5)  d = t  b  c  d 
 

             (a  b  c  d) x1 + (e  b  c  d) x5 = t  b  c  d 

 

Fourth Step: 

Wedge product with vector e to get rid of e x5: 
 

((a  b  c  d) x1 + (e  b  c  d) x5)  e = t  b  c  d  e 
 

                              (a  b  c  d  e) x1 = t  b  c  d  e 
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Solving a System of Four Linear 
Equations in Geometric Algebra 

 
To solve the system of five linear equations 
 

a x1 + b x2 + c x3 + d x4 + e x5 = t 
 

we finally get five wedge product equations: 
 

(a  b  c  d  e) x1 = t  b  c  d  e 
 

(a  b  c  d  e) x2 = a  t  c  d  e 
 

(a  b  c  d  e) x3 = a  b  t  d  e 
 

(a  b  c  d  e) x4 = a  b  c  t  e 
 

(a  b  c  d  e) x5 = a  b  c  d  t 

 
Thus the solutions are: 
 

x1 = (a  b  c  d  e)
–

 
1
 (t  b  c  d  e) 

 

x2 = (a  b  c  d  e)
–

 
1
 (a  t  c  d  e) 

 

x3 = (a  b  c  d  e)
–

 
1
 (a  b  t  d  e) 

 

x4 = (a  b  c  d  e)
–

 
1
 (a  b  c  t  e) 

 

x5 = (a  b  c  d  e)
–

 
1
 (a  b  c  d  t) 



Modern Linear Algebra: Direct Product & Dirac Matrices (OHP Slides M. HORN)              38 

Systems of Five (or More) Linear 
Equations: Clifford Algebra 

 
We then have to work with five (or more) 

base vectors i to get the coefficient vec- 

tors and the vector of constant terms: 
 

a x1 + b x2 + c x3 + … + g xn = t 
 

It is always possible, to construct higher- 
dimensional square matrices (e.g. 8 x 8 or 
16 x 16 matrices, etc.) with the direct pro- 
duct, which represent base vectors: 
 

       i
2
 = 1                    i are unit vectors. 

 

       i j = – j j 
 

These algebraic rules and the geometric 
interpretation of these rules are important. 
 

They form the mathematical core of Clifford 
Algebra, which was invented by Hermann 
Grassmann and William Kingdon Clifford. 

Different unit vec- 
tors anticommute. 
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(Positive) Clifford Algebra 
 

       i
2
 = 1                    i are unit vectors. 

 

       i j = – j j 

 
These algebraic rules form the mathema- 
tical core of Clifford Algebra, which was 
invented by Hermann Grassmann and 
William Kingdon Clifford. 
 

           
 

Hermann Günther            William Kingdon 
     Graßmann                        Clifford 

     (1809 – 1877)                        (1845 – 1879) 

 

Different unit vec- 
tors anticommute. 
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Example: Input-Output Analysis 
 
The following flow diagram (gozintograph) 
shows the demand of products of industries 
P1, P2, P3, P4, and P5 (input measured in 

units of money) which are required to pro- 
duce goods of industry Pi exactly worth one 

unit of money (output). 
 
 

 
P1                       P2 

 
 

P3                       P4                       P5 

 
 
Find the interindustry transaction demand 
table, if final demand is worth 1 000 units of 
money for industry 1, 1 200 units of money 
for industry 2, 1 400 units of money for in- 
dustry 3, 1 600 units of money for industry 4, 
and 1 800 units of money for industry 5. 
 

Explain, why the value added of industry 5 
should be negative. 

2

1
 

4

3
 

4

1
 

2

1
 

5

2
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Step 1: Input-Output Analysis 
 
Finding the matrix of technical coefficients: 
 
Goods worth 0.25 units of money of industry 3 are 
required to produce goods worth exactly one unit of 

money of industry 1.    a31 = 0.25 
 

Goods worth 0.50 units of money of industry 1 are 
required to produce goods worth exactly one unit of 

money of industry 2.    a12 = 0.50 
 

Goods worth 0.50 units of money of industry 4 are 
required to produce goods worth exactly one unit of 

money of industry 4.    a34 = 0.50 
 

Goods worth 0.40 units of money of industry 1 and 
0.75 units of money of industry 4 are required to pro- 
duce goods worth exactly one unit of money of indus- 

try 5.        a15 = 0.40 

         a45 = 0.75 

 

The matrix of technical coefficient equals 
 

           A =
 























00000

7500000

050000250

00000

400005000

                                

.                                

  .                  .

                                

.                  .        
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Step 2: Input-Output Analysis 
 
Finding the Leontief matrix: 
 

I – A =
 





























10000

7501000

050010250

00010

400005001

                                            

.                                         

     .                       .

                                             

.                       .           

 

 

 

   

  

 

 

 

 
 

Finding the coefficient vectors 
 

   a = 1 – 0.25 3 
 

   b = – 0.50 1 + 2 
 

   c = 3 
 

   d = – 0.50 3 + 4 
 

   e = – 0.40 1 – 0.75 4 + 5 
 

and the vector of constant terms 
 

   t = 1 000 1 + 1 200 2 + 1 400 3 

                      + 1 600 4 + 1 800 5 
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Step 3: Input-Output Analysis 
 
Solving the input-output equation 
 

(I – a) x = d 
 

for total demand x. 

 
Wedge products: 
 

      a  b  c  d  e = 12345 
 

  (a  b  c  d  e)
–

 
1
 = 12345 

 

      t  b  c  d  e = 2 320 12345 
 

      a  t  c  d  e = 1 200 12345 
 

      a  b  t  d  e = 3 455 12345 

 

      a  b  c  t  e = 2 950 12345 

 

      a  b  c  d  t = 1 800 12345 
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Step 3: Input-Output Analysis 
 
Solving the input-output equation 
 

(I – a) x = d 
 

for total demand x. 

 
Total demand: 
 

   x1 = (a  b  c  d  e)
–

 

1
 (t  b  c  d  e) 

 

       = 2 320 
 

   x2 = (a  b  c  d  e)
–

 

1
 (a  t  c  d  e) 

 

       = 1 200 
 

   x3 = (a  b  c  d  e)
–

 

1
 (a  b  t  d  e) 

 

       = 3 455 
 

   x4 = (a  b  c  d  e)
–

 

1
 (a  b  c  t  e) 

 

       = 2 950 
 

   x5 = (a  b  c  d  e)
–

 

1
 (a  b  c  d  t) 

 

       = 1 800 
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Step 4: Input-Output Analysis 
 
Finding the transaction vectors: 
 

   t1 = x1 a1 = 2 320 (0.25 3) = 580 3 
 

   t2 = x2 a2 = 1 200 (0.50 1) = 600 1 
 

   t3 = x3 a3 = 0 
 

   t4 = x4 a4 = 2 950 (0.50 3) = 1 475 3 
 

   t5 = x5 a5 = 1 800 (0.40 1 + 0.75 4) 
 

                  = 720 1 + 1 350 4 

 
Finding the values added: 
 

   v1 = x1 – t1  (1 + 2 + 3 + 4 + 5) = 1 740 
 

   v2 = x2 – t2  (1 + 2 + 3 + 4 + 5) =    600 
 

   v3 = x3 – t3  (1 + 2 + 3 + 4 + 5) =       0 
 

   v4 = x4 – t4  (1 + 2 + 3 + 4 + 5) = 1 475 
 

   v5 = x5 – t5  (1 + 2 + 3 + 4 + 4) = – 270 
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Step 5: Input-Output Analysis 
 
Interindustry transaction demand table: 

 
 

 Sector          Sector of Destination            Final       Total 
of Origin   1       2       3        4        5      Demand  Demand 

 
1   0 600   0    0  720 1 000 2 320 
 

2   0   0   0    0    0 1 200 1 200 
 

3 580   0   0 1 475    0 1 400 3 455 
 

4   0   0   0    0 1 350 1 600 2 950 
 

5   0   0   0    0    0 1 800 1 800 

 
               1 740 600   0 1 475 –270 

 
               2 320 1 200 3 455 2 950 1 800 
 

 
 
Goods worth 0.40 + 0.75 = 1.15 units of money 
are required to produce goods worth exactly one 
unit of money of industry 5. Thus industry 5 is 
not a profitable industry and the value added is 
negative. 

Value 
Added 

 

Gross 
Production 
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Outlook: Some Physics & Philosophy 
 
    Mathematics                       Physics 
 

   science of logical                          science of 
          systems                                    nature 
  (constructed by the               (given by the world 
      human mind)                which exists outside of us) 

 
Mathematics is part                Physics is 
 of the humanities.           a natural science. 
 

(German: Geisteswissenschaft)                            (Naturwissenschaft) 

 
The Relation between Mathematics 

and Physics 
 

Dirac:  “One may describe the situation by 
            saying that the mathematician plays 
            a game in which he himself invents 
            the rules while the physicist plays a 
            game in which the rules are provided 
            by Nature, …” 
 
Mathematical laws                Physical laws seem 
seem to be inventions …       to be discoveries … 
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The Relation between Mathematics 
and Physics 

 

Dirac:  “One may describe the situation by 
            saying that the mathematician plays 
            a game in which he himself invents 
            the rules while the physicist plays a 
            game in which the rules are provided 
            by Nature, but as time goes on it be- 
            comes increasingly evident that the 
            rules which the mathematician finds 
            interesting are the same as those 
            which Nature has chosen.” 
 
Mathematical laws seem to be inventions, but 
whatever we invent in mathematics (provided 
it is beautiful) will be found in physics as a law 
of nature one day. 

 
  Literature: 
 

      Paul Adrien Maurice Dirac: The Relation between 
      Mathematics and Physics. Lecture delivered on 
      presentation of the James Scott prize, February 6, 
      1939. Published in: Proceedings of the Royal So- 
      ciety (Edinburgh), Vol. 59, 1938 – 39, Part II, pp. 
      122 – 129. 
 



Modern Linear Algebra: Direct Product & Dirac Matrices (OHP Slides M. HORN)              49 

The Relation between Mathematics 
and Physics 

 

Dirac:  “Possibly, the two subjects (physics 
            and mathematics) will ultimately unify, 
            every branch of pure mathematics 
            then having its physical application, 
            its importance in physics being pro- 
            portional to its interest in mathema- 
            tics.” 
 
To solve systems of five linear equations, we 
need a fifth base vector. As said, this base 
vector can be constructed in a very simple 
way as an ugly 8 x 8 matrix by using the di- 
rect product. 
 

But there exists a very interesting fifth base 
vector, which can be identified with a 4 x 4 
matrix, which is mathematically much more 
beautiful than a 8 x 8 matrix. 
 

And this new 4 x 4 base vector matrix is of 
tremendous importance in physics. 
 



Modern Linear Algebra: Direct Product & Dirac Matrices (OHP Slides M. HORN)              50 

  Searching for a Fifth Base Vector 
 

1 + 4 + 6 + 4 + 1 = 2
4
 = 16  different base 

elements exist in four-dimensional space: 
 

   One base scalar 

   Four base vectors 

   Six base bivectors 

   Four base trivectors 

   One base quadrovector 
 

But Dirac matrices are 4 x 4 matrices! Thus 

4 x 4 x 2 = 32 = 2
5
  linear independent ma- 

trices must exist: 
 
 

                 ,                      ,                      ,  …  
 
 
 
 

                 ,                      ,                      ,  …  
 
 
Therefore it should be possible, to construct 

all  1 + 5 + 10 + 10 + 5 + 1 = 2
5
 = 32  differ- 

ent base elements which should exist in five- 
dimensional space. 
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  Searching for a Fifth Base Vector 
 

1 + 5 + 10 + 10 + 5 + 1 = 2
5
 = 32  different 

base elements should exist in five-dimensio- 
nal space: 
 

  One base scalar:                     1 
 

  Five base vectors: 1, 2, 3, 4, 5 
 

  Ten base bivectors: 12, 23, 34, etc… 
   (or pseudotrivectors if you like) 
 

  Ten base trivectors: 123,  234,  etc… 
   (sometimes called pseudobivectors) 
 

  Five base quadrovectors: 1234,  etc… 
   (sometimes called pseudovectors) 
 

  One base pentavector:  12345 
   (sometimes called pseudoscalar) 

                                                              vector 
                                                           of grade 5 

 
To find a fifth base vector, it makes sense to gene- 
ralize the pseudoscalar of three-dimensional space: 

 
 

xyz =                  12345 = 

 

vectors 
of grade 4 

( ) 
 

( ) 
 

( ) 
 

( ) 
 

( ) 
 

( ) 

5 
0 

 

5 
1 

 

5 
2 
 

5 
3 
 

5 
4 
 

5 
5 
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
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  Searching for a Fifth Base Vector 
 
 

12345 =                  = (xyz)  1 = i (1  1) 

 
 

Together with the four base vectors 
 

1 = z  x 
 

2 = – z  y 
 

3 = x  1 
 

4 = y  1 
 

     1234 = (– z z x y)  (xy) 

                        = (– i z)  (i z) = z  z 
 

     (1234)
–

 
1
 = z  z 

 
a new fifth base vector can be identified as: 
 

   5
*
 = (1234)

–
 
1
 (12345) 

 

    = i (z  z) (1  1) 
 

    = i (z  z) 
 

An asterisk is added to indicate, that 
this base vector is of different quality. 


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000i
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  Searching for a Fifth Base Vector 
 
 

5
*
 = i (z  z) =                 = 

 
 
 

5
*2
 = – (1  1) = – 1 

 

Please compare with 
 

1
2
 = 2

2
 = 3

2
 = 4

2
 = + 1 

 

This new base vector 5
*
 is of totally different 

quality compared with the other four base 

vectors 1, 2, 3, 4. It squares to minus one. 
 

This is of tremendous importance in physics: 
 

  Base vectors, which square to minus one, 
      are called spacelike base vectors. 
 

  Base vectors, which square to one, are 
      called timelike base vectors. 
 

These different signs of base vectors allow 
us to describe space and time. We do not 
live in space, we live in spacetime instead! 
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Summary 
 
One base scalar   Five base vectors 
 

1 = 1  1     1 = z  x 
 

       2 = – z  y 
 

       3 = x  1 
 

       4 = y  1 
 

       5
*
 = i (z  z) 

 

Ten base bivectors 
 

12 = – 1  xy = – i (1  z) 
 

23 = – zx  y = – i (y  y) 
 

34 = xy  1  =    i (z  1)         see comment 

 

14 = – yz  x = – i (x  x) 
 

42 = – yz  y = – i (x  y) 
 

31 = – zx  x = – i (y  x) 
 

45
*
 = i (yz  z) = –   (x  z) 

 

5
*
1 = i (1  zx) = –   (1  y) 

 

25
*
 = – i (1  yz) =      (1  x)         see comment 

 

5
*
3 = i (zx  z) = –   (y  z) 

 
Obviously there are some minus signs missing. It seems that some strange symmetry (or breaking of symmetry) is hiding behind this. 
Heisenberg: “Beauty is the proper conformity of the parts to one another and to the whole.” 
Bacon: “There is no excellent beauty that hath not some strangeness in the proportion.” 
(see: S. Chandrasekhar: Truth and Beauty. Aesthetics and Motivations in Science. Paperback edition, University of Chicago Press, 
Chicago & London 1990, p. 70). These definitions of beauty may apply to base vector products. There seems to be some strangeness 
about base vector products with an index sum of 7 in case of base bivectors and an index sum of 8 in case of base trivectors. 
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Ten base trivectors 
 

345
*
 = –   (1  z)      345

*
 = – i 12 

 

45
*
1 = –   (y  y)      45

*
1 = – i 23 

 

5
*
12 =      (z  1)      5

*
12 = – i 34 

 

235
*
 = –   (x  x)      235

*
 = – i 14 

 

5
*
13 = –   (x  y)      5

*
13 = – i 42 

 

45
*
2 = –   (y  x)      45

*
2 = – i 31 

 

123  = – i (x  z)      123 = i 45
*
 

 

234  = – i (1  y)      234 = i 5
*
1 

 

341  =    i (1  x)      341 = i 25
*
 

 

124  = – i (y  z)      124 = i 5
*
3  

 

Five base quadrovectors 
 

1234  = – i 5
*
 =       z  z 

 

2345
*
 =    i 1 =    i (z  x) 

 

345
*
1 =    i 2 = – i (z  y) 

 

45
*
12 =    i 3 =    i (x  1) 

 

5
*
123 =    i 4 =    i (y  1)



One base pentavector 
 

12345
*
 = i (1  1) 
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Renaming Base Vectors 
 
To show, that this five-dimensional system 
of base vectors does not consist of Pauli 
vectors any more, the base vectors had 
been renamed. They are now called Dirac 
matrices. 
 

In standard textbooks usually the following 
definitions are used: 
(e.g. see Doran, Lasenby 2003, p. 278) 
 

 

t = z  1 =             = 5
*
12 

 

 

x = – i (y  x) =                 = 31 
 

 

y = – i (y  y) =                 = 23 
 

 

z = – i (y  z) =                 = – 345
*
1 

 

 

v = x  1 =            = 3 

 










10

01

 














0 

0

x

x

 














0 

0

y

y

 














0 

0

z

z

 










01

10

 



Modern Linear Algebra: Direct Product & Dirac Matrices (OHP Slides M. HORN)              57 

Outlook I: The Relation between 
Mathematics and Physics 

 

Dirac: “One may describe the situation by saying that 
   the mathematician plays a game in which he himself 
   invent the rules while the physicist plays a game in 
   which the rules are provided by Nature, but as time 
   goes on it becomes increasingly evident that the 
   rules which the mathematician finds interesting are 
   the same as those which Nature has chosen.” 
 

Mathematical laws seem to be inventions, but whatever 
we invent in mathematics (provided it is beautiful) will 
be found in physics as a law of nature one day. 

 
After having invented 4 x 4 matrices, we are 
able to identify spacelike and timelike ma- 
trices. Thus as philosophers of science we 
should perhaps conclude that time must exist 
(which some of us might have known before 
by experience). 
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Outlook II: The Relation between 
Mathematics and Economics 

 

Mathematical laws seem to be inventions, 
but whatever we invent in mathematics 
(provided it is beautiful) will perhaps be 
found in business and economics as a 
helpful tool to describe relevant laws one 
day ? 

 
Open Research Questions 

 

In business mathematics and mathematical 
economics we mainly discuss variables of 
Euclidean geometry. But shouldn’t it be pos- 
sible to identify variables of pseudo-Euclidean 
geometry, building a model world with some 
base vectors squaring to plus one and other 
base vectors squaring to minus one? 
 

 

 


