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Repetition: Basics of 
                   Geometric Algebra 
 

1 + 3 + 3 + 1 = 2
3
 = 8  different base elements 

exist in three-dimensional space. 

 
One base scalar:                      1 
 

Three base vectors:            x, y, z 
 

Three base bivectors:     xy, yz, zx 
(sometimes called pseudovectors) 
 

One base trivector:                xyz 
(sometimes called pseudoscalar) 

 
Base scalar and base vectors square to one: 
 

                1
2
 = x

2
 = y

2
 = z

2
 = 1 

 
Base bivectors and base trivector square to 
minus one: 
 

  (xy)
2
 = (yz)

2
 = (zx)

2
 = (xyz)

2
 = – 1 
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Anti-Commutativity 
 

The order of vectors is important. It encodes 
information about the orientation of the re- 
sulting area elements. 
 
 
 
 
 
 
 
 
 
 
 
 
Base vectors anticommute. Thus the product 
of two base vectors follows Pauli algebra: 
 

                         xy = – yx 
 

                         yz = – zy 
 

                         zx = – xz 

 

x 

y xy 

x 

y yx 

right-handed orientation 
(anticlockwise orientation) 

 

positive orientation in a right- 
handed coordinate system 

left-handed orientation 
(clockwise orientation) 

 

negative orientation in a right- 
handed coordinate system 
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Scalars 
 

Scalars are geometric entities without direction. 
They can be expressed as a multiple of the base 
scalar: 

k = k 1 
 

Vectors 
 

Vectors are oriented line segments. They can be 
expressed as linear combinations of the base 
vectors: 
 

r = x x + y y + z z 

 
Bivectors 

 

Bivectors are oriented area elements. They can 
be expressed as linear combinations of the base 
bivectors: 
 

A = Axy xy + Ayz yz + Azx zx 

 
Trivectors 

 

Trivectors are oriented volume elements. They can 
be expressed as a multiple of the base trivector: 
 

V = Vxyz xyz 

 



Modern Linear Algebra: Solving Systems of Linear Equations (OHP Slides M. HORN)     5 

Geometric Multiplication of Vectors 
 

The product of two vectors consists of a scalar 
term and a bivector term. They are called inner 
product (dot product) and outer product (exterior 
product or wedge product). 
 

r1 r2 = r1  r2 + r1  r2 
 
The inner product of two vectors is a commuta- 
tive product as a reversion of the order of two 
vectors does not change it: 
 

        r1  r2 = r2  r1 =     (r2 r1 + r1 r2) 

 
The outer product of two vectors is an anti-com- 
mutative product as a reversion of the order of 
two vectors changes the sign of the outer pro- 
duct: 
 

     r2  r1 = – r1  r2 =     (r2 r1 – r1 r2) 

 
 

This is the end of the repetition. More 
about the basics of Geometric Algebra can 

be found in the slides of the first part. 

  2

1
 

  2

1
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Systems of Two Linear Equations 
 

Let’s start with an example of a rather simple 
system of two linear equations: 
 

2 x +    y  =  3 
 

2 x + 4 y  =  6 
 

Of course this system of two linear equations 
can be solved algebraically: 
 

2 x +    y  =  3          y  =  – 2 x + 3 
 

2 x + 4 y  =  6 
 
 

2 x + 4 (– 2 x + 3)  =  6 
 

             – 6 x + 12  =  6 
 

                           x  =  1 
 
                           y  =  – 2 x + 3  =  1 
 

Check of the result: 
 

2 x +    y  =  2 ∙ 1 + 1  =  3 
 

2 x + 4 y  =  2 ∙ 1 + 4 ∙ 1  =  6 

substitution 

substitution 

The result 
 is correct. 
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Graphical Solutions of the System 
of Linear Equations 

 
There are two different strategies to solve 
this system of linear equations graphically. 

 
                  2 x +    y  =  3 
 

                  2 x + 4 y  =  6 
 
 

 First strategy: Row picture 
 

   The two rows   2 x +    y  =  3 
 

                   and   2 x + 4 y  =  6 
 

   are shown in a diagram. 
 

 Second strategy: Column picture 

 
   The columns        ,       , and        of the 

 
   system of linear equations are shown in 
   a diagram. 
  


























6

3

4

1

2

2
              

 

rows 

columns 
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Row Picture 
 
The two rows   2 x +    y  =  3 
 

                and   2 x + 4 y  =  6 
 

are represented by the two straight lines 
 

                              y  =  – 2 x + 3 
 

                              y  =  –     x + 
 
 
 
 
 
 
 
 
 
 
 
 
The point of intersection (x, y) = (1, 1) of 
the two lines represents the solution x = 1 
and y = 1 of the system of linear equations. 

   3 
 
 
 
1.5 
 

   1 

1 

x 

y 

2

3

2

1
       

 

x-intercept 
slope 
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Column Picture 
 

The system of linear equations  2 x +    y  =  3 
 

                                            and  2 x + 4 y  =  6 

 
is now written in vector form        x +        y = 
 

   Solution strategy: 
 

  We are looking for a linear combination of 
 

  vector  a =         and  b =         which gives 
 

  us vector  c =       . 
 
 

Graphical solution: 

 
 
 
 
 
 
 
 
 

As just one vector a  and one vector b  is 
needed to get vector c, the solution equals 
x = 1  and  y = 1. 


























6

3

4

1

2

2
                

 


















4

1

2

2
                   

 










6

3

 

a 

b 

6 
 
 
 
 
 

2 

2    3 

x 

y 

c 
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Translating the Column Picture into 
Geometric Algebra (Pauli Algebra) 

 

2 x +    y  =  3                   2 x x +    y x  =  3 x 
 

2 x + 4 y  =  6                   2 x y + 4 y y  =  6 y 
 

 
    a  =                                  a  =  2 x + 2 y 
 

 

    b  =                                  b  =  x + 4 y 
 

 

    c  =                                  c  =  3 x + 6 y 

 
 
 
 
 
 
 
 
 
 
 










2

2

 










4

1

 










6

3

 

a 

b 

6 
 
 
 
 
 

2 

2    3 

x 

y 

c 
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Translating the Column Picture into 
Geometric Algebra (Pauli Algebra) 

 

          2 x +    y  =  3 
 

          2 x + 4 y  =  6 
 

 
           x +        y =                 a x + b y  =  c 
 
 

    2 x x +    y x  =  3 x 
 

    2 x y + 4 y y  =  6 y 

 
 
 
 
 
 
 
 
 
 

 
a x + b y = c


























6

3

4

1

2

2
                

 

Two equations 
 
 
 
 
 

Only 
one equation 

a 

b 

6 
 
 
 
 
 

2 

2    3 

x 

y 

c 
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Conceptional Core of 
Transforming Algebraic Problems 

into Geometric Situations 
 
          2 x +    y  =  3 
 

          2 x + 4 y  =  6 
 

 
 

    2 x x +    y x  =  3 x 
 

    2 x y + 4 y y  =  6 y 

 
 

By adding directional information, we con- 
dense the two original equations into only 
one final equation: 
 

2 x x +  y x + 2 x y + 4 y y  =  3 x + 6 y 

 

(2 x + 2 y) x + (x + 4 y) y  =  3 x + 6 y 

 
                               a x + b y  =  c 
 
See for example relativity: The four Maxwell equations can be 
written as one equation in Geometric Algebra. 

Two equations 
 
 
 
 
 

This is only 
one equation! 
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(2 x + 2 y) x + (x + 4 y) y  =  3 x + 6 y 

 
To recover the two original equations, just 
reflect the final equation at the x-axis (or at 
the y-axis) and add the results to the final 
equation: 
 

    [x (a x + b y) x + (a x + b y)] 
 

     =      [(2 x – 2 y) x + (x – 4 y) y 

            + (2 x + 2 y) x + (x + 4 y) y] 
 

     =  2 x x + x y 

 

    [x c x + c] 
 

     =      [3 x – 6 y + 3 x + 6 y] 
 

     =  3 x 

 

   First original equation: 
 

       2 x x + y x  =  3 x 

 
 

1 
 

2 
1 
 

2 

1 
 

2 
1 
 

2 
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But it is more interesting to look for a ma- 
thematical strategy to recover the columns 
(or vectors) as they will give us a simple 
solution of the system of linear equations. 
 

To find such a strategy, remember the 
characteristic features of inner and outer 
product: 
 

     If the product of two vectors equals the 
     inner product (the bivector terms cancel), 
     the two vectors are parallel. 
 
 
 

     If two parallel vectors are multiplied, the 
     outer product will disappear and the pro- 
     duct of the two parallel vectors will equal 
     the inner product. 

 

  The outer product of a vector with itself 
      equals zero: 
 

                    a  a =     (a 

2
 – a 

2
) = 0 

 
To get rid of vector a, we only have to find 
the outer product of a linear equation with a. 

  2

1
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Solving a System of Two Linear 
Equations in Geometric Algebra 

 
The wedge product delivers a simple solu- 
tion of a system of linear equations: 
 

                      a x + b y  =  c 
 

Getting rid of vector a x: 
 

             a  (a x + b y) = a  c 
 

     (a  a) x + (a  b) y = a  c 
 

                      (a  b) y = a  c 

 

This gives the solution of variable y: 
 

                                  y =           (a  c) 
 
Getting rid of vector b y: 
 

             (a x + b y)  b = c  b 
 

     (a  b) x + (b  b) y = c  b 
 

                      (a  b) x = c  b 

 

This gives the solution of variable x:  
 

                                  x =           (c  b) 

  ba

1

  

  ba

1

  
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Solving a System of Two Linear 
Equations in Geometric Algebra 

 
The wedge product delivers a simple solu- 
tion of a system of linear equations: 
 

                      a x + b y  =  c 
 

Getting rid of vector a: 
 

             a  (a x + b y) = a  c 
 

     (a  a) x + (a  b) y = a  c 
 

                      (a  b) y = a  c 

 

This gives the solution of variable y: 
 

                                  y =           (a  c) = 
 
Getting rid of vector b: 
 

             (a x + b y)  b = c  b 
 

     (a  b) x + (b  b) y = c  b 
 

                      (a  b) x = c  b 

 

This gives the solution of variable x:  
 

                                  x =           (c  b) = 

  ba

1

  
a  c 
 

a  b 

  ba

1

  
c  b 
 

a  b 

In bivector multiplication the order of 
factors is important! 
 

We are only allowed to write the so- 
lution in this way, if the planes (which 
are represented by the bivectors) are 
parallel and the order does not matter. 
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Solving a System of Two Linear 
Equations in Geometric Algebra 

 
Example:          2 x +    y  =  3 
 

                         2 x + 4 y  =  6 
 

                                               c  =  3 x + 6 y 

           a  =  2 x + 2 y 
 

                              b  =  x + 4 y 
 

a b = 10 + 6 xy              a  b = 6 xy 
 

a c = 18 + 6 xy              a  c = 6 xy 
 

b c = 27 – 6 xy              b  c = – 6 xy 

                                             c  b = + 6 xy 

Solution: 
 

    x =           (c  b) = (a  b)
–

 

1
 (c  b) 

 

                                = –      6 xy 6 xy = 1 

 

    y =           (a  c) = (a  b)
–

 

1
 (a  c) 

 

                                = –      6 xy 6 xy = 1 

  ba

1

  

  ba

1

  

36

1
 

36

1
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Geometric Interpretation of the Result 
 

The equation  (a  b) x = c  b  just says that 
we have to compare the areas of the parallelo- 
grams  a b  and  c b  to get x. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Both parallelograms have the same area. 
Therefore the scalar x should be 1. 
 

hb 

b 

   10 
 
 
 
 
 

6 
 
 
 
 
 

2 

2    3    4 

x 

y 

c 

a 

b 

a 

b 

hb 
   10 

 
 
 
 
 

6 
 
 
 
 
 

2 

2    3    4 

x 

y 

b 
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Geometric Interpretation of the Result 
 

The equation  (a  b) y = a  c  just says that 
we have to compare the areas of the parallelo- 
grams  a b  and  a c  to get y. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Both parallelograms have the same area. 
Therefore the scalar y should be 1. 
 
 

a 

8 
 
 

6 
 
 
 
 
 

2 

2    3          5 

x 

y 

c 

a 

b 

ha 

a 

8 
 
 

6 
 
 
 
 
 

2 

2    3          5 

x 

y 

a 

b 

ha 
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Finding Inverse Matrices 
 

 

A =                            A
–

 

1
 = 

 
 

To find the inverse A
–

 

1
 of a (2 x 2)-matrix A, 

we split the Falk scheme of matrix multipli- 
cation into two parts. 
 
                      b11    b12 
 

                      b21    b22 

 
   a11    a12       1       0 
 

   a21    a22       0       1 

 
 

The first (blue) part results in a system of two 
linear equations, which can be transformed 
into one Geometric Algebra equation: 
 

                    a11 b11 + a12 b21 = 1 
 

                    a21 b11 + a22 b21 = 0 

 
 

(a11 x + a21 y) b11 + (a12 x + a22 y) b21  =  x 


















2221

1211

2221

1211

bb

bb
                     

aa

aa
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And the second (green) part results in yet 
another system of two linear equations: 
 

                    a11 b12 + a12 b22 = 1 
 

                    a21 b12 + a22 b22 = 0 

 
 

(a11 x + a21 y) b12 + (a12 x + a22 y) b22  =  y 
 

           r1                               r2 
 

According to the solution strategy presented 
at slide # 15 (get rid of disturbing vectors with the 

outer product !), we will get the four elements bij 

of the inverse matrix A
–

 

1
. 

 

b11 =           (x  r2) = (r1  r2)
–

 

1
 (x  r2) 

 

 

b21 =           (r1  x) = (r1  r2)
–

 

1
 (r1  x) 

 

 

b12 =           (y  r2) = (r1  r2)
–

 

1
 (y  r2) 

 

 

b22 =           (r1  y) = (r1  r2)
–

 

1
 (r1  y) 

  21 rr

1

  

  21 rr

1

  

  21 rr

1

  

  21 rr

1

  
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Checking the Inverse Matrix 
 

                            x  r2         y  r2 
 

                           – x  r1      – y  r1 

 

     a11     a12           r1  r2             0 
 

     a21     a22               0             r1  r2 

 
 

Calculations:                r1 = a11 x + a21 y 
 

                                     r2 = a12 x + a22 y 
 

r1  r2 = a11 a22 xy – a12 a21 xy 
 

x  r1 = a21 xyx  r2 = a22 xy 
 

y  r1 = – a11 xy        y  r2 = – a12 xy 

 

e11 = a11 (x  r2) + a12 (– x  r1) 
 

      = a11 a22 xy – a12 a21 xy = r1  r2 
 

e12 = a11 (y  r2) + a12 (– y  r1) 
 

      = – a11 a12 xy + a11 a12 xy = 0 
 

e12 = …   e22 = … 
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Example for Finding the Inverse Matrix 
 

 

A =                       A
–

 

1
 =                  = ? 

 
 

   r1 = a11 x + a21 y = 8 x + 5 y 
 

       r2 = a12 x + a22 y = 3 x + 2 y 
 

   r1  r2 = (16 – 15) xy = xy 
 

       (r1  r2)
–

 

1
 = – xy 

 

Elements of the inverse matrix: 
 

b11 = (r1  r2)
–

 

1
 (x  r2) = – xy 2 xy =  2 

 

b12 = (r1  r2)
–

 

1
 (y  r2) = – xy 3 yx = – 3 

 

b21 = (r1  r2)
–

 

1
 (r1  x) = – xy 5 yx = – 5 

 

b22 = (r1  r2)
–

 

1
 (r1  y) = – xy 8 xy =  8 

 

Result: 
 

 

A
–

 

1
 = 

 


















2221

1211

bb

bb
                     

25

38

 














85

32

 

Check of result: 
 

                 2   – 3 
 

                – 5    8 
 

   8    3      1     0 
 

   5    2      0     1 

A A
–

 

1
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Quotation from Wikipedia 
 
  “When a linear system solution is intro- 

   duced via the wedge product, Cramer's 

   rule follows as a side-effect, and there 

   is no need to lead up to the end results 

   with definitions of minors, matrices, 

   matrix invertibility, adjoints, cofactors, 

   Laplace expansions, theorems on deter- 

   minant multiplication and row column 

   exchanges, and so forth …” 

 
Wikipedia: Comparison of vector algebra 
and geometric algebra  [23. Nov. 2014], 
 

URL:  
 

 
 

 And the comparison of the wedge pro- 
     duct solution with vector algebra reveals 
     another astonishing fact. 
 

http://en.wikipedia.org/wiki/Comparison_of_

vector_algebra_and_geometric_algebra 

http://en.wikipedia.org/wiki/Comparison_of_vector_algebra_and_geometric_algebra
http://en.wikipedia.org/wiki/Comparison_of_vector_algebra_and_geometric_algebra
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What are Determinants? 
 
A comparison of the standard solution and 
the Geometric Algebra solution for con- 
structing inverse matrixes reveals the geo- 
metric nature of determinants! 
 

Standard solution: 
 
 

         A
–

 

1
 = 

 
 
  determinant of 
       matrix A 
 
 
Geometric Algebra solution: 
 
 

         A
–

 

1
 = 

 
 
 














 1y1x

2y2x

21
rr

r  r  

rr

1

   














2212

2111

AA

AA

 A 

1

 

determinants 
of submatrices Aij 
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What are Determinants? 
 
A comparison of the standard solution and 
the Geometric Algebra solution for con- 
structing inverse matrixes reveals the geo- 
metric nature of determinants! 
 

Standard solution: 
 
 

         A
–

 

1
 = 

 
 
  determinant of 
       matrix A 
 
 
Geometric Algebra solution: 
 
 

         A
–

 

1
 = 

 
 
  The determinant of a (2 x 2)-matrix is 
  given by the area (i.e. the two-dimen- 
  sional volume) of parallelogram r1 r2. 














 1y1x

2y2x

21
rr

r  r  

rr

1

   














2212

2111

AA

AA

 A 

1

 

determinants 
of submatrices Aij 
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Solving (2 x 2)-Matrix Equations 
 
Matrix equation:      A B = C 
 

If matrices A and C are known, the unknown 
lag matrix B can be found by again splitting 
the Falk scheme into two parts: 
 
                      b11    b12 
 

                      b21    b22 

 
   a11    a12      c11    c12 
 

   a21    a22      c21    c22 

 
 

The first (blue) part results in a system of two 
linear equations, which can be transformed 
into one Geometric Algebra equation: 
 

                    a11 b11 + a12 b21 = c11 
 

                    a21 b11 + a22 b21 = c21 

                                                        cblue 
 

                                              =  c11 x + c21 y 

(a11 x + a21 y) b11 + (a12 x + a22 y) b21 
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And the second (green) part results in yet 
another system of two linear equations: 
 

                    a11 b12 + a12 b22 = c12 
 

                    a21 b12 + a22 b22 = c22 

 
 

(a11 x + a21 y) b12 + (a12 x + a22 y) b22 

                                              =  c11 x + c21 y 
 

                                                           cgreen 
 

According to the solution strategy presented 
at slide # 15 (get rid of disturbing vectors with the 

outer product !), we can find the four elements bij 

of the unknown matrix B. 
 

b11 =           (cblue  r2) = (r1  r2)
–

 

1
 (cblue  r2) 

 

 

b21 =           (r1  cblue) = (r1  r2)
–

 

1
 (r1  cblue) 

 

 

b12 =           (cgreen  r2) = (r1  r2)
–

 

1
 (cgreen  r2) 

 

 

b22 =           (r1  cgreen) = (r1  r2)
–

 

1
 (r1  cgreen) 

  21 rr

1

  

  21 rr

1

  

  21 rr

1

  

  21 rr

1

  

r1                         r2 
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Example (Problem) 
 
A firm manufactures two different types of final 

products P1 and P2. To produce these products 

two intermediate goods G1 and G2 are required. 
 

The production of the intermediate goods re- 

quires the raw materials R1 and R2 (see dia- 

gram). 

 
R1                                  P1 

 
R2                                  P2 

 
 

Altogether 65 units of R1 and 41 units of R2 

are required to produce one unit of the first 

final product P1. 

And 64 units of R1 and 41 units of R2 are re- 

quired to produce one unit of the second final 

product P2. 
 

  Find the demand matrix which shows the 

     demand of intermediate goods to produce 

     one unit of each final product. 

 

G1 

 
 

G2 

    ? 
 

? 
 
 

    ? 
? 

    8 
 

3       5 
 
    2 
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Example (Answer) 
 
Demand of raw materials to 

produce one unit of the inter- 

mediate goods: 
 

Demand of intermediate 

goods to produce one unit 

of the final products: 

 

Demand of raw materials 

to produce one unit of the 

final products: 

 

Matrix equation:      A B = D 

 

   r1 = a11 x + a21 y = 8 x + 5 y 
 

       r2 = a12 x + a22 y = 3 x + 2 y 
 

   r1  r2 = (16 – 15) xy = xy 
 

       (r1  r2)
–

 

1
 = – xy 

 

   d1 = d11 x + d21 y = 65 x + 41 y 
 

       d2 = d12 x + d22 y = 64 x + 41 y 

 

A = 








25

38

 

B = ? 

D = 








4141

6465

 

see 
slide # 23 
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   d1  r1 = (325 – 328) xy = – 3 xy 
 

       d1  r2 = (130 – 123) xy = 7 xy 
 

       d2  r1 = (320 – 328) xy = – 8 xy 
 

       d2  r2 = (128 – 123) xy = 5 xy 

 

b11 = (r1  r2)
–

 

1
 (d1  r2) 

      = – xy (7 xy) = 7 

 

b21 = (r1  r2)
–

 

1
 (r1  d1) 

      = – xy (+ 3 xy) = 3 
 

b12 = (r1  r2)
–

 

1
 (d2  r2) 

      = – xy (5 xy) = 5 
 

b22 = (r1  r2)
–

 

1
 (r1  d2) 

      = – xy (+ 8 xy) = 8 

 
Demand of intermediate 

goods to produce one unit 

of each final product: 

 
 
 
 

7 units of G1 and 

3 units of G2 are 

required to pro- 

duce one unit of 

final product P1. 

5 units of G1 and 

8 units of G2 are 

required to pro- 

duce one unit of 

final product P2. 

B = 








83

57

 

Check of result: 
 

                  7     5 
 

                  3     8 
 

   8    3      65   64 
 

   5    2      41   41 

A B 



Modern Linear Algebra: Solving Systems of Linear Equations (OHP Slides M. HORN)     32 

The Product of Three Vectors 
 

To understand systems of three linear equa- 
tions, we should understand geometric pro- 
ducts and wedge products of three vectors. 
 

The product R of two vectors a, b 
 

                          R = a b 
 

can be interpreted geometrically as an 
oriented parallelogram. 
 
 
 
 

The product P of three vectors a, b, c 
 

                          P = a b c 
 

extends this geometric structure into yet 
another direction, and an oriented parallel- 
epiped is formed. 
 
 
 
 
 

a 

b 

a 

b 

c 
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The Product of Three Vectors 

 
The product of two vectors usually consists 
of a scalar part k  and a bivector part A: 
 

R = a b = a  b + a  c = k + A 
 

                 scalar   bivector 

 
If  R = a b  is again multiplied by a vector, the 
scalar part transforms into a vector part and 
the bivector part transforms partially into a 
scalar part and partially into a trivector part: 
 
P = R c = k c + A c 
 

             = k c + A  c + A  c = r + V 
 

                     vector       trivector 

 
Thus a product of three vectors is … 
 

         … an oriented parallelepiped 
                  (geometric viewpoint) 
 

         … a linear combination of a vector 
              and a trivector. 
              (algebraic viewpoint) 
 



Modern Linear Algebra: Solving Systems of Linear Equations (OHP Slides M. HORN)     34 

Volume of an Oriented Parallelepiped 
 
The trivector part V of an oriented parallel- 
epiped characterizes the volume of this 
parallelepiped. It is a scalar Vxyz multiplied 

by the unit trivector (or pseudoscalar) xyz: 

 

V = <P>trivector = <a b c>trivector = a  b  c 
 

    = Vxyz xyz 

 

Associativity 
 
As the product of vectors is associative 
 

(a b) c = a (b c) = a b c 
 
it follows that the wedge product is an 
associative product too: 
 

(a  b)  c = a  (b  c) = a  b  c 
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Commutativity & Anti-Commutativity 
 
We have found that the outer product (wedge 
product) of two vectors is anti-commutative: 
 

a  b = – b  a 
 
Surprisingly, the outer product of a bivector 

A = a  b  with a vector c is commutative 
 

               A  c = a  b  c 
 

                         = – a  c  b 
 

                         =    c  a  b 
 

                         = c  A 
 

and the inner product A  c is anti-commu- 
tative instead. Therefore the definition of 
outer and inner products are: 
 

                    A  c =     ( A c + c A) 
 
 

                    A  c =     (A c – c A) 
   2

1
 

  2

1
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Systems of Three Linear Equations 
 

Systems of three linear equations 
 

          a11 x + a12 y + a13 z  =  d1 
 

          a21 x + a22 y + a23 z  =  d2 
 

          a31 x + a32 y + a33 z  =  d3 
 

can be transformed into an old-fashioned vec- 
tor equation with four vectors a, b, c, and d: 

 
 

              x +           y +           z = 
 
 
In modern form of Geometric Algebra the 
same system of linear equations reads: 
 

     a11 x x + a12 y x + a13 z x  =  d1 x 
 

     a21 x y + a22 y y + a23 z y  =  d2 y 
 

     a31 x z + a32 y z + a33 z z  =  d3 z 
 

Again, we do not see three equations here, 
but only one equation which is composed of 
four Pauli vectors a, b, c, and d. 

































































3

2

1

33

23

13

32

22

12

31

21

11

d

d

d

        

a

a

a

        

a

a

a

        

a

a

a
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That’s our starting point: One equation 
 

     (a11 x + a21 y + a31 z) x 
 

  + (a12 x + a22 y + a32 z) y 
 

  + (a13 x + a23 y + a33 z) z 
 

                                =  d1 x + d2 y + d3 z 
 

containing the four Pauli vectors 
 

     a = a11 x + a21 y + a31 z 
 

     b = a12 x + a22 y + a32 y 
 

     c = a13 x + a23 y + a33 z 
 

and 
 

     d =  d1 x + d2 y + d3 z 
 

 
a x + b y + c z = d 

 
 

To solve this equation for x, y, and z we 
again try to recover the vectors (or former 
columns) by getting rid of other vectors 
with the wedge product. 
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Solving a System of Three Linear 
Equations in Geometric Algebra 

 
a x + b y + c z = d 

 

Wedge product with vector a to get rid of a x: 
 

                  a  (a x + b y + c z) = a  d 
 

 (a  a) x + (a  b) y + (a  c) z = a  d 
 

                   (a  b) y + (a  c) z = a  d 
 

Wedge product with vector b to get rid of b y: 
 

         b  ((a  b) y  + (a  c) z) = b  (a  d) 
 

       (b  a  b) y + (b  a  c) z = b  a  d 
 

   – (a  b  b) y  – (a  b  c) z = – a  b  d 
 

                0           ( a  b  c) z = a  b  d 
 

This gives the solution of variable z: 
 

                          z =                 (a  b  d) 
 
In a similar way, we get: 
 

x =              (b  c  d)    y =               (c  a  d)    

  cba

1

  

cba

1
                          

cba

1

  
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Geometric Interpretation of the Result 
 

The equation  (a  b  c) z = a  b  d  just 
says that we have to compare the volumes 
of the parallelepipeds  a b c  and  a b d  to get 
the value of z. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

And again the volume of the parallelepiped 
a b c  can be identified with the determinant 
of the (3 x 3)-matrix: 
 

det (aij) = a  b  c = <a b c>trivector 

a 

b 

c 

a 

b 

c 
d 
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Finding the Inverse of (3 x 3)-Matrices 
 
 

A =                                A
–

 

1
 = 

 
 

To find the inverse A
–

 

1
 of a (3 x 3)-matrix A, 

we now split the Falk scheme of matrix mul- 
tiplication into three parts, which give us 
three systems of three linear equations. 
 

 
                               b11    b12    b13 
 

                               b21    b22    b23 
 

                               b31    b32    b33 

 
   a11    a12    a13       1       0       0 

 

   a21    a22    a23       0       1       0 
 

   a31    a32    a33       0       0       1 

 
 

The first (blue) part results in the system of 
linear equations given on the following slide.  

































333231

232221

131211

333231

232221

131211

bbb

bbb

bbb

aaa

aaa

aaa
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            a11 b11 + a12 b21 + a13 b31 = 1 
 

            a21 b11 + a22 b21 + a23 b31 = 0 
 

            a31 b11 + a32 b21 + a33 b31 = 0 
 

The translation into Geometric Algebra re- 
sults in one equation: 
 

    (a11 x + a21 y + a31 z) b11 
 

           + (a12 x + a22 y + a32 z) b21 
 

           + (a13 x + a23 y + a33 z) b31  =  x 

 
 

                       r1 b11 +  r2 b21 +  r3 b31  =  x 
 

According to the solution strategy of slide 
# 38 (get rid of disturbing vectors by outer multipli- 

cation ), we will get the first three elements bij 

of the inverse matrix A
–

 

1
. 

 

b11 =                 (r2  r3  x) 
 

 

b21 =                 (r3  r1  x) 
 

 

b31 =                 (r1  r2  x) 

  321 rrr

1

  

  321 rrr

1

  

  321 rrr

1

  
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Summary: The Inverse of (3 x 3)-Matrices 
 

 
 
                  A = 
 
 
 

a11 x + a21 y + a31 z = r1 
 

      a12 x + a22 y + a32 z = r2 
 

                 a13 x + a23 y + a33 z = r3 
 

 
 

A
–

 

1
 = 
 
 
 

det (aij) = a  b  c  is an oriented volume. 
 

If you prefer the determinant to be a scalar, 
simply identify it as coefficient of the unit tri- 

vector xyz: 
 

det (aij)= – (a  b  c) xyz 
 

It can now be seen as a volume scale factor. 

















333231

232221

131211

aaa

aaa

aaa

 
























z21y21x21

z13y13x13

z32y32x32

321
rrrrrr

rrrrrr

rrrrrr

rrr

1
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Checking the Inverse Matrix 
 

 

                      r2  r3  x  r2  r3  y  r2  r3  z 
 

                      r3  r1  x  r3  r1  y  r3  r1  z 
 

                      r1  r2  x  r1  r2  y  r1  r2  z 

 

a11   a12   a13    r1  r2  r3         0                0 
 

a21   a22   a23          0          r1  r2  r3         0 
 

a31   a32   a33          0                0          r1  r2  r3 

 
 
Calculations: 
 

r1  r2  x = (a21 a32 – a31 a22) xyz 
 

r2  r3  x = (a22 a33 – a32 a23) xyz 
 

r3  r1  x = (a23 a31 – a33 a21) xyz 

 

r1  r2  r3 = (a11 a22 a33 + a21 a32 a13 + a31 a12 a23 
 

      – a11 a32 a23 – a21 a12 a33 – a31 a22 a13) xyz 
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Checking the Inverse Matrix 
 
e11 = a11 (r2  r3  x) + a12 (r3  r1  x) 

                                  + a13 (r1  r2  x) 
 

      = (a11 a22 a33 + a12 a23 a31 + a13 a21 a32 
 

        – a11 a32 a23 – a12 a33 a21 – a13 a31 a22) xyz 
 

      = r1  r2  r3 
 

e21 = a21 (r2  r3  x) + a22 (r3  r1  x) 

                                  + a23 (r1  r2  x) 
 

      = (a21 a22 a33 – a21 a32 a23 + a22 a23 a31 
 

        – a22 a33 a21 + a23 a21 a32 – a23 a31 a22) xyz 
 

      = 0 
 

e31 = … 
 

e12 = …        etc … 
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Solving (3 x 3)-Matrix Equations 
 
Matrix equation:      A B = C 
 

If matrices A and C are known, the unknown 
lag matrix B can be found by again splitting 
the Falk scheme into three parts: 
 
                               b11    b12    b13 
 

                               b21    b22    b23 
 

                               b31    b32    b33 

 
   a11    a12    a13       c11    c12    c13 

 

   a21    a22    a23       c21    c22    c23 

 

   a31    a32    a33       c31    c32    c33 

 
 

The first (blue) part results in the following 
system of three linear equations: 
 

           a11 b11 + a12 b21 + a13 b31 = c11 
 

           a21 b11 + a22 b21 + a23 b31 = c21 
 

           a31 b11 + a32 b21 + a33 b31 = c31 
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The translation into Geometric Algebra re- 
sults in one equation: 
 

    (a11 x + a21 y + a31 z) b11 
 

           + (a12 x + a22 y + a32 z) b21 
 

           + (a13 x + a23 y + a33 z) b31 

                                      =  c11 x + c21 y + c31 z 

 
                       r1 b11 +  r2 b21 +  r3 b31  =  c1 

 
Similar equations can be formulated by the 
second (green) and third (red) parts. 
 

Applying again the solution strategy of slide 
# 38 (get rid of disturbing vectors by outer multipli- 

cation ), matrix B can be found: 
 

 
 

B = 
 
 

Alternatively a pre-multiplication of D by A
–

 

1
 

(see slide 42)  gives the same result: 
 

B = A
–

 

1
 D 
























321221121

313213113

332232132

321 crrcrrcrr

crrcrrcrr

crrcrrcrr

rrr

1
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Example (Problem) 
 

A firm manufactures four different types of final products 

P1, P2, P3, and P4. To produce these products three inter- 

mediate goods G1, G2, and G3 are required. 
 

The production of the intermediate goods requires the 

raw materials R1, R2, and R3 (see diagram). 
 

                                                          P1 

             R1 
                                                          P2 
             R2 
                                                          P3 
             R3 
                                                          P4 
 

Total demand of raw materials: 
 

100 units of R1, 70 units of R2, and 40 units of R3 are re- 

quired to produce one unit of the first final product P1. 
 

60 units of R1, 40 units of R2, and 20 units of R3 are re- 

quired to produce one unit of the second final product P2. 
 

40 units of R1, 10 units of R2, and 40 units of R3 are re- 

quired to produce one unit of the third final product P3. 
 

60 units of R1, 28 units of R2, and 44 units of R3 are re- 

quired to produce one unit of the fourth final product P4. 
 

  Find the demand matrix which shows the demand of 

     intermediate goods to produce one unit of each final 

     product. 
 

  Please use two different solution strategies. 

G1 

 
 

G2 
 

 
G3 

? 
         8 
 

     3 
 5 

    5 
 

1 

 2 
 
 

10 
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Example (Answer) 
 

First production step: 
 

Demand of raw materials 

to produce one unit of the 

intermediate goods: 
 

Second production step: 
 

Demand of intermediate 

goods to produce one unit 

of the final products: 
 

Combination of both production steps: 
 

Demand of raw materi- 

als to produce one unit 

of the final products: 

 

Matrix equation:        A B = D 

 

First solution strategy: 
 

- Direct calculation of B. 
 

Second solution strategy: 
 

- Find the inverse A
– 1

 and pre-multiply D by A
– 1

. 
 

B = A
–

 

1
 D 

A = 

















1020

017

538

 

B = ? 

D =
 

















44402040  

28104070  

604060100

 



Modern Linear Algebra: Solving Systems of Linear Equations (OHP Slides M. HORN)     49 

Example (Answer) 
 
Associated vectors of the system of linear 

equations: 
 

- Demand of raw materials A of first production step: 
 

  r1 = 8 x + 7 y 
 

  r2 = 3 x + y + 2 z 
 

  r3 = 5 x + 10 z 

 
- Total demand of raw materials D of both production 

   steps: 
 

  d1 = 100 x + 70 y + 40 z 
 

  d2 =   60 x + 40 y + 20 z 
 

  d3 =   40 x + 10 y + 40 z 
 

  d4 =   60 x + 28 y + 44 z 

 

Calculation of determinant: 
(volume of oriented parallelepiped) 
 

  r1  r2  r3 = (80 + 0 + 70 – 0 – 210 – 0) xyz 

                  = – 60 xyz 
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Example (First Strategy) 
 

Calculation of outer products: 
 

Determinants of mixed matrices    First column of B 

(volume of mixed oriented parallelepipeds): 
 

r1  r2  d1 
 

     = (320 + 1400 + 0 – 1120 – 840 – 0) xyz 
 

     = – 240 xyz 
 

r2  r3  d1 

     = (0 + 1000 + 700 – 2100 – 200 – 0) xyz 
 

     = – 600 xyz 
 

r3  r1  d1 

     = (1400 + 0 + 5600 – 0 – 0 – 7000) xyz 
 

     = 0 xyz 
 

Calculation of the first column of matrix B: 
 

b11 =                      (– 600 xyz) = 10 
 

 

b21 =                      (       0 xyz) =   0 
 

 

b31 =                      (– 240 xyz) =   4 

  zyx 60

1

  

  zyx 60

1

  

  zyx 60

1

  
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Example (First Strategy) 
 

Calculation of outer products: 
 

Determinants of mixed matrices    Second column of B 

(volume of mixed oriented parallelepipeds): 
 

r1  r2  d2 
 

     = (160 + 840 + 0 – 640 – 420 – 0) xyz 
 

     = – 60 xyz 
 

r2  r3  d2 

     = (0 + 600 + 400 – 1200 – 100 – 0) xyz 
 

     = – 300 xyz 
 

r3  r1  d2 

     = (700 + 0 + 3200 – 0 – 0 – 4200) xyz 
 

     = – 300 xyz 
 

Calculation of the second column of matrix B: 
 

b21 =                      (– 300 xyz) =  5 
 

 

b22 =                      (– 300 xyz) =  5 
 

 

b23 =                      (–   60 xyz) =  1 

  zyx 60

1

  

  zyx 60

1

  

  zyx 60

1

  
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Example (First Strategy) 
 

Calculation of outer products: 
 

Determinants of mixed matrices    Third column of B 

(volume of mixed oriented parallelepipeds): 
 

r1  r2  d3 
 

     = (320 + 560 + 0 – 160 – 840 – 0) xyz 
 

     = – 120 xyz 
 

r2  r3  d3 

     = (0 + 400 + 100 – 300 – 200 – 0) xyz 
 

     = 0 xyz 
 

r3  r1  d3 

     = (1400 + 0 + 800 – 0 – 0 – 2800) xyz 
 

     = – 600 xyz 
 

Calculation of the third column of matrix B: 
 

b31 =                      (       0 xyz) =   0 
 

 

b32 =                      (– 600 xyz) = 10 
 

 

b33 =                      (– 120 xyz) =   2 

  zyx 60

1

  

  zyx 60

1

  

  zyx 60

1

  
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Example (First Strategy) 
 

Calculation of outer products: 
 

Determinants of mixed matrices    Forth column of B 

(volume of mixed oriented parallelepipeds): 
 

r1  r2  d4 
 

     = (352 + 840 + 0 – 448 – 924 – 0) xyz 
 

     = – 180 xyz 
 

r2  r3  d4 

     = (0 + 600 + 280 – 840 – 220 – 0) xyz 
 

     = – 180 xyz 
 

r3  r1  d4 

     = (1540 + 0 + 2240 – 0 – 0 – 4200) xyz 
 

     = – 420 xyz 
 

Calculation of the forth column of matrix B: 
 

b41 =                      (– 180 xyz) =  3 
 

 

b42 =                      (– 420 xyz) =  7 
 

 

b43 =                      (– 180 xyz) =  3 

  zyx 60

1

  

  zyx 60

1

  

  zyx 60

1

  
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Example (Result) 
 

Demand matrix B which shows the demand 

of intermediate goods to produce one unit 

of each final product is given by 
 

 

 

 

 

 
 

Check of result: 

 
                               10      5      0      3 
 

      A B = D               0      5    10      7 
 

                                 4      1      2      3 
 
   8      3      5        100    60    40    60 

 

   7      1      0          70    40    10    28 

 

   0      2    10          40    20    40    44 
 
 

B =
 

















32  14  

71050  

30  510
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Example (Result) 
 

Interpretation of result: 
 

10 units of G1 and 4 units of G3 are re- 

quired to produce one unit of the final 

product P1. 

 

5 units of G1, 5 units of G2, and 1 unit 

of G3 are required to produce one unit 

of the final product P2. 

 

10 units of G2 and 2 units of G3 are re- 

quired to produce one unit of the final 

product P3. 

 

3 units of G1, 7 units of G2, and 3 units 

of G3 are required to produce one unit 

of the final product P3. 

 

 

Please compare now with the second solu- 

tion strategy on the following slides. 
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Example (Second Strategy) 
 
Calculation of outer products: 
 

- Determinant (volume of oriented parallelepiped): 
 

  r1  r2  r3 = (80 + 0 + 70 – 0 – 210 – 0) xyz 

                  = – 60 xyz 

 

- Determinants of submatrices 

  (volume of associated oriented parallelepipeds): 
 

  r1  r2  x = (14 –   0) xyz =    14 xyz 
 

  r2  r3  x = (10 –   0) xyz =    10 xyz 
 

  r3  r1  x = (  0 – 70) xyz = – 70 xyz 

 

  r1  r2  y = (  0 – 16) xyz = – 16 xyz 
 

  r2  r3  y = (10 – 30) xyz = – 20 xyz 
 

  r3  r1  y = (80 –   0) xyz =    80 xyz 

 

  r1  r2  z = (  8 – 21) xyz = – 13 xyz 
 

  r2  r3  z = (  0 –   5) xyz = –   5 xyz 
 

  r3  r1  z = (35 –   0) xyz =    35 xyz 
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Example (Second Strategy) 
 

Calculation of the inverse A
–

 

1
: 

 
 

A
–

 
1
 = 

 
 
 
 

     = 
 
 
 
 

     = 
 

 

Check of result: 
 

                                      8        3        5 
 

          60 A
–

 
1

 A               7        1        0 
 

                                      0        2      10 
 
   – 10      20        5       60        0        0 
 

      70    – 80    – 35         0      60        0 
 

   – 14      16      13          0        0      60 
 
























z21y21x21

z13y13x13

z32y32x32

321 rrrrrr

rrrrrr

rrrrrr

 
rrr

1

  
























zyxzyxzyx

zyxzyxzyx

zyxzyxzyx

zyx
 13 16 14  

 35   80   70

 5  20 10  

 
 60

1

  























13  16  14

358070  

5    20  10

 
60

1
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Example (Second Strategy) 
 
Calculation of demand matrix B: 
 
                                 100    60    40    60 
 

           A
–

 

1
 D                70    40    10    28 

 

                                   40    20    40    44 
 
 

                                   10      5      0      3 

 

                                     0      5    10      7 

 

                                     4      1      2      3 
 
 

                              This result is identical to 
                                the result of slide # 54. 
 
 

60

13
  

60

16
  

60

14
60

35

60

80

60

70
  

60

5
  

60

20
  

60

10






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Outlook 
 
Systems of more than three linear equa- 
tions can be solved in a similar way. To 
do this, we need vectors of higher-dimen- 
sional spaces. 
 
P. A. M. Dirac invented some matrices 
which represent base vectors in four- or 
five-dimensional spaces (or spacetimes). 
Thus rather simple solutions of systems 
of four or five linear equations are possible 
if the outer product is applied in a straight- 
forward manner. 
 
Systems of more than five linear equa- 
tions can be solved in the same way, if 
base vectors of these higher-dimensional 
spaces are constructed using the direct 
product of Zehfuss and Kronecker. It is 
really no big deal to do that after having 
understood how things work in two- or 
three-dimensional spaces. 
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Merry Christmas and a Happy New Year! 
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