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Linear algebra is the study of linear sets of 
equations and their transformation proper- 
ties. 
 
       Many economic relationships can 
       be expressed as (or approximated 
       by) linear equations. 
 

 
 

3 x1

4
 +         – 5        = 27 

 

or 
 

3 x1

4
 + 12 x2

–
 

1
 – 5       = 27 

 

 
3 x1 + 12 x2 – 5 x3 = 27 
 

or 
 

3 x1
1
 + 12 x2

1
 – 5 x3

1
 = 27 

 
 
This is an algebraic equation. 
 

But remember Galileo Galilei! 
 

is no linear 
equation 

2x

12  

 
3x

 

2

1

3x
  

 

is a linear 
equation 
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Galileo Galilei (1564 – 1642): 
 
            “ Philosophy is written in that great book which ever 
             lies before our eyes – I mean the universe – but we 
             cannot understand it if we do not first learn the lan- 
             guage and characters in which it is written. 
 

             This language is mathematics, and the characters 
             are triangles, circles and other geometrical figures, 
             without whose help it is impossible to comprehend a 
             single word of it; without which one wanders in vain 
             through a dark labyrinth.” 

 
The characters are combined in an algebraic 
way, but they are geometrical figures. 
 

Therefore we can think about the given linear 
equation as an equation representing a geo-
metrical relationship in space: 
 

3 x1 + 12 x2 – 5 x3 = 27 

 
 
         3 x + 12 y – 5 z = 27 
 
 
 

   3            + 12              – 5              = 27 
 

   Only now we have a truly geometrical 
   formulation. 

 vector in                   vector in                 vector in 
x-direction                y-direction              z-direction 
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What is space? How can we describe it? 
 

How can we model the base vectors as 
basic constituents of space? 

 
 
 
 
 
 
 

x ...... base vector in x-direction 

            (one step parallel to x-axis) 
 

y ...... base vector in y-direction 

            (one step parallel to y-axis) 
 

z ...... base vector in z-direction 

            (one step parallel to z-axis) 
 

Base vectors are unit vectors: 
 

                x

2
 = y

2
 = z

2
 = 1 

 

The multiplication of two different base 
vectors results in a base bivector, which 
represents the oriented area element (or 

oriented rectangle):   x y = xy 

x 

y xy 
right-handed orientation 

(anticlockwise orientation) 
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Now we change the order of our steps: 
 
 
 
 
 
 
 

x ...... base vector in x-direction 

            (one step parallel to x-axis) 
 

y ...... base vector in y-direction 

            (one step parallel to y-axis) 
 

z ...... base vector in z-direction 

            (one step parallel to z-axis) 
 

This time the multiplication of the base 
vectors results in a different bivector 
 

                y x = yx 
 

with reversed order of the base vectors. 
 
When multiplied the order of vectors is im- 
portant! It encodes information about the 
orientation of the resulting area element. 
 

left-handed orientation 
(clockwise orientation) 

x 

y yx 

first step 

second step 
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The order of vectors is important! 
It encodes information about the orientation 
of the resulting area element. 
 
 
 
 
 
 
 
 
 
 
 
 
 upper area element = – lower area element 
 

                         xy = – yx 
 

Similar relations can be found for the other directions: 
 

                         yz = – zy 
 

                         zx = – xz 
 

If the order of two different neighbouring 
base vectors of a multiplication is reversed, 
a minus sign has to be introduced. 

x 

y xy 

x 

y yx 

right-handed orientation 
(anticlockwise orientation) 

 

positive orientation in a right- 
handed coordinate system 

left-handed orientation 
(clockwise orientation) 

 

negative orientation in a right- 
handed coordinate system 
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An oriented volume ele- 
ment is called trivector: 
 
 
 

 
Thus in three-dimensional space 

1 + 3 + 3 + 1 = 2
3
 = 8  base elements exist. 

 

One base scalar:                      1 
 

Three base vectors:            x, y, z 
 

Three base bivectors:     xy, yz, zx 
(sometimes called pseudovectors) 
 

One base trivector:                xyz 
(sometimes called pseudoscalar) 

 

Anti-Commutativity 
 

A multiplication by scalars or by trivectors 
(pseudoscalars) is always commutative. 
 

If the order of two different neighbouring 
base vectors of a multiplication is reversed, 
a minus sign has to be introduced. 
 

  Different base vectors anticommute. 

xyz 

y 

x 
z 
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Vectors 
 
Vectors are oriented line segments. They 
can be expressed as linear combinations 
of the base vectors. 
 

Example:  r1 = 4 x + 3 y 

 
 
 
 
 
 
 
 
 
 
 
General case in three dimensions: 
 

r = x x + y y + z z 

 
 
 
 

x 

y 

r1 

3 

4 



Modern Linear Algebra: A Crash Course of Geometric Algebra (OHP Slides M. HORN)     9 

The Square of Vectors 
 
Example: 
 

r1
2
 = (4 x + 3 y)

2
 

 
     = (4 x + 3 y) (4 x + 3 y) 

 

     = 16 x

2
 + 12 xy + 12 yx + 9 y

2
 

 

     = 16 + 12 xy – 12 xy + 9 
 

     = 16 + 9 = 25 
 
As all mixed terms cancel, the square of a 
vector always is a positive scalar: 
 

r 

2
 = (x x + y y + z z)

2
 

 

    = (x x + y y + z z) (x x + y y + z z) 
 

    =  x
2
 + y

2
 + z

2
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Length of Vectors 
 

The positive square root of the square of a 
vector can be identified as its length: 
 

| r1 | =         =          = 5 
 
In general: 
 

| r | =         = 

 

Unit Vectors 
 

A division of a vector r by its length results 
in a unit vector    of length 1: 
 

    =        =     (4 x + 3 y) = 0.8 x + 0.6 y 
 

 

with        = 0.8
2
 + 0.6

2
 = 0.64 + 0.36 = 1 

 
In general: 
 

   =        =                         (x x + y y + z z) 
 

 

with       = 1 

      25r
2

1  

      2222 zyxr 
 

5

1

r

r
r

1

1
1           ˆ

     

 
  

          ˆ
  

222 zyx

1

r

r
r

  

2

1r̂  

2r̂  

r̂  
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Inverse Vectors 
 

A division of a vector r by its square r
2
 results 

in the inverse r 

–
 

1
 of this vector 

 

 

r1
–

 

1
 =       =       (4 x + 3 y) = 0.16 x + 0.12 y 

 
as the product of a vector and its inverse 
results in the unit scalar: 
 

r1 r1
–

 

1
 = r1

–
 

1
 r1 = 1 

 
In general: 
 

 

r 

–
 

1
 =       =                      (x x + y y + z z) 

 
   r r 

–
 

1
 = r 

–
 

1
 r = 1        

 
 
Using inverse vectors, we are now able to 
divide by vectors. 

 

25

1

r

r
2

1

1      
   

   

     
 

2222 zyx

1

r

r

  
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Multiplication of Vectors 
 

Example:  r1 = 4 x + 3 y 

                 r2 =    x + 2 y 

 
 
 
 
 
 
 
 
 
 
 

 

r1 r2 = (4 x + 3 y) (x + 2 y) 

 
       = 4 x

2
 + 8 xy + 3 yx + 6 y

2
 

 

       = 4 + 8 xy – 3 xy + 6 
 

       = 10 + 5 xy 
 

The product of two vectors consists of a 
scalar term and a bivector term. 

r1 

r2 
3 

 

2 

1               4 

x 

y 
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The Inner Product 
 

The scalar term of a product r1 r2 of two 

vectors can be found by adding the same 
product in reversed order r2 r1: 
 

r1 r2 = 10 + 5 xy 
 

r2 r1 = 10 – 5 xy 
 

<r1 r2>scalar = r1  r2 =     (r1 r2 + r2 r1) = 10 
 

This part of a product was baptized inner 
product (or dot product) and a fat dot is 
usually used to symbolize it: 
 

                    r1  r2 =     (r1 r2 + r2 r1) 
 

The inner product of two vectors is a com-
mutative product as a reversion of the or-
der of the two vectors does not change it: 
 

        r1  r2 = r2  r1 =     (r2 r1 + r1 r2) 
 

If the product of two vectors equals the 
inner product (the bivector terms cancel), 
the two vectors are parallel. 

  2

1
 

  2

1
 

  2

1
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The Outer Product 
 

The bivector term of a product r1 r2 of two 

vectors can be found by subtracting the 
same product in reversed order r2 r1: 
 

r1 r2 = 10 + 5 xy 
 

r2 r1 = 10 – 5 xy 
 

<r1 r2>bivector = r1  r2 =     (r1 r2 – r2 r1) = 5 xy 
 

This part of a product was baptized outer 
product (or exterior product or wedge pro-
duct) and a wedge is used to symbolize it: 
 

                    r1  r2 =     (r1 r2 – r2 r1) 
 

The outer product of two vectors is an anti-
commutative product as a reversion of the 
order of the two vectors will change its sign: 
 

     r2  r1 = – r1  r2 =     (r2 r1 – r1 r2) 
 

If the product of two vectors equals the 
outer product (the scalar terms cancel), the 
two vectors are orthogonal. 

  2

1
 

  2

1
 

  2

1
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Interpretation of the Inner Product 
 

Example:  r1 r2 = 10 + 5 xy 

 
 
 
 
 
 
 
 
 
 
 
The product of two vectors R = r1 r2 can be 

visualized as oriented parallelogram. 
 

The inner product of two unit vectors     and 
    equals the cosine of the angle between 
them. 
 

cos  =          = 
 
Example: 
 

cos  =          =         0.8944      = 26.57° 

 r1 

r2 

5 
 
 

3 

4    5 

x 

y 

  

 

    

 
     ˆ   ˆ

21

21
21

rr

rr
rr



 

2r̂  

1r̂  

5

2

55

10
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Interpretation of the Outer Product  
 
 
 
 
 
 
 
 
 
 
 
The outer product of two vectors r1 and r2 

is a bivector and represents the area of the 
oriented parallelogram. 
 

Example:  r1 r2 = 10 + 5 xy 
 

                    A = r1  r2 = 5 xy 
 

                 The parallelogram R = r1 r2 

                 has an area of 5 unit squares. 

 
Outlook: The oriented unit parallelogram 
 

                  =       is also called rotor. 
21 rrR ˆ ˆ    ˆ

 

r1  

r2 

5 
 
 

 
3 

4    5 

x 

y 

5 xy 
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Example of a Division by a Vector 
 
Using inverse vectors, we are able to divide 
by vectors. 
 

Problem: The two vectors r1 = 4 x + 3 y 

    and r2 = x + 2 y form the parallelogram 

    R = r1 r2 = 10 + 5 xy. 
 

    Find the two vectors which represent the 
    two heights of the parallelogram. 
 
Answer: As the oriented area element of 
    the parallelogram is given by 
 

    A = r1  r2 = 5 xy   = r1 h1 = r2 h2 
 

    the two heights can be found by dividing 
    A by r1 and by r2 respectively: 
 

    h1 = r1
–

 

1
 A =       (4 x + 3 y) 5 xy 

 

                     = – 0.6 x + 0.8 y 
 

    h2 = r2
–

 

1
 A =     (x + 2 y) 5 xy 

 

                     = – 2 x + y 

25

1
 

5

1
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Bivectors 
 
Bivectors are oriented area elements. They 
can be expressed as linear combinations 
of the base bivectors. 
 

A = Axy xy + Ayz yz + Azx zx 

 

The Square of Bivectors 
 

A
2
 = (Axy xy + Ayz yz + Azx zx)

2
 

 

     = – Axy
2
 – Ayz

2
 – Azx

2
 

 
As all mixed terms cancel, the square of a 
bivector always is a negative scalar. 
 

The Area of Bivectors 
 
The square root of the square of a bivector 
multiplied by – 1 can be identified as the 
area of the bivector: 
 

| A | =             = 
 

      
2

zx

2

yz

2

xy

2 AAAA 
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Bivectors as Oriented Area Elements 
 
Example:  
 

 
 
 
 
 
 
 
 
 

A = 4.5 yz – 6 zx = (4 x + 3 y) 1.5 z 
 

A
2
 = (4.5 yz – 6 zx)

2
 

 

     = 20.25 (yz)
2
 – 27 yzzx 

                              – 27 zxyz + 36 (zx)
2
 

 

     = – 20.25 + 27 xy – 27 xy – 36 
 

     = – 56.25 
 

Area of the bivector: 
 

| A | =             =                         = 7.5 
 

1.5 

4 

y 

z 

x 

3 

According to the diagram 
the area should equal 
5 ∙ 1.5 = 7.5 unit squares. 

 

22 )2556(    A  .
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Mapping vectors to vectors 
 

 Dilations 
 

   The multiplication of a vector by a scalar ℓ 
   maps this vector to a dilated vector: 
 

r = x x + y y + z z          r ℓ = ℓx x + ℓy y + ℓz z 

 
 ??? 
 

   The multiplication of a vector r by another 

   vector (e.g. the base vector x) does not 

   map the vector r to a vector, but to a scalar 
   and a bivector: 
 
r = x x + y y + z z          r x = x – y xy + z zx 

 
                                                 scalar       bivector 

 

 How can we design a multiplication of a 
   vector by another vector, which maps the 
   vector r to a vector again? 
 

    This special multiplication is named after a 
        British earl. 
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The Sandwich Product 
 

If vector r is multiplied by another vector 
from the left and from the right in a sand- 
wich-like manner, vector r will be mapped 
to a resulting vector r’: 
 

      r’   = x r x =    x x – y y – z z 
 

      r’’   = y r y = – x x + y y – z z 
 

      r’’’  = z r z = – x x – y y + z z 

 
These formulae describe reflections! 
 
If r is reflected at a vector pointing into the 
direction of the x-axis, the x-coordinate is 
unchanged while the y- and z-coordinates 
will change their signs. Thus r is mapped 
to r’ by a reflection at the x-axis. 
 
r is mapped to r’’ by a reflection at the y-axis. 
r is mapped to r’’’ by a reflection at the z-axis. 
 

The sandwich product of a vector with 
a unit vector results in a reflection. 
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Reflections 
 
The sandwich product of a vector with an 
arbitrary vector n (which is no unit vector) 
results in a reflection and a dilation. 
 
To suppress the dilation and to get a pure 
reflection, it is necessary to divide by n 

2
. 

Thus a reflection at an axis which points 
into the direction of vector n, has to be 
written as 
 

                     rref =        n r n 
 

or 
 

                        rref = n r n 

–
 

1
 

 
        Reflections are important operations, 
        as they conserve the length of vectors: 
 

| rref | = | r | 
 
Lasenby, Doran: “This formula is already more compact than 
     can be written down without the geometric product … The 
     compression afforded by the geometric product becomes 
     increasingly impressive as reflections are compounded to- 
     gether.” 

 

2n

1
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Reflection at a mirror  # 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Two different objects will be reflected at a 
plane mirror. 
 
 
 

mirror 
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Reflection at a mirror  # 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Two different objects will be reflected at a 
plane mirror. 
The position of the images of these objects 
can be found with the orthogonal lines. 

mirror 
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Reflection at a mirror  # 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Two different objects will be reflected at a 
plane mirror. 
The position of the images of these objects 
can be found with the orthogonal lines. 
Original objects and images have the 
same distance from the plane mirror. 
 

mirror 
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Reflection at a mirror  # 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This is a reflection. The image of the red 
object lies opposite to the red object, and 
the image of the blue object lies opposite 
to the blue object. 
 
 

mirror 
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Double reflection at two mirrors  # 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now the two different objects will be re- 
flected at two plane mirrors which make 
an angle of 90° with each other. 
 
 

1st mirror 

2nd mirror 
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Double reflection at two mirrors  # 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now the two different objects will be re- 
flected at two plane mirrors which make 
an angle of 90° with each other. 
Again orthogonal lines help to find the two 
images of the objects. 
 

1st mirror 

2nd mirror 
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Double reflection at two mirrors  # 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now the two different objects will be re- 
flected at two plane mirrors which make 
an angle of 90° with each other. 
Again orthogonal lines help to find the two 
images of the objects. 
 

1st mirror 

2nd mirror 
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Double reflection at two mirrors  # 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This is a reflection at two plane mirrors 
which are perpendicular to each other. 
 

Now the image of the red object lies oppo-
site to the blue object, and the image of the 
blue object lies opposite to the red object. 
 

1st mirror 

2nd mirror 
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Double reflection at two mirrors  # 5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This is a rotation. Reflecting objects at two 
plane mirrors results in a rotation of these 
objects. 
 
 

1st mirror 

2nd mirror 
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Double reflection at two mirrors  # 6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Two succeeding reflections result in a 
rotation. 
 

This works with two plane mirrors which 
make a different angle as well. 
 
 

1st mirror 

2nd mirror 
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Double reflection at two mirrors  # 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Two succeeding reflections result in a 
rotation. 
 

This works with two plane mirrors which 
make a different angle as well. 
 

1st mirror 

2nd mirror 
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Double reflection at two mirrors  # 8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Two succeeding reflections result in a 
rotation. 
 

This works with two plane mirrors which 
make a different angle as well. 
 

2nd mirror 

1st mirror 
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Double reflection at two mirrors  # 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Two succeeding reflections result in a 
rotation. 
 

This works with two plane mirrors which 
make a different angle as well. 
 

2nd mirror 

1st mirror 
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Two reflections = one rotation   # 10 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Two succeeding reflections result in a 
rotation. 
 

If the angle of the two mirrors is , the 

rotation angle will be 2 . 
 



2nd mirror 

1st mirror 

2
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Rotations 
 
A reflection at an axis which points into the 
direction of vector n, can be written as 
 

                        rref = n r n 

–
 

1
 

 
A rotation in the plane which is spanned by 
the two vectors n and m can then be 
written as: 
 

         rrot = m rref m 

–
 

1
 = m n r n 

–
 

1
 m 

–
 

1
 

 
The vector r is rotated about twice the 
angle between n and m. 
 
Again the length of the vector is conserved: 
 

| rrot | = | r | 
 
 
Lasenby, Doran: “This is starting to look extremely simple! 
           … The rule also works for any grade of multivector!” 
 

            (Chris Doran, Anthony Lasenby: Geometric Algebra 
              for Physicists, Cambridge University Press, Cam- 
              bridge 2003) 
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Whiteboard Example of a Rotation 
 

– from Lesson at Nov. 20
th
, 2014 – 

 

1st step: Vector r = 12 x + 4 y is reflected 

    at an axis which points into the direction 

    of vector n = 4 x + 5 y. 
 

2nd step: The reflected Vector rref is now 

    reflected at an axis which points into the 

    direction of vector m = 4 x + 6 y. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

First reflection at n 

rref 

y 

r 
n 

12.59 
 
 
 
 
 
 
 

      5 
      4 

1.27       4                               12 

x 
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First reflection at an axis which points into 
the direction of n: 
 

r = 12 x + 4 y     r
2
 = 160 

 

n = 4 x + 5 y      n
2
 = 41 

 

rref = n r n 

–
 

1
 

 

     =       (4 x + 5 y) (12 x + 4 y) (4 x + 5 y) 
 
 

     =       (68 – 44 xy) (4 x + 5 y) 
 
 

     =       (52 x + 516 y) 

 
 

       1.27 x + 12.59 y 
 
Checking the result: 
 

 

rref 

2
 =                       =                  = 160 = r

2
 

 
 

41

1
 

41

1
 

41

1
 

1681

960268
     

41

51652    

2

22
 
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Second reflection at an axis which points 
into the direction of m: 
 

 

rref =       (52 x + 516 y)     rref 

2
 = 160 

 

m = 4 x + 6 y         m
2
 = 52 

 

rrot = m rref m 

–
 

1
 

 

     =      (4 x + 6 y)     (52 x + 516 y) (4 x + 6 y) 

 
 

     =            (2 x + 3 y) (52 x + 516 y) (2 x + 3 y) 

 

 
 

     =         (1652 + 876 xy) (2 x + 3 y) 
 
 

     =         (5932 x + 3204 y) 

 
 

       11.13 x + 6.01 y 
 
Checking the result: 
 

 

rrot 

2
 =                             = 160 = rref 

2
 = r

2
 

 

41

1
                

52

1
 

533

1
 

533

1
 

2

22

533

32049325   

 

 1 
 

41 

4113

1

  
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Composition of a rotation: Two succeeding 

reflections at n and m 

 
Angle of rotation:  
 

cos  =                  =                = 0.9962 
 
 

      = 4.97° 
 

  2  = 9.94° 
 

5241

3016
    

mn

m n
 

      



 

2

rref 

y 

r 
n 

6.01 

x 

m 
rrot 

6 

4                         11.13 
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Double reflection at two mirrors  # 11 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
By the way: Reflections are not commutative. 
 

Slides # 7 to # 10 show a reflection at the 
1st mirror, followed by a second reflection 
at the 2nd mirror. 
 

The following slides show, that a reflection 
at the 2nd mirror … 
 

1st mirror 

2nd mirror 
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Double reflection at two mirrors  # 12 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
By the way: Reflections are not commutative. 
 

Slides # 7 to # 10 show a reflection at the 
1st mirror, followed by a second reflection 
at the 2nd mirror. 
 

Slides # 11 to # 14 show, that a reflection 
at the 2nd mirror, followed by a reflection 
at the 1st mirror … 

1st mirror 

2nd mirror 
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Double reflection at two mirrors  # 13 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
By the way: Reflections are not commutative. 
 

Slides # 7 to # 10 show a reflection at the 
1st mirror, followed by a second reflection 
at the 2nd mirror. 
 

Slides # 11 to # 14 show, that a reflection 
at the 2nd mirror, followed by a reflection 
at the 1st mirror, will give a different result. 

1st mirror 

2nd mirror 
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Double reflection at two mirrors  # 14 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
By the way: Reflections are not commutative. 
 

As the angle between the 2nd mirror and the 

1st mirror equals   = 90° –   (measured in 
positive, anticlockwise direction), the rotation 

angle now is  2  = 180° – 2 . 

1st mirror 

2nd mirror 


2
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Pauli Matrices 
 
It is possible to find matrices which repre-

sent the three base vectors x, y, and z. 

These matrices are called Pauli matrices: 
 

 

                    x  =  

 
 
 

                    y  =  

 
 
 

                    z  =  

 
 
The basic rules of Pauli algebra are rules, 
which describe three-dimensional vectors: 
 

                                 I 


xy = xyzz = I z 
 

yz = xyzx = I x 
 

zx = xyzy = I y 

 0     1 
 

1     0 

 0    – i  
 

 i     0 

 1     0 
 

0    – 1 
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Pauli Matrices 
 
Base scalars, base bivectors, and base 
trivector can now be written as: 
 

 
                     1  =  
 
 
 

                 xy  =  

 
 

 

                 yz  =  

 
 

 

                 zx  =  

 
 
 

              xyz  =  

 
 

  i      0  
 

0    – i 

 0      i 
 

 i      0 

 1     0 
 

0     1 

  0     1  
 

– 1   0 

  i      0 
 

0      i 
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Dirac Belt trick 
 
Originally Pauli matrices had been invented to 

describe the strange 4  symmetry of the elec- 
tron or some other elementary particles. But 
today we know that Pauli matrices represent 
base vectors of three-dimensional space. Or as 
Syngg puts it: “In recent years, it has become more 
widely recognized that objects larger than electrons 

also have 4  periodicities.” (John Snygg: Clifford Alge- 

bra. A Computational Tool for Physicists, Oxford University 
Press, New York, Oxford 1997) 
 

Indeed every object (if attached to its surround- 
ings) possesses such a symmetry as the Dirac 
belt trick shows. Therefore it seems sensible to 
assume that not only electrons but every object 
should be described with the help of Pauli matri- 
ces. 
 
1. To reproduce the Dirac belt trick, fix an object 
    with three or more strings. 
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2. Now rotate the object about an angle of 

     4  = 720°. 
 

 
 
3. Obviously the strings are heavily entangled 
    now. 
 

 
 
4. But it is possible to disentangle them again 
    without moving or rotating the object. Just 
    follow the procedure indicated in the follow- 
    ing pictures. 
 

 
 

   Only the strings are moved. The object remains 
   in its position. 
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5. As the situation now is totally equivalent to the 
    original situation, we should draw the conclu- 
    sion, that the object after a rotation of 720° is 
    in the same topological state as in the original 
    position before the rotation. 
 

6. The Dirac belt trick does not work after a rota- 
    tion of only 2  = 360°. Thus the topological 
    states are different. 
 

Outlook 
 

The Dirac belt trick is named after P. A. M. 
Dirac, who invented matrices which repre- 
sent base vectors in higher-dimensional 
spaces (or spacetimes). 


