How Old is the Universe?

- A Teaching Unit Using the Novel Applet Spectrarium -

Hans-Otto Carmesin*, Ellen Carmesin⁺

* Gymnasium Athenaeum, Harsefelder Straße 40, 21680 Stade and Studienseminar Stade, Bahnhofstraße 5, 21682 Stade and Fachbereich 1, Institute for Physics, University Bremen, 28334 Bremen, ⁺Institute for Mathematics, Technical University Darmstadt, Schloßgartenstraße 7, 64289 Darmstadt Hans-Otto.Carmesin@t-online.de, ecarmesin@gmail.com

Abstract

We present a teaching unit that offers the students the opportunity to discover the age of the universe by hands on model experiments also with applets. We present a novel software, worksheets and outlines of lessons. We present experiences with students and a teacher training.

1. Introduction

We present a teaching unit in which the students discover the age of the universe by simulated observations using applets. So the students can form hypotheses, test them and achieve a high efficiency of learning [1]. We used the well known planetariumsoftware Stellarium [2] and a software simulating astronomical spectroscopic observations. We developed the latter software and called it Spectrarium. The teaching unit is presented in three versions, a conceptual level, an expert level and a mathematical level. The units have been tested with students in Germany and in a teacher training in Lisbon. We present the teaching unit including corresponding work sheets and report about our experiences in lessons and teacher training. The software Spectrarium and a used "zoom animation" can be requested via E-Mail.

2. Conceptual Level

The unit for the conceptual level consists of five lessons. It has been tested in an astronomy club with students from classes five to 12. The outlines of the lessons including working sheets are as follows:

Lesson 1: Investigation of the Large Magellanic Cloud LMC

Goals: The students can find the LMC with Stellarium, describe the location of the LMC at the celestial sphere as well as essential contents of the LMC.

Time	Didactical Com-	Methodical	Social form
	ments	Comments	
8	Introduction: Magel-	Story of his	Discussion
	lan	sailing around the	
		world, his dis-	
		covery of the	
		strait of Magel-	
		lan, his descrip-	
		tion of the LMC	

10	Development of the question	Question of the lesson	"
50	Development of results: exploration	Stellarium, zoom- animation	Small Groups
70	Formulation of results: see below	Formulation and animation in the plenum	Student- presentation
90	Consolidation: exploration of further galaxies	Stellarium	Small Groups

Intended Blackboard Figure:

Where is the Large Magellanic Cloud at the Celestial Sphere and What Can We Find in It?

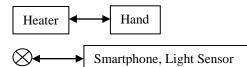
Ideas: Southern Hemisphere $\sqrt{}$

LMC contains: stars, star clusters

Results: The LMC is in the constellation Dorado. It contains globular star clusters and open star clusters. It is a galaxy.

Lesson 2: Discovery and use of the decrease of radiation with distance

Goals: The students can explain the decrease of the intensity of a radiation source and its use for measurements of astronomical distances.


Time	Didactical Com-	Methodical Com-	Form
	ments	ments	
8	Introduction: Exam-	Teacher instructs,	Instruction
	ples of distances see	students give a	
	below)	resume	
10	Development of the	Question of the	Discussion
	question	lesson	
20	Hypotheses: see	Conjecture	,,
	below		
30	Experiment: Plan	Planning	,,
	see below		
60	Development of	Some groups	Small
	results: performing	perform experi-	Groups
	the experiment	ment, some devel-	
		op the idea of the	
		use of the decrease	
75	Formulation of	Formulation and	Pupil-
	results: see below	demonstration in	Presentation
		the plenum	
90	Consolidation:		Small

Cre	eative experimen-	Groups
tati	on with more	
rad	iation sources	

Intended Blackboard Figure Information:

Distance to America: 5000 km Distance to the moon: 380 000 km Distance to the sun: 150 000 000 km

How Can the Distance of a Galaxy be Measured? Hypothesis: we get only light, we use light The light brightness decreases with the distance. Design of model-experiments:

Results: The intensity of a radiation source decreases with the distance.

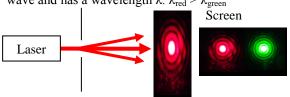
The galaxy is a radiation source.

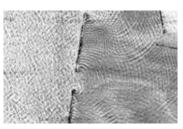
The intensity of the light of the galaxy decreases with the distance.

Conversely, the astronomers measure the intensity of the light of the galaxy and therefrom calculate the distance.

Example: The galaxy M66 has the distance 280 Zm $= 280 \cdot 10^{21}$ m.

If each human travels the distance to the sun, then they travel a distance of 1 Zm altogether.


Lesson 3: Discovery and use of the *Wave nature of Light WNL*


Goals: The students can illustrate the WNL.

Time	Didactical Com- ments	Methodical Com- ments	Social form
5	Introduction: Ques- tion, see below	Teacher presents the question	Discussion
10	Ideas: see below	Students suggest	,,
20	Instruction: Diffrac- tion experiment, Photo of watewaves,	Students describe the diffraction pattern and the photo of water- waves.	22
40	Development of results: Analogy	Students discover common property of waterwaves and light, see below	Small Groups
75	Formulation of results: see below, hand spectrograph if available	Formulation and illustration in the plenum	Student- presentation
90	Consolidation: creative experiments with waterwaves		Small Groups

Intended Blackboard Figure

How can We Measure Properties of the Galaxy? Ideas: no probes \rightarrow analysis of light An experiment illustrates: Light propagates like a wave and has a wavelength λ . $\lambda_{red} > \lambda_{green}$

Results: Light spreads behind a hole. Waterwaves spread behind a hole. Light has properties of waves. The wavelength corresponds to the colour. The wavelength can be observed with a so called spectrograph. Perhaps the wave property of light gives more information about a galaxy.

Lesson 4: Discovery and use of the redshift

Goals: The students can explain the redshift and its use for the determination of velocities.

-			
Time	Didactical Com-	Methodical Com-	Form
	ments	ments	
8	Introduction: M66 in	Students suggest	Discussion
	Stellarium, increase	measurements of	
	of wavelength	D and spectrum	
10	Development of the	Question of the	Discussion
	question	lesson	
15	Hypotheses: see	Conjecture	,,
	below		
50	Development of	Students perform	Small
	results: performing	experiment	Groups
	the control experi-		
	ment		
55	Formulation of	Formulation and	Student-
	results: see below	animation in the	presentation
		plenum	
90	Consolidation:	Students work	Small
	Correspondence of	with worksheet or	Groups
	wavelength increase	observe ducks in a	
	and velocity	lake	

Intended Blackboard Figure

Why is the Wavelength Increased? Hypothesis: Motion changes the wavelength Control experiment:

- We move a toy duck in water
- Behind the duck the wavelength is increased
- In front of the duck the wavelength is decreased

Result: The wavelength of M66 is increased, because M66 moves away from us.

Information: From the increase of the wavelength, the velocity v of the galaxy can be determined with help of a spectrograph. The velocity is v = 20 Zm/Gy.

1 Gy = 1 billion years \rightarrow ½ number of Europeans.

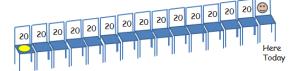
Worksheet, Astronomy Club, Dr. Carmesin 2013 Wavelength of a Moving Source

Exercise 1: Describe the wavelengths of the swimming baby duck (Photo from MINT Zirkel, September/October 2013, p. 18, hoc.).

Exercise 2: Find out what you can tell about the velocity of the duck by observing the wavelength.

Lesson 5: Discovery of the Equality of Start Times EST and Measurement of the Age of the Universe

Goals: The students can explain their discovery of the EST and calculate the age τ of the universe.

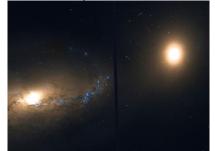

Time	Didactical Com-	Methodical Com-	Social form
	ments	ments	
8	Introduction: D, v,	Pupils explain	Discussion
	see below		
10	Development of the	Main question of	Discussion
	question	the lesson	
20	Model experiment:	Plan	,,
	see below		
30	Development of	Calculation	Small
	result: r		Groups
35	Formulation of	Formulation	Pupil-
	result: see below		presentation
40	Development of the	2. question	Discussion
	2. question		
60	Development of	Calculation, work-	Small
	result: r	sheet	Groups
65	Formulation of	Formulation	Pupil-
	result: see below		presentation
80	Metacognition: see	Interpretation,	Discussion
	below	Reflexion	
90	Consolidation:	Worksheet	Small
	Investigate the		Groups
	proportionality of D		
	and v		

Intended Blackboard Figure

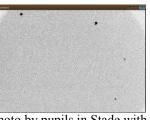
M66: D = 280 Zm; v = 20 Zm/Gy

Where Has M66 Been Before?

Design of model experiment:



Result: 14 Gy ago M66 was here. The start time is 14 Gy.


When Have Other Galaxies Been Here? Result: All distant galaxies move away from us and started 14 Gy ago.

Interpretation: Everything began to expand 14 Gy ago. This is called the Big Bang. The age of the universe is 14 Gy.

Worksheet, Astronomy Club, Dr. Carmesin 2013

NGC3227: HST, D = 700 Zm; v = 50 Zm/Gy

NGC3516: Photo by pupils in Stade with 11'telescope [3]. D = 1400 Zm; v = 100 Zm/Gy Exercise: When have the galaxies been here?

3. Spectrarium

On the expert level the students simulate the astronomical spectroscopy of distant galaxies. For this purpose we developed the novel software "Spectrarium". The underlying concept is outlined in the following.

Overview of the concept of Spectrarium

First the spectral flux densities are determined for the radiation coming from the galaxy [4] and for the radiation originating from the light pollution [5]. These calculations are based on data from the literature.

Second the user can simulate his specific observation. Thereby the user can choose the diameter D of the telescope, the temperature T of the cooled camera, the exposure time t and the location with a light pollution described by a parameter L. For this purpose the incoming spectral flux densities of the galaxy and of the light pollution are transformed to the spectrum generated by the chosen parameters D, T, t and L. This transformation is realized by the software in two steps. In a first step we calculate the spectrum for the observatory in Stade equipped with the telescope Celestron C11, the spectrograph DSS7 form SBIG and the camera ST-402 from SBIG. In a second step we scale the spectrum according to the chosen parameters D, T, t and L.

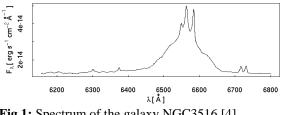


Fig.1: Spectrum of the galaxy NGC3516 [4].

Radiation from a galaxy

From the literature we get the incident spectral flux density F_{λ} coming from a galaxy. For instance, the H_{α} -radiation of the galaxy NGC3516 arrives at the earth with a spectral flux density of $F_{\lambda} = 5 \cdot 10^{-14}$

$$\frac{erg}{s \cdot cm^2} \cdot \mathring{A}^{-1} \text{ or } F_{\lambda} = 5 \cdot 10^{-17} \frac{W}{m^2} \cdot \mathring{A}^{-1} \text{ or } F_{\lambda} = \frac{aW}{m^2}$$

 $500 \, m^2 \cdot nm$ (see Fig. 1).

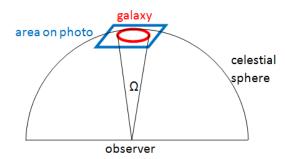
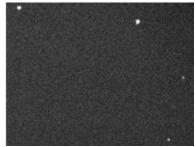


Fig.2: Construction for light entering the telescope

Spectral flux of the light pollution

From the literature we get the sky brightness or visual luminance L_v in candela per square meter [5]. For instance, the sky above the city of Stade emits

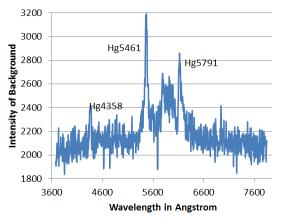
light with a luminance of $L_V = 15 \cdot 10^{-4} \frac{cd}{m^2}$. At the bottom there arrives the same luminance. In order to get the illuminance E_V that enters the telescope, we multiply the luminance L_V with the solid angle Ω of the galaxy (see Fig. 2). This solid angle is the solid angle of the area presented on the photo (see Fig. 2) multiplied by the percentage of the area covered by the galaxy on the photo. For example, the telescope C11 with the camera ST-402 from SBIG produces a photo with a solid angle of 4.5 \cdot 10^{-6} rad². The galaxy covers an area of 0.1 % of this photo (see Fig. 3). Thus the solid angle of the galaxy is $4.5 \cdot 10^{-9} rad²$ and the illuminance E_V of the light pollution is $E_V =$


 $6.675 \cdot 10^{-12} \frac{cd \cdot rad^2}{m^2}$ or $E_V = 6.675 \cdot 10^{-12} \frac{bm}{m^2}$. Next we convert this visual or physiological illuminance E_V to an energetic illuminance E_e . For this conversion we use the fact that the illuminance of the sun is

$$E_{e} = 800 \frac{W}{m^{2}} \text{ or } E_{V} = 100000 \frac{lm}{m^{2}} \text{ . So } 1 \frac{lm}{m^{2}} \text{ corre-}$$

sponds to 0,008 m^2 and the energetic illuminance of fW

the light pollution is $E_e = 54 \overline{m^2}$. This illuminance of the light pollution is an average over the visual wavelength-interval [400 nm; 800 nm] with $\Delta\lambda = 400$ nm. So we obtain the spectral energetic illuminance alias the spectral flux density F_{λ} by dividing the illuminance by $\Delta\lambda = 400$ nm. Thus we get $F_{\lambda} = 135 \ aW$.


 $\overline{m^2 \cdot nm}$

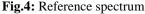


Fig.3: Photo of the galaxy NGC3516 (upper right) taken by pupils with an 11-inch-telescope.

Transformation to the spectrum for the observatory in Stade

We present the spectrum for the wavelengths 365 nm, 366 nm, 367 nm, ... 709 nm. The opening of the telescope has a diameter of $D_0 = 0,275$ m. With our observatory we took a reference spectrum at a clear night from the sky in Stade (see Fig. 4) at a temperature of $T_0 = 270$ K with an exposure time of $t_0 = 300$ s. This spectrum exhibits a maximum of the light pollution at 1122 counts and $\lambda = 544$ nm originating from mercury in the street lamps. Moreover this spectrum shows a stochastic noise characterized by the standard deviation $\sigma_0 = 97$.

In order to produce a light-pollution-spectrum, we subtracted the noise from the reference spectrum and rescaled this spectrum so that the mean spectral flux $_{aW}$

is $F_{\lambda} = 135 \overline{m^2 \cdot nm}$. As a result we obtained a maxiaW

mum spectral flux of 1245 $\overline{m^2 \cdot nm}$ at 544 nm. So the standard deviation of the stochastic noise should be aW aW

 $\sigma = 1245.97/1122 \overline{m^2 \cdot nm}$ or $\sigma = 108 \overline{m^2 \cdot nm}$. We generate such a noise-spectrum with the help of random numbers. Thereby we add ten random numbers for each wavelength and rescale appropriately. We take the galaxy-spectrum from the literature. Finally we obtain the displayed spectrum by adding the above three spectra. Shortly speaking, we form the sum displayed spectrum = galaxy-spectrum + noise-spectrum + light-pollution-spectrum.

Rescaling of the spectra

The user of the software may simulate the observation with a location with a pollution factor L, with a telescope with diameter D, with a temperature T and with an exposure time t. As a consequence the three spectra are scaled by the following factors:

- The galaxy-spectrum is obviously multiplied by the following galaxy-factor: $g_f = (D/D_0)2 \cdot t/t_0$
- The light-pollution-spectrum is obviously multiplied by the following pollutionfactor: $p_f = (D/D_0)^2 \cdot t/t_0 \cdot L/L_0$
- The noise-spectrum is multiplied by a noise-factor of the following form¹: $z_f = (t/t_0)^{0.5} \cdot max(1; 2^{[(T-270)/6.3]})$. Thereby T is the temperature in K and we obtained the parameters of this formula from a series of experiments.

4. Expert Level

On the expert level the students can simulate and evaluate all observations. The unit has been tested with students in an astronomy club from classes six to 12. The unit consists of six lessons outlined as follows:

The first lesson is the same as on the conceptual level.

Lesson 2: Discovery and use of the *Inverse Square* Law of Flux Density ISL

Goals: The students can explain the Inverse Square Law of Flux Density and use it for calculations of astronomical distances.

Time	Didactical Com- ments	Methodical Comments	Form
8	Introduction: Infor- mation about α1 Centauri, see below	Teacher instructs, students give a resume	Instruction
10	Development of the question	Question of the lesson	Discussion
20	Hypotheses: see below	Conjecture	"
30	Experiment: Plan see below	Planning	••
60	Development of results: performing the experiment	Some groups perform experi- ment, some groups derive formula	Small Groups
75	Formulation of results: see below	Formulation and animation in the plenum	Pupil- Presenta- tion
90	Consolidation: Calculation of fluxes and distances	Worksheet	Small Groups

Intended Blackboard Figure

¹ The exponent 0.5 is a consequence of the central limit theorem. The denominator 6.3 describes the fact that the noise is increased by a factor two if the temperature is increased by 6.3 K. The maximum describes the fact that the thermal noise dominates for temperatures above 270 K, while the read-outnoise dominates for temperatures below 270 K.

Information:

 α 1 Centauri emits the same spectrum as the sun. So α 1 Centauri has the same physical properties as the sun.

So $\alpha 1$ Centauri emits the same power as the sun P_{sun} = $3.85 \cdot 10^{26}$ W.

The sun appears brighter than $\alpha 1$ Centauri.

A modern measure of brightness is the power P per area A, the so called flux density F = P/A.

Why has $\alpha 1$ Centauri a smaller Flux Density than the Sun?

Hypothesis: light spreads in space.

The light brightness decreases with the distance. Experiment design:

\otimes -		Smartphone, Light Sensor
1. T	-	

Results: Inverse Square Law of Light Brightness ISL:

The flux density F decreases with the distance D proportional to $1/D^2$.

The flux density F of a source with power P alias flux L at a distance D is $F=P/(4\pi D^2)$.

The flux density F of a source with an apparent brightness m is: $F = 1367 \text{ W/m}^2 \cdot 10^{-0.4 \cdot (26.83 + m)}$

Calculation of the distance of α 1 Centauri:

$$P = 3.86 \cdot 10^{20} W$$

 $F = 25.6 \text{ nW/m}^2$

D = $(P/[4\pi F])^{0.5}$ = 34.6 Pm = 3.6 Ly (Stellarium: 4.39 Ly)

Calculation of the flux of β Centauri for comparison: Stellarium: Apparent Brightness m = 0.55 F = 1367 W/m² · 10^{-0.4}(26.83+m) = 15.3 nW/m²

Worksheet, Astronomy Club, Dr. Carmesin 2013 Usual stars are spherical gas balls performing a nuclear reaction. As a consequence the colour of a star corresponds to its flux L or emitted radiation power P. This is conventionally expressed by the following classification:

Class	Colour	Flux or power in multiples of the power of the sun, P in P _{sun}
0	Blue	Larger 30000
В	Blue-white	25-30000
А	White	5-25
F	Yellow-white	1,5-5
G	Yellow	0,6-1,5
Κ	Orange	0,08-0,6
М	Red	Smaller 0,08

 $P_{sun} = 3.85 \cdot 10^{26} W$

This is the basis fort he spectroscopic distance measurement, illustrated for Sirius:

Exercise 1:Determine the apparent brightness m with Stellarium.

Exercise 2: Determine the spectral class with Stellarium.

Exercise 3: Determine the flux density F from the apparent brightness m.

Exercise 4: Determine the flux P approximately from the spectral class.

Exercise 5: Determine the distance D from F and m.

Intended solution: Stellarium: m = -1.45 \rightarrow F = 1367 W/m² · 10^{(-0.4·(26.83+m))} = 96 nW/m² Stellarium: Spectral class A \rightarrow approximately we get P = 15 P_{sun} D = (P/(4 π ·F))^{0.5} = 69 Pm = 7.2 Ly (Stellarium: 8.6 Ly)

Lesson 3: Measurement of the distance of a galaxy with an 11' telescope

Goal: The students can simulate with Stellarium the measurement of the distance of a galaxy with an 11' telescope.

m:	D :1 : 1 G		a
Time	Didactical Com-	Methodical	Social form
	ments	Comments	
8	Introduction: Lo-	Simulation	Discussion
	cate NGC3516 in		
	Stellarium		
10	Development of the	Main question of	Discussion
	question	the lesson	
15	Ideas: see below	Conjecture	,,
20	Info 1: Measures of	Instruction	Instruction
	brightness		
30	Development of	Calculation	Small Groups
	result 1: $F = 0.58$		_
	pW/m ²		
40	Formulation of	Formulation	Pupil-
	result 1: see below		Presentation
45	Development of the	2. question of	Discussion
	question	the lesson	
60	Info 2: Galaxy	Worksheet,	Small Groups
	Survey	exercise	_
70	Development of	Calculation	Small Groups
	result 2: $D = 1300$		1
	ZM		
75	Formulation of	Formulation	Pupil-
	result 2: see below		Presentation
90	Consolidation:	Calculation of	Small Groups
	galaxies found in	distances	-
	Stellarium		

Intended Blackboard Figure

How Can We Measure the Distance D of the Galaxy NGC3516?

Ideas: We only get light from NGC3516 \rightarrow we analyse light \rightarrow we analyse the brightness We use Stellarium: m = 11.6 Measures of brightness observed at the earth: The magnitude m is an ancient unit. Example: Polaris observed at the earth: m = 1.95 Further Examples: Vega: m=0. (Mizar; Alcor) \rightarrow (2.2; 3.95). η UMi: m = 4.95. Just visible: m = 6 The flux density F has the modern unit W/m². Polaris observed at the earth: F = 4.2 nW/m² Conversion m to F: F = 1367 W/m² \cdot 10^{-0.4 (26.83+m)} NGC3516: F = 1367 W/m² \cdot 10^{-0.4 (26.83+11.6)} = 0.58 pW/m²

What is the Radiation Power P alias Flux L of a Galaxy?

Galaxy survey (Yee, H. K. C. u. a.: The CNOC2 Field Galaxy Redshift Survey. I. The Survey and the catalogue for the Patch CNOC 0223+00. The Astrophysical Journal Supplement Series, 129, 475-492, 2000): With P = 13 trillion YW = $13 \cdot 10^{36}$ W the distances have a mean error of 33.8%. Exercise solution: D = $(P/[4\pi F])^{0.5} = (13 \cdot 10^{36}$ W/ $[4\pi \cdot 180 \text{ fW/m}^2])^{0.5} = 2397$ Zm Result 1: Using the typical galaxy flux $13 \cdot 10^{36}$ W, we get a mean distance error of 34 %. NGC3516: D = $(P/[4\pi F])^{0.5} = (13 \cdot 10^{36} \text{ W}/[4\pi \cdot 0.58 \text{ pW/m}^2])^{0.5} = 1300$ Zm (Lit.: 1140 Zm) Result 2: Using Stellarium, we measured the distance 1300 Zm. Info: Using an 11 inch-telescope, pupils measured: m = 11.1; F = 0.92 \text{ pW/m}^2; D = 1060 Zm

Worksheet, Astronomy Club, Dr. Carmesin 2013 Table:

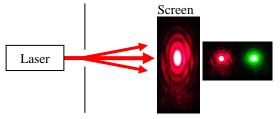
Columns 1-3: Galaxy Survey Column 4: $D_{theoretical} = (P/(4\pi F))^{0.5}$ with: P = 13 quadrillion YW or $P = 13 \cdot 10^{36}$ W Column 5: $|D_{measured} - D_{theoretical}| \cdot 100\%$

Exercise: Control $D_{theoretical}$ for Nr. 1.

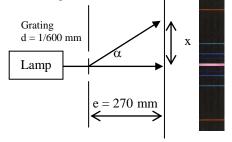
			with	
			P = 13 quadrillion YW	
		D _{measured}	D _{theoretical}	Error
Nr.	F in fW/m ²	in Zm	in Zm	in %
1	180,07	3113	2397	23,0
2	5,82	32805	13327	59,4
3	4,50	11882	15170	27,7
4	3,79	19490	16511	15,3
5	2,95	34900	18724	46,3
6	2,61	31037	19915	35,8
7	2,20	37701	21670	42,5
8	1,96	46868	22973	51,0
9	1,85	35459	23625	33,4
10	1,64	32756	25099	23,4
11	1,45	40048	26722	33,3
12	1,46	66121	26616	59,7
13	1,21	31105	29281	5,9
14	1,17	49863	29722	40,4
15	1,11	44772	30500	31,9
16	1,02	35010	31912	8,8
17	0,95	51606	32973	36,1
18	0,91	46852	33756	28,0
19	0,89	26715	34049	27,5
20	0,81	25132	35641	41,8
21	0,76	53544	36844	31,2
22	0,73	45672	37542	17,8
23	0,69	61605	38709	37,2
24	0,70	61490	38348	37,6
25	0,67	74472	39360	47,1
26	0,65	47206	39852	15,6
27	0,65	56496	40037	29,1
28	0,63	39849	40389	1,4
29	0,58	28565	42149	47,6
30	0,60	50445	41396	17,9
31	0,58	50306	42376	15,8
32	0,53	50468	44082	12,7
33	0,47	58323	46985	19,4
34	0,44	53009	48349	8,8
35	0,42	55370	49369	10,8

36	0,46	58114	47258	18,7
37	0,43	65951	48909	25,8
38	0,45	39508	47754	20,9
39	0,39	80315	51529	35,8
40	0,41	53429	50261	5,9
41	0,41	50468	50522	0,1
42	0,34	52125	55346	6,2
43	0,34	47300	55506	17,3
44	0,34	46925	55063	17,3
45	0,33	68811	56013	18,6
46	0,32	76774	56650	26,2
47	0,29	55686	59994	7,7
48	0,27	46368	61882	33,5
49	0,28	24517	61320	150,1
50	0,28	58332	60432	3,6
51	0,28	62698	60997	2,7
52	0,22	50182	68567	36,6
53	0,21	61555	70319	14,2
54	0,24	84931	65429	23,0
55	0,19	27170	74355	173,7
56	0,21	80281	70423	12,3
57	0,17	76787	77525	1,0
58	0,16	85419	79911	6,4
59	0,15	55612	83896	50,9
60	0,13	66369	90245	36,0
61	0,10	39021	102068	161,6
62	0,07	46723	124751	167,0
	Means	49217	46827	33,8

Lesson 4: Discovery and use of the *Wave nature of Light WNL*


Goals: The students can illustrate the WNL and use it for the identification of discrete spectral lines, especially the H_{α} -line.

Time	Didactical Com-	Methodical Com-	Social form
	ments	ments	
5	Introduction: Question, see below	Teacher presents the question	Discussion
10	Ideas: see below	Students suggest	,,
15	Instruction: Dif- fraction experi- ment	Students describe the diffraction pattern and sug- gest the wave nature of light	"
40	Instruction: Meas- urement of the wavelengths of a hydrogen lamp and of a neon lamp	Students calculate the wavelengths according to a given procedure	Small Groups
60	Development of results: Determin- ing the matter on Vega	Determination of the spectrum with Spectrarium, identification of Hydrogen by comparison	Small Groups
75	Formulation of results: see below	Formulation and animation in the plenum	Student- presentation
90	Consolidation: observation of spectra with the hand-spectrometer	For experts: calculation	Small Groups


Intended Blackboard Figure

How Can We Measure the Dominant Matter on Vega?

Ideas: no probes \rightarrow analysis of light An experiment illustrates: Light propagates like a wave and has a wavelength λ . $\lambda_{red} > \lambda_{green}$

Measurement of the Wavelength with a Grating Experiment design:

colour	violet	blue	cyan	red
x in mm	68	73	82	116

Results: The dominant matter on Vega is hydrogen. We can identify this by the discrete hydrogen lines, especially by the red H_{α} -line with λ =656 nm. Calculation for experts:

Red: $\lambda = d \cdot sin[arctan(x/e)] = 658 \text{ nm}$ (Literature:

656.3 nm) Cyan: $\lambda = d \cdot sin[arctan(x/e)] = 484$ nm (Literature: 486.1 nm)

Blue: $\lambda = d \cdot sin[arctan(x/e)] = 435$ nm (Literature: 434.1 nm)

Violet: $\lambda = d \cdot sin[arctan(x/e)] = 407$ nm (Literature: 410.2 nm)

Lesson 5: Discovery and use of the redshift

Goals: The students can explain the redshift and use it for the determination of velocities.

Time	Didactical Com- ments	Methodical Com- ments	Form
8	Introduction: NGC3516 in Stel- larium	Students suggest measurements of D and spectrum	Discus- sion
10	Development of the question	Question of the lesson	Discus- sion
15	Hypotheses: see below	Conjecture	"
20	Animation: see below	Students determine λ with Spectrarium	Small Groups
22	Development of the question	Question of the lesson	Discus- sion
25	Hypotheses: see below	Conjecture	"
40	<u>Development of</u> <u>results</u> : performing the control experi- ment	Students perform experiment	Small Groups
45	Formulation of	Formulation and	Student-

	results: see below	animation in the plenum	presenta- tion
55	$\frac{\text{Development of}}{\text{results}}: \text{instruction} \\ \text{of } v=c\cdot z$	Students calculate v	Instruc- tion, Calcula- tion
90	Consolidation: Derivation, investi- gation of other galaxies	Students work with worksheet	Small Groups

Intended Blackboard Figure

<u>At what Wavelength is the H_{α} – Line in NGC3516?</u> <u>Hypotheses</u>: 656 nm Spectrarium: 662 nm Surprise!

<u>Why is the H_{a} – line shifted in NGC3516?</u> <u>Hypothesis</u>: Motion changes the wavelength <u>Control experiment</u>:

- We move a toy duck in water
- Behind the duck the wavelength is increased
- In front of the duck the wavelength is decreased
- For the case of light an increase of λ means a shift towards red and is called <u>redshift</u>.

Results:

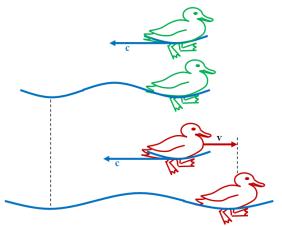
- The H_{α} line of NGC3516 shows a redshift. This is a consequence of an increase of the distance with time.
- Also the distance to other distant galaxies increases with time.

<u>Calculation of the velocity</u>: $v = c \cdot z$; $z = \Delta \lambda / \lambda = 0,009 \rightarrow v = 2700 \text{ km/s}$

Intended solution of the worksheet:

- 1) The wavelength increases behind the duck. For experts:
- 2) $\lambda = 5 \text{ cm} \rightarrow c = 1 \text{ cm/s}$
- 3) $\lambda^{\prime} = 7$ cm; s = 2 cm $\rightarrow \lambda^{\prime} \lambda = 2$ cm = s
- 4) $\mathbf{v} = \mathbf{s}/\mathbf{T} = \Delta\lambda/\mathbf{T} = \Delta\lambda/\lambda \cdot \lambda/\mathbf{T} = \mathbf{z}\cdot\mathbf{c}$
- 5) We take a spectrum, identify the redshift z, multiply it by c and obtain v.

Worksheet, Astronomy Club, Dr. Carmesin 2013 Wavelength of a Moving Source



Exercise 1: Describe the wavelengths of the swimming baby duck.

The green duck cannot move forward, though it moves its legs. The wave moves with its own velocity c. After a period T = 5s, the wave-minimum has moved backwards one wavelength λ .

Exercise 2: Measure λ and calculate the velocity c of the wave.

The red duck moves forward with its velocity v. After a period T = 5s the wave-minimum has moved backwards one wavelength λ . Meanwhile the duck has moved forward the distance s. Exercise 3: Measure the new wavelength $\lambda^{\prime}\,$ as well as the distance s and find a relation between λ^{\prime} , λ and s.

Exercise 4: Express the velocity v by c and the redshift $z = \Delta \lambda / \lambda$.

Exercise 5: Plan a procedure with which you can measure the velocity v of the moving source with help of the redshift z and the propagation velocity c.

Lesson 6: Discovery of the Equality of Start Times EST and Measurement of the Age of the Universe

Goals: The students can explain their discovery of the EST and measure the age τ of the universe.

Time	Didactical Com- ments	Methodical Com- ments	Social form
8	Introduction: D, v, see below	Pupils explain	Discussion
10	Development of the question	Main question of the lesson	Discussion
20	Plans: see below	Plan	,,
30	Development of result: τ	Calculation	Small Groups
35	Formulation of result: see below	Formulation	Pupil- presentation
40	Development of the 2. question	2. question	Discussion
60	Development of result: τ	Calculation	Small Groups
65	Formulation of result: see below	Formulation	Pupil- presentation
80	Metacognition: see below	Interpretation, Reflexion	Discussion
90	Consolidation: Investigate the proportionality	Worksheet	Small Groups

Intended Blackboard Figure

NGC3516: D = 1300 Zm; v = 2700 km/s When Did NGC3516 Start?

Plans: We determine D and v and calculate t = D/v. D in Zm; v in Zm/Gy

Common units: v = 2700 km/s = 2.7 Mm/s

| 1y = 31.6 Ms; v = 85 Tm/y = 85 Zm/GyStarting time: $\tau = 1300 \text{ Zm}/(85 \text{ Zm/Gy}) = 15 \text{ Gy}$ Result: The distance was zero 15 Gy ago. The starting time of NGC3516 is 15 Gy.

U	D in Zm	v in Zm/Gy	τ in Gy
NGC3516	1300	85	15


NGC2276	1200	75	16
M66	400	23	17
M74	440	28	16
M83	210	16	13
M84	460	32	14
M105	460	29	16
Mean			15.3

Result: All galaxies have the same starting time within the accuracy of the observation.

The common starting time is 15.3 Gy (Literature 13.8 Gy).

Interpretation: Everything began to expand 13.8 Gy ago. This is called the Big Bang. The age of the universe is 13.8 Gy.

Worksheet, Astronomy Club, Dr. Carmesin 2013

NGC2276: HST 22.9.2009. M66: VLT 7.1.2009 by ESO The following apparent brightnesses and redshifts can be simulated:

Galaxy	m	Z
NGC3516	11.6	0.0087
NGC2276	11.4	0.0079
M66	9.0	0.0024
M74	9.2	0.0029
M83	7.6	0.0017
M84	9.3	0.0034
M105	9.3	0.003

Exercise: Calculate the starting times τ .

5. Mathematical Level

So far the students investigated the age of the universe using the concept that distant galaxies move away from the earth and that the velocity v is proportional to the distance d thereby. Further investigation shows however that geometry and gravity should be considered in more detail. This has been treated in a third unit with students from classes 10 to 12 as follows:

Lesson 1: Exclusion of a possible centre of the universe

Goals: The students can explain that the motion of distant galaxies looks similar from each point of the universe.

Time	Didactical Com- ments	Methodical Comments	Form
5	Introduction: Motion of distant galaxies	Students describe	Discussion
10	Development of the question	Question of the lesson	Discussion
15	Hypotheses: see below	Conjecture	"

20	Experiment: Plan see below	Planning	"
30	Performing the experiment	Students blow up the balloon	Small Groups
45	Formulation of results: see below	Formulation and demonstration in the plenum	Pupil- Presentation

Intended Blackboard Figure

Is the earth at the centre of the universe? Hypotheses: yes, because distant galaxies move away from the earth

No, because it is unlikely.

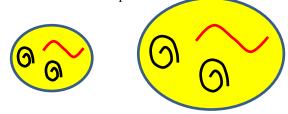
Model experiment: Balloon with galaxies drawn on it. Balloon is blown up.

Results: Each inhabitant of a galaxy observes, that the other galaxies move away from him. So the earth is not the centre of the world.

Lesson 2: Discovery of the expansion of space

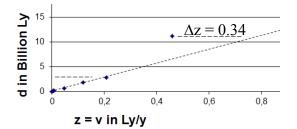
Goals: The students can argue that the space expands.

Time	Didactical Com-	Methodical	Form
	ments	Comments	
5	Introduction:	Students describe	Discussion
	Figure		
10	Development of	Question of the	Discussion
	the question	lesson	
15	Hypotheses: see	Conjecture	,,
	below	-	
20	Experiment: Plan	Planning	,,
	see below		
30	Performing the	Students blow up	Small
	experiment	the balloon	Groups
45	Formulation of	Formulation and	Pupil-
	results: see below	demonstration	Presentation


Introductory Figure:

Intended Blackboard Figure [4] Do galaxies move faster than light?

Hypotheses: yes, because $v = z \cdot c$ No, because nothing moves faster than light Model experiment: Balloon with galaxies drawn on it. Balloon is blown up.


Correspondence	
Model Experiment	Universe
Spiral	galaxy
Expanding balloon	expanding space
Spiral resting on balloon	galaxy resting in space
Waveline expands	wavelength expands
Results: The measured reds	shift z indicates the ex-
pansion of space. As a result	It the distance d between
galaxies grows. Thereby the	e increase of distance per
time $\Delta d/\Delta t$ may become lar	ger than c.

Lesson 3: Discovery of the accelerated expansion

Goals: The students can argue that the expansion is accelerated.

,	Time	Didactical Com-	Methodical Com-	Form
		ments	ments	
	10	Introduction:	Students draw and	Small
		Linear graph for d(z)	present	Groups
	15	Development of	Question of the	Discussion
		the question	lesson	
1	25	Ideas	Students suggest	Discussion
	35	Consequences	Students argue	Small
		-	-	Groups
4	45	Formulation of	Formulation and	Pupil-
		results: see below	argumentation	Presentation

Introductory Figure:

Intended Blackboard Figure [7,8]Linear graph for d(z)

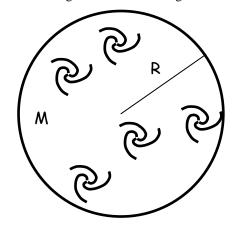
How do very distant galaxies move? Ideas:

Light from very distant galaxies was emitted long ago.

Small redshift corresponds to small velocity. Results:

The expansion is accelerated. Since the velocity was too small in earlier times, if compared to a constant velocity.

Lesson 4: Exclusion of acceleration by the gravity of masses


Goals: The students can exclude that the expansion is accelerated by the gravity of the masses.

Time	Didactical	Methodical Com-	Form
	Comments	ments	
5	Introduction: accelerated	Students describe it	Discussion

	expansion		
10	Development of	Question of the	Discussion
	the question	lesson	
15	Hypotheses	Students conjecture	Discussion
25	Model and	Teacher explains	Instruction
	Situation	the model	
80	Energies	Calculation, con-	Small
		clusions	Groups
90	Formulation of	Formulation and	Pupil-
	results: see	argumentation	Presenta-
	below		tion

Intended Blackboard Figure

Why is the motion accelerated? Hypotheses: Gravity of galaxies Electric force: galaxies are not charged

Model: galaxies with mass M are in a sphere with radius R. The sphere expands. Relevant are the kinetic and gravitational energies. $E = - m \cdot M \cdot G/R + m \cdot v^2/2$ Results:

The energy is constant. While the distances increase, the radius R increases and the velocities v decrease. So the usual gravity of masses does not explain the observed accelerated expansion.

Lesson 5: Discovery of two typical motions

Goals: The students can explain the two typical motions due to the gravitation of masses.

Time	Didactical Com-	Methodical Com-	Form
	ments	ments	
5	Introduction:	Students explain	Discussion
	Model		
10	Development of	Question of the	Discussion
	the question	lesson	
25	Kickers	Teacher explains	Instruction
70	Energies	Calculation, com-	Small
		parison	Groups
90	Formulation of	Formulation and	Pupil-
	results: see below	demonstration	Presentation

Intended Blackboard Figure

How does the radius R develop as a consequence of the gravity of the galaxies?

Ideas: $E = -m \cdot M \cdot G/R + m \cdot v^2/2$

Slowing down

Kickers: Students kick a ball vertically upwards.

 $\mathbf{E} = -\mathbf{m} \cdot \mathbf{M} \cdot \mathbf{G} / \mathbf{R} + \mathbf{m} \cdot \mathbf{v}^2 / 2$

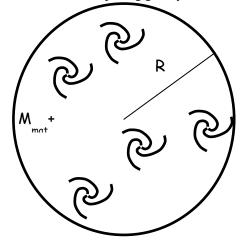
Correspondence Kickers Ball with mass m Mass M of earth Increasing height Velocity v Results:

Model of universe galaxy with mass m mass M of galaxies in sphere increasing distances $v = \Delta R / \Delta t$

The energy terms are equal, so the motions are equal. The ball may exhibit one of two typical motions:

- $E < 0 \rightarrow$ ball comes back
- $E > 0 \rightarrow$ ball never comes back

So the universe may exhibit two typical motions: $E < 0 \rightarrow$ universe expands and then contracts $E > 0 \rightarrow$ universe expands for ever


Lesson 6: Discovery of repelling gravity

Goals: The students can explain how a density of the vacuum causes a repelling gravity.

Time	Didactical Com- ments	Methodical Comments	Form
-			D : .
5	Introduction:	Students explain	Discussion
	Model		
10	Development of	Question of the	Discussion
	the question	lesson	
20	Constant density	Teacher suggests	Instruction
	of the vacuum		
70	Energies	Calculation,	Small
	-	graph, conclu-	Groups
		sion	
90	Formulation of	Formulation and	Pupil-
	results: see below	demonstration	Presentation

Intended Blackboard Figure

How can a repelling gravity occur?

Ideas: E(R) = ? $M_V = \rho_V \cdot V = \rho_V \cdot 4\pi/3 \cdot R^3$ $E/m = -M_{Mat} \cdot G/R - G \cdot \rho_V \cdot 4\pi/3 \cdot R^3/R + v^2/2$ $E/m = -M_{Mat} \cdot G/R - G \cdot \rho_V \cdot 4\pi/3 \cdot R^2 + v^2/2$ Results: For small R, the -1/R-term dominates and the gravity acts attractive. For large R the $-R^2$ -term dominates and the gravity

For large R, the $-R^2$ -term dominates and the gravity acts repulsive.

Lesson 7: Calculation of critical density

Goals: The students can calculate the critical density for the acceleration.

Time	Didactical Com- ments	Methodical Comments	Form
5	Introduction: Model	Students explain	Discussion
10	Development of the question	Question of the lesson	Discussion
15	Ideas	Students develop	Discussion
40	E'/m	Calculation, comparison	Small Groups
45	Formulation of results: see below	Formulation and Derivation	Pupil- Presentation

Intended Blackboard Figure

At what density does the acceleration occur? Ideas: E'=0; F = -E'

Results:

 $\begin{array}{ll} F/m = - M_{Mat} \cdot G/R^2 + G \cdot \rho_V \cdot 8\pi/3 & \cdot R = R^{\prime \prime} & |:R \\ R^{\prime \prime}/R = G \cdot 4\pi/3 \cdot (2\rho_V - \rho_M) \rightarrow v \text{ increases, if } 2\rho_V > \rho_M \\ \text{Notation: Friedmann-Lemaitre-Equation } 1 \end{array}$

Lesson 8: Interpretation of the energy

Goals: The students can interpret the energy by curvature of space.

Time	Didactical Com- ments	Methodical Comments	Form
5	Introduction: Model with energy term E	Students ex- plain	Discussion
10	Development of the question	Question of the lesson	Discussion
20	Information	Teacher informs	Instruction
40	Analogy	Students sug- gest, teacher helps	Discussion
70	Derivation	Students derive	Small Groups
90	Formulation of results: see below	Formulation and Derivation	Pupil- Presentation

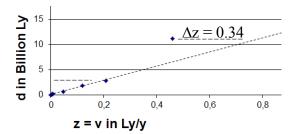
Intended Blackboard Figure

How can we interpret the energy?

Information:

Newtonian Dynamics: path curved by gravity Einstein-Dynamics: straightest path for $v \rightarrow c$, space curved by gravity Analogy:

maiogy.		
E	path of comet	space
E < 0	elliptical, closed	closed & curved
E > 0	hyperbolic, open	open & curved
$\mathbf{E} = 0$	littler curvature	little curvature


Derivation: Goal: Term fpr $(R'/R)^2$ Abbreviation: k=-2E/(m·c²) E/m = - M_{Mat}·G/R - G· ρ_V ·4 π /3·R² + R⁻²/2 |·2/R² (R⁻/R)² = G·8 π /3·(ρ_V + ρ_M)+2E/(mR²) (R⁻/R)² = G·8 π /3·(ρ_V + ρ_M)-kc²/R² Notation: Friedmann-Lemaitre-Equation 2

Lesson 9: Evaluation of observations

Goals: The students can determine the densities of matter and vacuum from observations

Time	Didactical Com-	Methodical	Form
	ments	Comments	
5	Introduction: Model and observation	Students explain	Discussion
10	Development of the question	Question of the lesson	Discussion
30	Scaling	Teacher informs	Instruction
70	Calculation	Students calculate according to worksheet	Small Groups
90	Formulation of results: see below	Formulation and Derivation	Pupil- Presentation

Introductory Figure:

Intended Blackboard Figure

How large are the densities of matter and vacuum? Ideas: $(\rho_M | \rho_V | k) =$? Three equations from data Scaling: $\Omega = \rho / \rho_s$ with $\rho_s \cdot G \cdot 4\pi/3 = 0.0028/Gy^2$ $(\rho_s = 10^{-26} kg/m^3)$

 $(R'/R)^2 = 0.0056/Gy^2 \cdot (\Omega_V + \Omega_M) \cdot kc^2/R^2$ $R''/R=0.0028/Gy^2 \cdot (2\Omega_V - \Omega_M)$ Equations: $R''/R = (\Delta v/\Delta t)/R = (0.34c/11.15Gy)/11.15GLy =$ $0.0027/Gy^2$ $\rightarrow 0.96 = 2\Omega_V - \Omega_M(1)$ $R'/R = 0.46c/11,15GLy + 11.15 Gy \cdot 0.0027/Gy^2 =$ 0.071/Gy $\rightarrow 0.89 = \Omega_V + \Omega_M - 1.4 k (2)$ $R'/R = 0.2c/2.8GLy + 2.8 Gy \cdot 0.0027/Gy^2 =$ 0.079/Gy \rightarrow 1.1= $\Omega_V + \Omega_M - 23k$ (3) Solutions: $(\Omega_{\rm M}|\Omega_{\rm V}|k) = (0.26|0.61|\text{-}0.009)$ $\rho_M = 0.26/(0.61+0.26) = 30\%$ $\rho_V = 70\%$ k≈0 $\rho_{dark matter} = 25\%$ $\rho_{visible}\!\!=\!\!5\%$

Worksheet, Astronomy Club, Dr. Carmesin 2012 Exercise 1: Calculate from the upper data point $(d|z|\Delta z) = (11.15 \text{ GLy}|0.8|0.34\text{c})$ a term for R"/R = $(\Delta v/\Delta t)/R = \dots$ and insert into the Friedmann-Lemaitre-Equation 1. Exercise 2: Calculate from the upper data point $(d|z|\Delta z) = (11.15 \text{ GLy}|0.8|0.34\text{c})$ a term for R'/R = v/R + t·v'/R = v/R + t·R"/R = ... and insert into the Friedmann-Lemaitre-Equation 2. Exercise 3: Calculate from the lower data point $(d|z|\Delta z) = (2.8 \text{ GLy}|0.2|0)$ a term for R'/R = v/R + t·v'/R = v/R + t·R"/R = ... and insert into the Friedmann-Lemaitre-Equation 2. Exercise 4: Calculate $(\Omega_M|\Omega_V|k)$ and $(\rho_M|\rho_V|k)$.

6. Experiences

The students enjoy very much to work and play with the various applets by their own. At the conceptual level pupils starting from classes five dealt well with the simple numbers, the evaluation of the age of the universe and the explanation of the equal starting times. The disadvantage of this easy learning process is that the students could hardly imagine how realistic measurements look like. At the expert level pupils from class six made model experiments and simulated measurements in a concentrated manner. The learning process became more difficult, but the pupils enjoyed participating in the measuring process. The disadvantage of the full concentration in the measuring process was that the pupils imagined everything happening in a fixed three dimensional space rather than in an expanding space. At the mathematical level the students from class 10 used their competence in argumentation and gravity. Some needed a repetition in Newtonian gravitation theory first. On this basis the students enjoyed to draw conclusions based on data, derivations or argumentation by themselves. They presented their results and explanations on a public astronomy evening and by giving a talk at the MNU-Bundeskongress in Hamburg in 2013. At the teacher training in Lisbon in 2013, the teachers enjoyed to make their own experiments and to discuss open questions at a high level. After the training was evaluated it turned out that most teachers liked the presentations, the concept, the experiments, the lessons as well as the worksheets.

7. Development of Personality

The pupils experience norms in the family, school, city, local community and state they live in. Accordingly they develop their personality [9]. However the pupils understand the partial arbitrariness of these norms and need a wider range of experiences. Such a wider range is offered by astronomy and especially by cosmology - however books and stories do not provide the necessary experiences. With the presented teaching units the pupils can explore model experiments as well as applets about cosmology and make their own reliable experiences in a wide intellectual range. So the pupils can make a further step in their personal development.

8. Conclusion

The students learnt with hands on experiments including applets in the presented lessons. So we achieved high learning efficiency, as expected [1]. The lessons can easily be prepared, because the outlines and worksheets are presented here, the model experiments are simple and the applets are available as freeware.

9. Literature

- [1] Hattie, John (2009): Visible Learning. London: Routledge.
- [2] Gates, Matthew (2007): Stellarium User Guide. http://www.skolekonsulenterne.dk/Infoweb/Ind hold/IT/Alle/Andres%20manualer/stellarium_u ser_guide-0.9.0-1.pdf (Download 4/2014)
- [3] Carmesin, Hans-Otto (2012): Schüler beibachten den Urknall mit einem C11-Teleskop.
 In: PhyDid B – Didaktik der Physik (2012) p. 1-13, <u>http://www.phydid.de</u>
- [4] NASA and IPAC (2012): Extragalactic Database. <u>http://ned.ipac.caltech.edu/</u> (Download 10/2012)
- [5] Cinzano, P. and Falchi, F. and Elvidge, C. D. (2001): The first world atlas of the artificial

night sky brightness. In: Mon. Not. R. Astron. Soc. P. 1-16, http://mnras.oxfordjournals.org/content/328/3/6 89.full.pdf (Download: 5/2013)

- [6] Belli, Sirio et al. (2014): Mosfire Absorption Line Spectroscopy of z > 2 quiescent Galaxies. <u>http://arxiv.org/pdf/1404.4872v1.pdf</u> (Download 4/2014)
- [7] Riess, Adam et al. (2009): The Carnegie Supernova Project: First near-infrared Hubble diagram to z~0,7.
 <u>http://arxiv.org/pdf/0907.4524v1.pdf</u> (Download 9/2011)
- [8] Riess, Adam et al (2000): Tests of the Accelerating Universe with Near-Infrared Observations of a High-Redshift Type Ia Supernova. Astrophys. J. 536, 62, <u>http://lanl.arxiv.org/abs/astro-ph/0001384v1</u> (Download 9/2011)
- [9] Zdarzil, Herhert (1978): Pädagogische Anthropologie. Graz, Wien, Köln: Styria Verlag, p. 227-238.