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Kurzfassung

Die Quantenmechanik zeigt ungewohnte und mitunter bizarre Phanomene, die auch in ihrer techni-
schen Umsetzung dem Alltagsverstandnis nur schwer zuganglich sind. Umso wichtiger ist es, den
strukturellen Rahmen und die mathematische Sprache, in der diese neuen Phanomene eingeordnet
und beschrieben werden, an Bekanntes anzulehnen.

In einer Herangehensweise, in der die mathematische Modellierung physikalischer Sachverhalte
bereits in der klassischen Physik auf der Geometrischen Algebra aufbaut, kann die konzeptionelle
Beschreibung der Quantenmechanik erleichtert werden, da die von David Hestenes didaktisch auf-
bearbeitete Geometrische Algebra aufgrund ihrer inneren Struktur als inharente Algebra der Quan-
tenmechanik verstanden werden kann.

In diesem Beitrag wird gezeigt, wie mit Hilfe der Geometrischen Algebra das Quanten-Computing
als ein typisches quantenmechanisches Phanomen beschrieben werden kann. Dabei steht nicht ein
abstrakt statistischer Zugang im Zentrum dieses didaktischen Ansatzes, sondern die elementare
Frage 'Was ist ein Zustand in der Quantenmechanik?’

1.Allgemeine Vorbemerkungen neare Algebra wird auch im schulischen Lernen
Die drei Autoren dieses Beitrags teilen eine tiefe Mittel- und langfristig durch die Geometrische Al-
Grundiiberzeugung: ,Viele Wissenschaftler rechnen 9gebra abgelost werden. Denn die Geometrische Al-
zu kompliziert* [27, S. 10]. Zahlreiche algebraische 9ebra ist nicht nur weit wirkungsméachtiger und be-
und geometrische Mathematisierungen existieren Z0gen auf die hochschulischen mathematischen Er-

unverkniipft nebeneinander und filhren zu oft star- fordernisse anschlussfahiger, sondern sie ist struk-

- L Schule gelehrte und gelernte konventionelle Lineare
Deshalb favorisieren wir einen Ansatz, der Geome-

trie und Algebra nicht nur eng verknipft, sondern AI_gebra. ) ) .

eineindeutig verbindet und so die Moglichkeit Die Geometrische Algebra ist auch das mathemati-
schafft, unterschiedlichste Mathematisierungen in Sche Instrument, wenn interdisziplinare Fragestel-
einer umfassenden und konsistenten mathematischenlungen aus einer mathematischen Perspektive be-
Sprache auszudriicken. Diese Sprache, so unsereleuchtet werden sollen [27, S. 10]. Denn bei solchen
fundierte Uberzeugung, wird die Geometrische Al- Vorhaben missen sich die einzelnen Disziplinen

gebra sein. zwangslaufig auf eine Sprache einigen, in der sie

Dies hat nicht nur Folgen fiir das wissenschaftliche kommunizieren.

betrifft auch direkt den schulischen Bereich. Die Li- Wir mit diesem Forschungsvorhaben auf die Didak-
tik des Quanten-Computings. Die drei Autoren stam-
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men aus drei sehr unterschiedlichen Fachrichtungen.
Der Erstautor (MH.), ein Physik- und Mathematik-
lehrer, forscht und arbeitet im Bereich der Physik-
und Mathematikdidaktik und hat die Geometrische
Algebra im Physik-Leistungskursunterricht der Se-
kundarstufe Il erprobt und eingesetzt [17], [18].

Der zweite Autor (PD.) ist Soziologe und Physiker
und richtet seien Blick in erster Linie auf erkenntnis-
theoretische und philosophische Fragen, die mit der
Geometrischen Algebra verbunden sind. Dabei liegt
sein Schwerpunkt auf der Frage, wie eine nicht nur
physikalisch, sondern auch philosophisch sinnhafti-
ge Interpretation quantenmechanischer Verschran-
kungsprozesse gelingen kann [5], [6].

Der dritte Autor (DH.) ist Informatiker und wendet

die Geometrische Algebra seit langerer Zeit in seiner
Forschungsarbeit routinemafig an. Dabei konnte er
immer wieder feststellen, dass nicht nur die pragma-
tischen Vorziige der Geometrischen Algebra wie ei-

. . L]
ne schnelle rechnerische Umsetzung, eine sehr gute

Performanz und eine hohe Recheneffizienz (sowohl

bezlglich Rechengenauigkeit wie auch rechneri-

scher Leistungsstarke) von Programmen, die auf
Grundlage der Geometrischen Algebra erstellt wer-

den, enorm sind [14], [23]. Sondern er ist dartber

hinaus von der Eleganz der Geometrischen Algebra
so Uberzeugt, dass er regelméRig Schuilerinnen und
Schiller in das Thema einfiihrt [15].

2.Interdisziplinaritat als Chance

Ein interdisziplindres Herangehen bietet naturgemaf
die Mdglichkeit, einen Themenbereich — hier die di-

daktische Aufarbeitung des Quanten-Computings
auf Grundlage der Geometrischen Algebra — aus un-
terschiedlichsten Perspektiven zu analysieren und
dementsprechend in sehr unterschiedliche Richtun-
gen gestaltend voranzubringen.

Da wir vor Start unseres Projektes schon langere
Zeit zur Geometrischen Algebra gemeinsam disku-
tierend in Kontakt standen und uns auf zahlreichen
Tagungen Uber die Geometrische Algebra austausch-
ten, waren wir uns unserer gemeinsamen Ziele si-
cher:

Eine Forderung des Verstandnisses des Quanten-
Computings auf Grundlage der Geometrischen
Algebra, da wir die Geometrische Algebra auf-
grund ihrer inneren Struktur als inharente, natir-
liche Algebra der Quantenmechanik verstehen.

Eine Forderung des Verstandnisses der Geome-
trischen Algebra, indem ein modernes Themen-
gebiet wie das Quanten-Computing erfolgreich

unter geometrisch-algebraischen Gesichtspunk-
ten aufgearbeitet wird.

Beides, so zeigen wir auf den folgenden Seiten, ist
uns gelungen: Sowohl das Verstandnis des Quanten-
Computings wie auch das Verstandnis der Geome-
trischen Algebra, kann durch ein interdisziplindres
Vorgehen gesteigert werden.

Den Diskussionsprozess, der entscheidend zum Er-
folg dieser Zusammenarbeit beitrug, fuhrten wir, in-

dem wir uns regelmaRig einmal monatlich an der

Technischen Universitat Darmstadt trafen und Pro-
blempunkte diskutierten.

Im Ruckblick kdnnen wir feststellen, dass es in die-
sen Diskussionen gerade nicht die weiterfiihrenden
Fragen waren, die uns am meisten beschaftigten,
sondern dass es Unterschiede in der grundlegenden
Perspektive sind, Uber die wir uns am langsten aus-
einanderzusetzen hatten. Als die wichtigsten dieser
grundlegenden Fragen stellten sich heraus:

Was ist eigentlich der Kern der Geometrischen
Algebra?

Wo liegt der didaktische Ort einer mdglichen
Vermittlung des Quanten-Computings auf
Grundlage der Geometrischen Algebra? Wer ist
in erster Linie unsere Zielgruppe?

Welche Ziele haben wir bei der Vermittlung des
Quanten-Computings?

Welche didaktische Rolle spielt ein Ubergreifen-
des Verstandnis der Quantenmechanik fur ein
Verstandnis des Quanten-Computings?

Auch in solchen grundlegenden Fragen konnten wir
nicht immer eine einvernehmliche und alle Gesichts-
punkte befriedigend einschlieBende Losung im Kon-
sens finden. Das ist kein Manko oder Mangel. Die
empirische Basis ist nicht nur bei der Didaktik des
Quanten-Computings noch recht diinn, sondern auch
bei zahlreichen, schon seit Jahren beforschten weite-
ren Gebieten der Didaktik, Uber die trotz hoher For-
schungsintensitéat auch kein allgemeiner didaktischer
Konsens zu finden ist. Die Didaktik ist nun mal eine
pluralistische Wissenschaft, in der der Forschungs-
gegenstand — das Lernen — immer auch von indivi-
duellen Gegebenheiten durchdrungen wird.

Diese Nicht-Einigkeit in grundlegenden Fragen stellt
damit eine groRe Chance fir alle Beteiligten dar,
diesem individuellem Charakter der Wissenschafts-
disziplin Physikdidaktik gerecht zu werden. Denn
offenkundig determinieren die unterschiedlichen be-
ruflichen Hintergriinde, die unterschiedlichen wis-
senschaftlichen Pragungen und die fachspezifische
Sozialisation unsere Herangehensweise als Forsche-
rinnen und Forschern weit starker als wir das im tag-
lichen Leben wahrnehmen.

Tauschen wir uns bei der Analyse wissenschaftlicher
Fragestellungen immer nur mit den wissenschatftlich
ahnlich sozialisierten Kolleginnen und Kollegen des
gleichen Fachgebietes aus, in dem auch wir soziali-
siert wurden, so mag uns unter Umstanden entgehen,
dass es auch ganzlich andere Denk- und Losungsan-
séatze gibt, die aus anderen Disziplinen stammen und
genauso richtig oder falsch sein kdnnen wie die
Denk- und LOésungsmuster, die in unserer eigenen
Disziplin vorherrschen. Deshalb werden im Folgen-
den zuerst die unterschiedlichen Sichtweisen, die die
Autoren betreffen, vorgestellt und problematisiert.



Quanten-Computing und Geometrische Algebra

3.Vorpragungen zur Quantenmechanik oder aber vollstandig den entgegengesetzten Zustand

Einer der wesentlichen Unterschiede in der individu 1 a@n. Sie arbeiten im klassischen Bereich, da bei
ellen Vorpragung der Autoren besteht offenkundig e€dem Schaltvorgang, bei dem der Zustand O durch
darin, wie die eigene schulische und hochschulische den Zustand 1 ersetzt wird (oder umgekehrt), trotz
Vermittlung der Quantenmechanik verlief. Rick- der bereits erreichten Miniaturisierung eine immer
blickend auf unsere eigenen Erfahrungen beim Stu- Noch sehr groe Anzahl von Ladungstragern wech-
dium der quantenmechanischen Grundlagen stellen S€lWirkt.

wir fest, dass zwei kontrarer Zugangsweisen wesent- Eine Leistungssteigerung dieser klassischen Compu-
lich sind. ter ist zwangslaufig mit einer Verkleinerung der
Zum einen ist da der klassische Zugang, der den Bauteile verbunden. Es ist deshalb abzusehen, dass

Welle-Teilchen-Dualismus in den Vordergrund stellt in einigen Jahren die Schwelle zur Quantenmecha-
und sich, sehr an Schrédinger orientierend, den Ein  Nik erreicht wird, wenn die Bauteile so klein wengde
stieg Uber die Diskussion der Welleneigenschaften dass sie nicht mehr den klassischen Gesetzen folgen
von Teilchen sucht. Ein typisches Bild fur diesen Sondern quantenmechanisch-sprunghaft arbeiten.

Einstieg ist die Interpretation eines im Atom gebun
denen Elektrons als stehende Welle.

Einer der Autoren dieses Beitrags (M. H.) hat wah-

Schon heute wird diese Problematik, die empirisch
dem Gesetz von Moore folgt, in Schulblichern wie
[3, S. 168/169] diskutiert. Dabei wird von einerrvVe

rend seines Studiums jedoch auch eine andere Erfah- dopplung der Transistorendichte wéhrend einer Zeit-
rung gemacht und wurde mit einem Einstieg in die SPanne von ungefahr 18 Jahren ausgegangen. Bei ei-
Quantenmechanik tiber das Stern-Gerlach-Experi- Ner zweidimensionalen Anordnung der Transistoren
ment konfrontiert. Bei einem solchen Einstieg Hilde ~auf einer Oberflache, wie sie bei der Chipherstgjlu

die Frage ,Was ist ein quantenmechanischer zu- Mit L|thogr§phleverf§1hren Ubllche(we|se erfolgl!; is
stand?* den zentralen Kern der Diskussion [25] und wahrend dieser Zeitspanne somit durchschnittlich

fiihrt zu einer an der Matrizenmechanik angelehnten VOn_ einer GréRenreduzierung der Bauteile auf
Mathematisierung. 1//2= 71% auszugehen.

Fur einen solchen Einstieg bietet das derzeit noch Wann diese Schwelle zur Quantenmechanik genau
fiktive Instrument des Quantencomputers eine ideale ©fréicht wird, ist umstritten. Realistische Schatzu
Diskussionsgrundlage, da das Register eines Quan- 9en fir das Zusammenbrechen des Mooreschen Ge-
tencomputers den Kern der Frage nach der Natur S€tzes gehen jedoch von emem"Zeltpunkt zwlschen
quantenmechanischer Zustande per se widerspiegelt: 2020 und 2025 aus. Danach missten Bauteile ver-
Ein Quantenregister ist eine Ansammiung quanten- Wendet werden, die so klein sind, dass die Elektro-
mechanisch verschrankter Objekte, deren (Gesamt-) Nen nicht mehr ndherungsweise klassisch kontinuier-

Zustand beim Quantenrechnen modifiziert wird.

Bei der Darstellung dieser Zustande gibt es nun wie
derum zwei Mdoglichkeiten. Zum einen kann die
quantenmechanische Wahrscheinlichkeit, dass ein
Zustand eingenommen wird, durch einen komplexen
Koeffizienten beschrieben werden. Die Verknipfung
der Quantenmechanik mit komplexen Zahlen favori-
sieren zwei der drei Autoren (M. H. & P. D.).

Alternativ dazu kann ein Zustandsvektor als zwei-
dimensional aus einem zeitartigen und einem raum-
artigen Vektor zusammengesetzt gedacht werden,
was einer der Autoren (D. H.) favorisiert. Das hat

zur Folge, dass der die quantenmechanische Wahr-

scheinlichkeit determinierende Koeffizient einenrei
reelle Grof3e ist.

Als Konsequenz aus dieser Diskrepanz werden im
Folgenden beide Alternativen vorgestellt. Jede Lese
rin und jeder Leser ist dabei aufgerufen, sich sein
eigenes Bild zu generieren.

4 .Klassische Computer und Quantencomputer
im Vergleich

Die Computer, die wir derzeit nutzen, sind determi-
nistische Gerate, deren Speicher und Registereinhei
ten aus eineindeutigen Bits aufgebaut sind. Diese
Bits nehmen entweder vollstandig einen Zustand 0

lich interagieren.

Eine derzeit diskutierte Losungsmaoglichkeit fur-die
ses Dilemma besteht darin, die Mdéglichkeiten des
Quanten-Computings [8], [9] umzusetzen, und so
eine weitere Miniaturisierung voranzutreiben. Auf-
grund der hohen experimentellen Hindernisse gibt es
auch hier lediglich Prognosen und nicht unbedingt
belastbare Vorhersagen, ob und wann ein einsatz-
fahiger Quantencomputer zur Verfigung steht.

Gelingt jedoch die Entwicklung, wéaren die Perspek-
tiven, was eine weitere Miniaturisierung betrifft,
spektakular: So entsprache die Leistungsfahigkeit
eines Quantenrechners, der auf ein Register aus 64
Qubits zuriuickgreifen kdnnte, nach [20, S. 8] der
Leistungsfahigkeit eines klassischen Computers, die
eine Oberflache in der GréRenordnung von mehre-
ren Tausend Erdkugeln Uberdecken misste. Das
Rechnen mit Hilfe einer Quantencomputers stellt
somit eine Uberaus effektive Art des Rechnens dar.

Dies gelingt beim Quantenrechnen mit der spezifi-
schen Kodierung der Information. Wahrend die Bits
eines klassisches Computers die beiden mdglichen
Zustande 0 und 1 jeweils mit einer Wahrscheinlich-
keit von 100% oder aber 0% annehmen, liegen die
moglichen Zustande j0der |} einesQuantenrech-
ners mit Wahrscheinlichkeiten zwischen 0% und 100 %
jeweils verschréankt vor.
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5.Beschreibung von Quantenbits

Die Verschrankung der Zustande im Quantencom-
puter liefert die Erklarung der hohen Rechenkapazi-
tat. Ein Quantencomputer kann mit der Superposi-
tion aller méglich klassischen Zustande gleichzeitig
rechnen und arbeiten. Bei einem einzigen Rechen-
schritt werden somit eine Unzahl von Zustanden
gleichzeitig modifiziert. Das Ergebnis reprasentiert
dann eine neue Superposition aller mdglichen klassi-
schen Zustande.

Zur Klarung dieses Sachverhalts muss deshalb die
Frage: ,Was ist ein Zustand?“ in den Vordergrund
gestellt werden. Ein quantenmechanischer Zustand
beschreibt dabei eine spezielle Eigenschaft eines Mi-
kroteilchens, das betrachtet wird, beispielsweise der
Spin eines Elektrons. Der Spin kann nun entweder
nach unten (Spin down) ausgerichtet sein, was ei-
nem Zustand des Quantenbits von ¢htspricht.
Oder der Spin des Elektrons ist noch oben (Spin up)

werden die Koeffizienten in reelle Vorfaktoren tber-

fuhrt, wahrend die Anzahl der Basisvektoren sich
verdoppelt. In dieser alternativen, raumzeitlichen

Schreibweise der Geometrischen Algebra lautet der
Zustandsvektor von Formel {2}:

r=(cy +ich)do+ (¢ +ic)ar
=CoYo T CoYo t OVI T OV {6}
Zumindest dann, wenn wie bei den Quantenbits ei-
nes Quantencomputers Messungen nur bezuglich ei-
ner Raumrichtung vorgenommen werden, kdnnen
die imaginaren Einheiten in die nun zeitartige Basis-

vektoren dbernommen werden. Anstelle der Formel-
beziehung {3} gilt dann:

(vg)’=(yy)’=1
(vp)*=(y)* =-1 {7}
Ein Quantenbit kann also in einem komplexen

ausgerichtet, was einem Zustand des Quantenbits Raum, der durch zwei Basisvektoren aufgespannt

von | entspricht. Oder aber, das Elektron befindet
sich in einem Superposition von

&) =al0+alD {1}
Dies ist die (ibliche Darstellung einer Uberlagerung
der beiden Zustande)|Qnd |2 in der konventionel-
len Schreibweise (siehe beispielsweise [16, S. 22,
Def. 2.1], [21, S. 12, Formel 2.1], [25, S. 11, Formel
1.5]) ohne Nutzung der Geometrischen Algebra.

Dabei stellen die Vorfaktoren bzw. Koeffizienten a
bzw. g die Amplituden der Wellenfunktion dar und
unterliegen als komplexe Zahlen der Normierungs-
bedingung

laof + |af’ = e +aa =1 {2}
| gibt die Wahrscheinlichkeit an, dass das Quan-
tenbit bei einer Messung den Zustand(}J0B. Spin
down) zeigt, wahrend | gibt die Wahrscheinlich-
keit angibt, dass das Quantenbit bei einer Messung
im Zustand [1(z.B. Spin up) vorgefunden wird.

Identifiziert man die Zustdnde)|@nd [} mit den
raumartigen Basisvektoremy und g,, die der Nor-
mierungsbedingung

002 = 012 =1 {3}
unterliegen, kann die Wellenfunktion {1} in der

Geometrischen Algebra als Ortsvektor r in diesem
Raum angegeben werden:

r=a0p+ao0; {4}
Diese geometrisch-algebraische Darstellung des Zu-

stands eines Quantenbits wird zum Beispiel von
Baylis [1] oder Matzke [22] gewéhlt.

Zu einer alternativen Darstellung von Quantenbits
gelangt man, wenn man auf komplexe Wahrschein-
lichkeitsamplituden verzichtet und statt dessen zu-
satzlich zu raumartigen Basisvektoren zeitartige Ba-
sisvektoren zulasst. Mit

a=cy +ic) und a=c} +ic {5}

wird (siehe Formel {4}) oder aber in einem reellen
Raum, der durch vier Basisvektoren aufgespannt
wird (Formel {6}) modelliert werden. Diese zweite
Alternative findet sich beispielsweise bei Doran und
Lasenby [4, Kap. 9] oder Cafaro und Mancini [2].

6.Quantenregister

Liegt ein System aus mehreren Quantenbits vor,
spricht man von einem Quantenregister. Im einfach-
sten Fall werden nur zwei Quantenbits verschrankt.
Diese Quantenregister kdnnen mathematisch mit
Hilfe des Zehfuss-Kronecker-Produkts aus einzelnen
Quantenbits generiert werden (siehe z.B. [24, Kap.
2], [7], [19]). Eine Veranschaulichung des Raumes,
in dem die entsprechende Wellenfunktion

|4 = @0|00 +@01|0D) +&40|10 +a4:|1T) {8}
mathematisch agiert, liefert Abbildung 1. Es handelt
sich dabei um den Versuch, einen vierdimensionalen
Raum darzustellen, bei dem alle vier Richtungen der
Grundzustande |00 |01, |10 und |1} senkrecht
aufeinander stehen.

Entfernung aus lizenzrechtlichen Griinden!
Autoren haben die Moglichkeit die

Veroffentlichungsrechte nachzuweisen.

Abb.1: Zustandsvektor r eines aus zwei Quantenbits
aufgebauten Quantenregisters.
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Wieder sind zwei alternative Darstellungen in der
Geometrischen Algebra mdglich. Zum einen kann

I'= &p000 + &1001 + &0010 + &1011 {9}
mit komplexen Wahrscheinlichkeitsamplituden und
rein raumlichen Basisvektorem; geschrieben wer-
den. Alternativ dazu kann die Anzahl der Basisvek-
toren zu

I'= CooYoo * Corvor * Clo¥io * CiVix
t ot tt t o\t tt
*+Coo¥oo ¥ CotYor * CioVio * Qv {10}
verdoppelt werden, so dass die Wahrscheinlichkeits-
amplituden rein reell vorliegen.

Im ersten Fall werden zur Modellierung somit ho-
herdimensionale Pauli-Matrizen herangezogen, wah-
rend im zweiten Fall htherdimensionale Dirac-Ma-
trizen verwendet werden, die einen hyperbolischen
Raum aufspannen Beides sind legitime Darstellungs-
weisen der Geometrischen Algebra, denn sowohl
Pauli- wie auch Dirac-Matrizen sind sowohl als
Operanden (hier: Zustandsvektoren) und als Opera-
toren (hier: Transformationsmatrizen) zu interpre-
tieren.

Damit haben wir im Sinne von Vianna, Trindade
und Fernandes [26] ein Kriterium erfullt, das den
Kernpunkt der Geometrischen Algebra auch bei der
Beschreibung des Quanten-Computings trifft: ,In
this regard, we share with many authors the idea that

operators and operands should be elements of the

same space” [26, S. 962]. Dies wird im folgenden
Abschnitt an einigen Beispielen gezeigt.

7.Rechenschritte im Quanten-Computing

Jeder Rechenschritt auf einem Quanten-Computer
besteht aus einer Transformation der Wellenfunktion

der Uberfuhrt:
0 - | bzw. [} - |0
» Algebraische Sichtweise

Die beiden Wahrscheinlichkeitsamplituden wer-
den vertauscht:

{11}

- a bzw. a- g {12}
* Geometrische Sichtweise

Der Zustandsvektor r wird am Reflexionsvektor

fet = = (G + 03) {13}
gespiegelt.

Die tatsachliche physikalische Realisierung gelingt,
indem das Quantenbit gezielt mit einer geeigneten
elektromagnetischen Welle bestrahlt wird.

Die algebraische Transformation wird durch den
Transformator

Unor = [0 (1| + |2 (O] {14}
realisiert:
I =Unorf
= (1o +12(0]) (2|0 + & |D) {15}
=al0+alD

Im Kontext der Geometrischen Algebra kann diese
Transformation mit Hilfe der Pauli-Matrizen nun als

I = Tref I et

1

V2

1
> (80+890100+a 0¢01+8y) (0o +07) {16}

(0o+01) (8000 +2,03) % (0o+01)

=g 00t&0;

|¢) bzw. des sie reprasentierenden Zustandsvekiors o qastelit und damit geometrisch als Reflexion be-

r. An den folgenden Beispielen wird sichtbar, dass
die algebraische Beschreibung der Transformation
im Bild der Wellenfunktion ¢) bei Nutzung der
Geometrischen Algebra durch eine geometrische Be-
schreibung ergénzt wird.

Die algebraischen Transformationen stellen Reflexi-

onen oder Rotationen des Zustandsvektors r dar.
Dieses Zusammenspiel zwischen algebraischer und
geometrischer Reprasentation im Rahmen der Geo-
metrischen Algebra flhrt zu einer besseren didakti-
schen Greifbarkeit des Quanten-Computings. Das
Rechnen im Quanten-Computer kann damit auf zwei
unterschiedlichen Zugangsweisen begriffen werden.

7.1.Die NOT-Operation

Eine der einfachsten Operationen ist die simple In-
vertierung des Zustands eines einzigen Quantenbits.
Diese Operation wird NOT-Operation [24, S. 5] ge-
nannt. Drei unterschiedliche Sichtweisen beschrei-
ben diese Operation:

e Physikalische Sichtweise
Die beiden Zustand{®) und |1) werden ineinan-

handelt werden.

Eine analoge geometrische Deutung erhélt man bei
Nutzung von raumzeitlichen Basisvektoren. Dabei
werden jedoch zwei Reflexionen notwendig. Zuerst
wird an der dreidimensionalen Hyperebene

1
E (Yo + Vi) VoY
reflektiert, um die raumartigen Basisvektoren zu
spiegeln. Danach werden die zeitartigen Basisvekto-
ren durch eine Reflexion an der Hyperebene

%(véwi)vévi

gespiegelt. Insgesamt erhalt man die zusammenge-
setzte Transformation

{17}

fref1 =

lref2 =

{18}

" = — Let et I Treft Mref2 {19}
Da zwei hintereinander ausgefiihrte Reflexionen ei-
ne Rotation ergeben, kann Formel {19} als Rotation
aufgefasst werden. Aufgrund der antikommutativen
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Vertauschung verschiedener Basisvektoren stellt sie n = cos 22,59, + sin 22,5%;
jedoch zugleich eine Reflexion dar, ¢ga e Iin 1 1
1 1 = 224200+ Z=4/2-/2 0, {26}
= + v Y. 2 2
lrefilref2 T (V(X) Vf ) yoyl T (Vo yl) yéyxl
2 2 leicht zeigen:
_1 1
== (Yo + Vi) Yovs —= (Yo V1) Yovi r=nrn

7 N

:%(yg—y;)(yg—y;):—rrefzrreﬂ 20}

=:11(\/2+x/§00 +\/2—\/_201)("’0°0+"’°°1)

1
umgeformt werden kann. Es handelt sich somit um Z(\/2+\/§00 +‘/2_\/_201)
eine Reflexion an der zweidimensionalen Ebene, die 1 1
durch den Reflexions-Bivektor = —(+a) 0o +—=(2—a) 01 {27}
V2 V2
R :l(yg—yf)(yg—yi) {21} Die Rechnung bestatigt die graphische Interpreta-
2 tion, kann aber alternativ auch mit raumzeitlichen
reprasentiert wird. Basisvektoren durchgefuhrt werden.
Dies bestatigt die vollstandige Rechnung:
r=RrR
VMt ray e 22)

Diese raumzeitlichen Beschreibung scheint zwar im
Rechenaufwand groRRer als die nur mit rdumlichen
Basisvektoren arbeitende Version der Geometri- -

. . Autoren haben die Méglichkeit die
schen Algebra von Formel {16}. Dafir aber hat sie Veréffentiichungsrechte nachzuweisen.
den didaktischen Vorteil, dass die Darstellungen von
Reflexionen und Rotationen in hdherdimensionalen
Raumen in sehr anschaulicher Weise sowohl alge-
braisch wie auch geometrisch problematisiert wer-
den kann.

Entfernung aus lizenzrechtlichen Granden!

7.2.Die Hadamard-Transformation
Die Hadamard-Transformation auf ein Quantenbit Abb.2: Graphische Veranschaulichung der Hada-

wird durch die Matrix [16, S. 24] mard-Transformation
H= 1 11 23 Dabei wird der Zustandsvektor {6} in Analogie zu
- E 1 -1 {23} Abschnitt 7.1 wieder einer doppelten Reflexion un-
terworfen.

beschrieben und spielt in der héherdimensionalen . .
Verallgemeinerung eine wichtige Rolle bei der Pro- 7.3.Die CNOT-Operation

grammierung verschrankter Zustande mehrer Quan- Die CNOT-Operation [16, S. 30], [9, S. 74] ist eine
tenbits im Quanten-Computing [8], [9]. der elementaren logischen Operationen, die beim

Quanten-Computing eine wesentliche Rolle spielt
und auf ein Zwei-Quantenbit-Register wirkt. Wenn
Das erste Quantenbit mit O belegt ist (und somit den
Zustand |p aufweist), verbleibt der Zustand des
zweiten Quantenbits unverandert. Wenn das erste

Sie wird algebraisch durch den Transformator

U =L (10) ([0 (L+]1) O} [1) (1)) {24}
J2

vermittelt: Quantenbits mit 1 belegt ist (und somit den Zustand
rh=Uyr |1) aufweist, wird das zweite Quantenbit invertiert.
_ 1 1 Die algebraische Transformation in der Ublichen No-
- E (@+a)[0+ E (@-a) D {25} tation wird durch den Transformator
Die Wahrscheinlichkeitsamplituden werden also ad- Ucnor
diertbzw. subtrahiertim Kontextder Geometrischen = 0000t |01) (10|10 (11}+|11)(10] {28}

Algebra erkennt man, dass es sich dabei um eine Re- realisiert:
flexion an einer Achse handelt, die 22,578 ge- ; -U ;
enlber der JoZustandsachse geneigt ist (siehe Ab- CNOT = =~ CNOT
gildung 2). ke geneigt st { = 0|00 +201|01) + a1 |10 + 0|12 {29}
Dies kann algebraisch als eine Permutation der Sym-

Dies lasst sich mit Hilfe des Reflexionsvektors . .
metriegruppe $[16, S. 31] verstanden werden, bei
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der die Koeffizienten @ und a,; symmetrisch ver-
tauschen.

Im Kontext der Geometrischen Algebra kann diese
Transformation mit Hilfe der verallgemeinerten Pau-
li-Matrizen als eine Spiegelung des Zustandsvektors
{9} gedeutet werden. Diese Reflexion im vierdimen-
sionalen Zustandsraum findet an einer dreidimensio-
nalen Hyperebene statt. Diese wird zum einen durch
die beiden Basisvektoren aufgespannt, die die Zu-
standsrichtungen reprasentieren, die bei der Reflex
on nicht tangiert werden. Dies sind die Richtungen,
die durch die Basisvektoramn,, undoy; reprasentiert
werden, da das jeweils erste Quantenbit bei diesen
Zustanden mit O belegt ist. Zum zweiten soll eine
Reflexion an der Diagonalen zwischen den Basis-
vektoreno,o unday; generiert werden, die diese bei-
den Richtungen vertauscht. Die Spiegelebene lautet
deshalb:

1
M = _—_ Ogg Op1 (O10 + O14)

V2

Im Kontext der Geometrischen Algebra kann diese
Transformation mit Hilfe der Pauli-Matrizen nun als

{30}

fenoT
=mrm

=1 O00001(010+011) ri O00001(010+011)
V2 V2

= @000 + @1001 + &41010+ &0011 {31}
dargestellt werden. Analog dazu gelingt auch die
Reprasentation in der Geometrischen Algebra mit
raumzeitlichen Basisvektoren durch Reflexion des
achtdimensionalen Zustandsvektors {10} an der
Spiegelebene

M= (Vio _thl)(y)io_ \2P) {32}
ebenso problemlos:
fenoT
=MrM
= CooYoo T CorYor T ClaYio t Clovn {33}

*+Coo¥oo T CotYor + ClaYao T Cio¥h
8.Konsequenzen fur eine Didaktik des Quanten-
Computings
Anknipfungspunkt fur eine Didaktik des Quanten-
Computings sind folgende Uberlegungen:

e Der Weg zum Quanten-Computing fuhrt Gber die
Matrizenmechanik.

e Der Weg zur Matrizenmechanik fuhrt tUber die
Pauli- und Dirac-Algebra.

¢ Pauli- und Dirac-Algebra sind inharenter Teil der
Geometrischen Algebra.

Dies fiihrt zur Schlussfolgerung:

¢ Quanten-Computing kann mit Hilfe der Geome-
trischen Algebra beschrieben und gelernt wer-
den.

Diese Schlussfolgerung kann prazisiert werden,
wenn der fachliche Hintergrund mit berlcksichtigt

wird. Bereits erwahnt wurde in den einfihrenden

Abschnitten die mathematikdidaktischen Vorteile:

Mit der Geometrischen Algebra wird eine struktu-

relle Einheit von Geometrie und Algebra verwirk-

licht, die dazu fuhrt, dass algebraische und geome-
trische Darstellungen gleichberechtigt nebeneinan-
der stehen.

Eine physikalische und physikdidaktische Aufarbei-
tung sollte diese mathematikdidaktischen VorteH wi
derspiegeln. Dies trifft umso mehr fur ein Fachge-
biet wie die Quantenmechanik zu, in der sich Uber-
raschende, oft anti-intuitiven Beschreibungen von
physikalischen Sachverhalten wiederfinden. Quan-
tenmechanische Phanomene knupfen nur selten und
nur in einem sehr beschrankten Umfang an Erschei-
nungen und Phanomene an, mit denen wir in unse-
rem taglichen Leben in der Makrowelt konfrontiert
sind. Im Gegenteil: die Phdnomene der Mikrowelt
erscheinen uns oftmals als sehr komplex, logiseh nu
schwer nachvollziehbar und kaum oder gar nicht
verstandlich.

Da die Quantenmechanik und mit ihr das Quanten-
Computing kognitiv nicht einfach zu erschlie3en ist
und vielen Lernenden schwer verstéandlich scheint,
ist es sinnvoll, den Ubergang in die Beschreibung
der Quantenwelt nicht noch dadurch zu erschweren,
dass eine neue mathematische Sprache eingefihrt
wird.

Es ist fir Lernende eine grof3e Hilfe, wenn der ma-
thematische Rahmen beim Ubergang von der Ma-
krowelt in die Mikrowelt konstant bleibt. Und genau
das liefert die Geometrische Algebra: Mit Hilfe der
Geometrischen Algebra kann sowohl die klassische
Physik wie auch die Quantenmechanik mathema-
tisch modelliert werden. Hier zeigt sich eine mathe
matische Einheitlichkeit von klassischer und quan-
tenmechanischer Welt, die von uns drei Autoren die-
ses Beitrags als so wichtig angesehen wird, dass wi
schon allein deshalb die Nutzung der Geometrischen
Algebra als mathematisches Werkzeug der Physik
legitimiert sehen und alternative Mathematisierun-
gen als lernhinderlich einordnen.

Dies fiihrt zu der prazisierten Schlussfolgerung:

¢ Quanten-Computing sollte mit Hilfe der Geome-
trischen Algebra beschrieben und gelernt wer-
den.

Um nun den didaktischen Platz des Quanten-Com-
putings und die entsprechende Zielgruppe, der die
faszinierende Welt des Quanten-Computings ver-
mittelt werden kann, zu ermitteln, sind sowohl ob-
jektive Kriterien (wie beispielsweise das Vorwissen
der Lernenden) und subjektive Kriterien (wie bei-
spielsweise personliche Vorpragungen hinsichtlich
der Frage, was ein entsprechender Unterricht teiste
sollte) ausschlaggebend. Hier scheinen mehrere Sze-
narien denkbar, die im Folgenden kurz erlautert
werden.
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8.1.Quanten-Computing als schulisches Thema

Die klassische Physik kann im schulischen Kontext
auf Grundlage der Geometrischen Algebra vermittelt
werden. Wie oben aufgefihrt, ist es mittel- undytan
fristig sinnvoll, im Leistungskursunterricht Mathe-
matik die derzeit gelernte Lineare Algebra in ihrer
konventionellen Darstellung durch die Geometrische
Algebra zu ersetzen. Im Leistungskursunterricht
Physik kann schon heute die Geometrische Algebra
sehr gut zur Modellierung physikalischer Ph&dnome-
ne wie beispielsweise der Speziellen Relativité&tsth
orie [17], [18] erfolgen. Und langfristig werderchi

mit Sicherheit auch in der Mittelstufe bei Pragung
des Koordinaten- und des Vektorbegriffs geome-
trisch-algebraische Argumentationsmuster durchset-
zen.

Schilerinnen und Schiiler, die ein solches Vorwissen
mitbringen, kénnen im Rahmen eines Quantenme-
chanikunterrichts der Oberstufe auch sinnvoll is da

Quanten-Computing eingefiihrt werden. Allerdings

ist es dabei sinnvoll, auf die Nutzung komplexer

Zahlen zu verzichten, da diese Ublicherweise nicht
(oder nicht allen Schuilerinnen und Schulern) be-
kannt sind.

Stattdessen ist es mdglich, raumzeitliche Zustands-
vektoren im Sinne von Formeln {6} und {10} zu
nutzen. Da Schulerinnen und Schiilern, die die Spe-
zielle Relativitatstheorie auf Grundlage der Geome-
trischen Algebra behandelt haben, der Unterschied
zwischen rdumartigen und zeitartigen Basisvektoren
bekannt ist, ist ein solches Vorgehen mdglich.

Dabei wird im schulischen Rahmen weiterhin von
Vektoren und geometrischen Objekten die Rede
sein, die ohne Bezug zur Matrizendarstellung behan-
delt werden.

8.2.Quanten-Computing als hochschulisches
Thema

Bei Lernenden, die aufgrund ihrer schulischen oder
hochschulischen Vorgeschichte bereits mit der Geo-
metrischen Algebra vertraut sind, kann die Einfiih-
rung in die Physik des Quanten-Computings in einer
elaborierten Form mit Hilfe komplexer Zahlen erfol-
gen.

Da Pauli- und Dirac-Matrizen explizite Themen der
hochschulischen Physikausbildung sind, ist es még-
lich und sinnvoll, diese Darstellungsweisen zur Er-
orterung des Quanten-Computings heranzuziehen.
Koordinatenfreie und koordinatennutzende Darstel-
lungsmuster kénnen dann parallel und in Relation
zueinander eingefiihrt werden, um ein metakonzep-
tuelles Verstandnis bei den Studierenden zu férdern

Hier findet dann ein Weiterlernen anstelle einessUm
lernens statt, wenn die Studierenden auf Basis der
Geometrischen Algebra neue physikalische Phano-
mene in bekannte mathematische Strukturen ein-
betten kdnnen.

Die Entscheidung darliber, welches Szenario sinn-
voll und umsetzbar ist und welcher Weg mit welcher

Zielgruppe gegangen wird, muss jede Lehrperson
selber treffen. Wie einfihrend erlautert, sind idie
dividuellen Vorstellungen und Vorpradgungen dabei
nicht unwesentlich.

Ausdiskutiert wurde dies von uns drei Autoren un-
tereinander inshesondere am Beispiel des Einsatzes
und der Stellung der komplexen Zahlen bei der Be-
schreibung des Quanten-Computings, die dann zu
jeweils anderen Praferenzen in der didaktischen Um-
setzung fuhrten.

Dieser Diskussionsprozess ist bei weitem noch nicht
abgeschlossen, denn eine Fragestellung muss auf
jeden Fall noch vertieft werden:

* Welche didaktische Rolle spielt ein Ubergreifen-
des Verstandnis der Quantenmechanik fur ein
Verstandnis des Quanten-Computings?

Als Physikdidaktikerinnen und Physikdidaktiker le-
ben wir mit der Vorstellung, dass eine ubergreifen-
des Verstandnis des Quantenmechanik auf jeden Fall
eine Voraussetzung fur die Entwicklung eines trag-
und anschlussfahigen Verstandnisses des Quanten-
Computings ist.

Andere wissenschaftliche Kulturen geben jedoch an-
dere Antworten auf solche und &hnliche Fragen. In
der Informatik, so wurde im Diskussionsprozess
deutlich, ist es akzeptierte wissenschaftliche Vor-
gehensweise, Unbekanntes nur auferlich zu be-
schreiben und ansonsten wesentlich Systembaustei-
ne als Black Box zu verwenden. Man muss nicht
wissen,wie ein Serviceprogramm, das man zur Re-
alisierung eines eigenen Informatikprojektes nutzt,
funktioniert; man muss nur wissemas es macht.

Im Sinne dieser Vorstellung kdnnen auch Unter-

richtsgdnge zugelassen werden, die wesentliche
Charakteristiken der Quantenmechanik im Sinne ei-
ner Black Box zur Verfiigung stellen, und auch ohne

vertiefte Kenntnis der Quantenmechanik ein Unter-

richten des Quanten-Computings erlauben.

Und hier treffen wir auf das prinzipielle Problemrd
Quantenmechanik: Kénnen wir sie tUberhaupt voll-
standig intrinsisch verstehen und tatsachlich ergru
den,wie die Quantenmechanik funktioniert. Oder ist
aller Umgang mit quantenmechanischen Erscheinun-
gen nicht per se pragmatisch, da wir sowieso nur
wissen kénnenwas in der Quantenmechanik pas-
siert? Wie letztendlich eine didaktisch vollstandig
rekonstruierte ,real theory” [12, S. 116] des Quan-
ten-Computings aussehen wird, werden wir in der
Zukunft noch ergriinden muassen.
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