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Kurzfassung 

Es wird eine innovative und besonders einfache sowie konkrete Einführung der Schwarz-

schildmetrik vorgestellt. Das Grundprinzip ist die Separation des vierdimensionalen Problems 

in vier einzelne Dimensionen. Diese Trennung der Dimensionen ist möglich, weil ein Zentral-

kraftproblem vorliegt, somit Isotropie besteht und entsprechend die nicht diagonalen Elemente 

des metrischen Tensors null sind. Auch ist für die Trennung der Dimensionen entscheidend, 

dass die Geometrie-Dynamik ausgehend von der newtonschen Gravitationstheorie durch Re-

gression entwickelt werden kann und somit die Einstein-Gleichung nicht eingeführt werden 

muss. Die vorgestellte Lösung der Schwarzschildmetrik wird auch dadurch so einfach, dass ei-

ne lineare Regression die exakte Metrik ergibt. Ich präsentiere auch Erfahrungen der Erpro-

bung des Konzepts mit einer Lerngruppe aus Schülerinnen und Schülern der Klassenstufen 10-

12. Weiter wird gezeigt, wie man aus der Lösung der Schwarzschildmetrik in elementarer Wei-

se die exakten Gleichungen zur Bahnbewegung, zu Gravitationswellen und zu durch Rotation

entstehende Metriken entwickeln und diese anhand empirischer Beobachtungen bestätigen

kann. Diese Thematik ist für die Schule interessant, weil die Erfahrung zeigt, dass sich immer

viele Schülerinnen und Schüler für die geheimnisvolle Relativitätstheorie interessieren, weil

das räumliche Denken geschult wird und weil die PISA-Testergebnisse zeigen, dass die deut-

sche Schule im Bereich der Begabtenförderung durchaus noch Nachholbedarf hat. Der vorge-

stellte Zugang entwickelt anschlussfähige Kompetenzen, indem er einen einfachen Zugang zur

Einsteingleichung eröffnet.

1. Einleitung

Viele Schülerinnen und Schüler würden gerne auf 

einfache Weise verstehen, wie die Einstein-

Geometrie funktioniert, wie man sie mit einfachen 

Mitteln misst, wie man Raumkrümmungen einfach 

berechnet sowie herleitet und welche Bedeutung 

Raumkrümmungen für den Alltag haben. Ein Beleg 

hierfür sind Interessenstudien, die zeigen, dass ast-

ronomische Themen viele Schülerinnen und Schüler 

besonders ansprechen [1]. Im Vergleich zu den bis-

her bekannten Zugängen bietet der hier vorgestellte 

Lernprozess eine Kombination aus exakter Herlei-

tung und besonderer Einfachheit. Die üblichen Bü-

cher über allgemeine Relativitätstheorie wählen den 

Weg über die vierdimensionale Differenzialgeomet-

rie sowie Tensoralgebra und sind daher nicht einfach 

[2-4]. Bekannte allgemein verständliche Darstellun-

gen verzichten auf eine exakte Herleitung [5,6].   

Hier präsentiere ich eine Unterrichtseinheit, 

bei der Schülerinnen und Schüler die Schwarzschild- 

Metrik mithilfe eines Beschleunigungssensors und 

durch Separation der vierdimensionalen Raumzeit in 

vier einzelne Dimensionen weitgehend selbstständig 

entdecken. Auch berichte ich über Erfahrungen aus 

dem Unterricht. 

Abb.1: Gravitationslinse [7]: Galaxienhaufen Abell 2218. 

Die konzentrischen Lichtbögen scheinen von einer ge-

meinsamen Lichtquelle zu kommen. 

In drei weiterführenden Blöcken (Abschnitte 

9-12, 13-19 und 20-24) zeige ich, wie man aufbau-

end auf der Schwarzschildmetrik Flugbahnen, Gra-

vitationswellen und durch Rotation erzeugte Raum-

krümmungen im Bereich der Begabtenförderung auf

elementare und zugleich exakte Weise behandeln
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kann. Auch hier berichte ich über bereits vorhandene 

Erfahrungen aus dem Unterricht.  

Leserinnen und Lesern, die hauptsächlich an der 

Behandlung der Schwarzschildmetrik im Unterricht 

interessiert sind, empfehle ich die Blöcke über Flug-

bahnen, Gravitationswellen und Rotation zu über-

springen. 

Abb.2: Deutung der Gravitationslinse: Licht der Licht-

quelle wird von der Galaxie abgelenkt und gelangt oben 

und unten zum Beobachter. Im Raum entstehen so kon-

zentrische Bögen. 

2. Entdeckung der Raumkrümmung

Problemstellung und Vermutungen: Zum Einstieg 

sehen die Schülerinnen und Schüler eine Aufnahme 

einer Gravitationslinse (s. Abb. 1 und 2). Zum Zu-

standekommen dieser Aufnahme nennen die Schüler 

zwei Vermutungen:  

- Der Raum ist gekrümmt.

- Das Licht wird durch die Schwerkraft der

passierten Galaxien beschleunigt.

Abb.3: Ein Schüler springt mit einem Beschleunigungs-

sensor am Bauch vom Tisch. 

Versuch mit dem Beschleunigungssensor: Zur Unter-

suchung der Beschleunigungshypothese erhält ein 

Schüler einen Beschleunigungssensor, befestigt 

diesen in der Nähe des Körperschwerpunkts und 

springt vom Tisch (s. Abb. 3). Die Anzeige des 

Sensors wird als Funktion der Zeit grafisch darge-

stellt (s. Abb. 4).  

Abb.4: Anzeige des Beschleunigungssensors [8]. 

Die wesentlichen Phasen werden gedeutet: 

- Zunächst steht der Schüler auf dem Tisch,

die Anzeige beträgt ungefähr 10 m/s
2
, ob-

wohl die Beschleunigung gleich null ist.

- Während des Absprungs holt der Schüler

aus und die Anzeige schwankt.

- Beim Fallen ist die Anzeige 0 m/s
2
, obwohl

die Beschleunigung ungefähr 10 m/s
2
 be-

trägt.

Deutung des Versuchsergebnisses: Die Schüler 

erkennen, dass der Sensor nicht einfach eine absolu-

te Beschleunigung anzeigt. Die Schüler wollen ver-

stehen, was der Sensor anzeigt und entwickeln ge-

meinsam folgende Ergebnisse: 

- Beschleunigung ist eine Frage des Bezugs-

systems.

- Im frei fallenden Bezugssystem ist die Be-

schleunigung gleich null.

- Im frei fallenden Fahrstuhl breitet sich ein

Laserstrahl geradlinig aus (s. Abb. 5).

- Im Fahrstuhlschacht breitet sich ein Laser-

strahl ungefähr parabelförmig aus (s. Abb.

5).

- Wenn sich ein Laserstrahl im Vakuum von

einem Punkt A zu einem Punkt B ausbrei-

tet, dann geschieht das auf dem kürzesten

Weg. Da dieser kürzeste Weg im Fahrstuhl-

schacht gekrümmt ist, ist der Raum ge-

krümmt (s. Abb. 5). Hier reflektieren die

Schüler bewusst, dass das Licht zum Maß-

stab für den Raum wird.

Damit haben die Schüler die Raumkrümmung ent-

deckt. 

Abb.5: Fallender Fahrstuhl: Links: Im fallenden Fahrstuhl 

verläuft der Lichtstrahl geradlinig. Nach dem Einschalten 

breitet sich die Spitze des Lichtstrahls aus. Rechts: Ein 

sehr schneller Schüler markiert im Gedankenexperiment 

zu verschiedenen Zeitpunkten die Spitze des Lichtstrahls 

am Fahrstuhlschacht (grau). Es entsteht eine parabelför-

mige Kurve.  

Die Schüler erkennen weiter, dass die Masse, die 

den Fahrstuhl oder den Sensor anzieht, die Ursache 

dafür ist, dass der Raum gekrümmt ist und ein Be-

schleunigungssensor nicht null anzeigt. Aber in 

unendlicher Entfernung von der Masse ist der Raum 

nicht gekrümmt und der Sensor zeigt null an. Auch 
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im frei fallenden Bezugssystem zeigte der Beschleu-

nigungssensor null an. Insofern zeigt der Beschleu-

nigungssensor den flachen Raum durch die Anzeige 

null an. 

3. Entdeckung der Schwarzschild-Metrik

Die Schüler wollen nun wissen, wie stark der Raum 

gekrümmt ist. Dazu betrachten wir wieder den frei 

fallenden Fahrstuhl und darin der Einfachheit halber 

nur die radiale Raumrichtung. 

Die vertikale Strecke, die ein Laserstrahl zurücklegt, 

hängt vom Bezugssystem ab (s. Abb. 5). Im Beispiel 

des auf den Himmelskörper Erde hin frei fallenden 

Fahrstuhls ist die Anzeige des Beschleunigungs-

sensors null. Dieser fallende Fahrstuhl ist durch die 

Geschwindigkeit unnötig kompliziert. Daher suchen 

die Schüler ein anderes Bezugssystem, bei dem der 

Beschleunigungssensor null anzeigt. Sie schlagen 

das Bezugssystem in unendlicher Höhe über dem 

Himmelskörper vor. 

Einführung des metrischen Tensors für die Senk-

rechte: Wir vereinbaren die Raumkrümmung mithil-

fe von Streckenlängen in Bezugssystemen zu unter-

suchen, die in unterschiedlicher Höhe über einem 

Himmelskörper sind. Im Bezugssystem mit unendli-

cher Höhe nennen wir die zurückgelegte Strecke dr, 

im anderen Bezugssystem nennen wir sie dσ. Der 

Quotient dσ
2
/dr

2
 wird metrischer Tensor der Senk-

rechten grr genannt. Wir suchen den Funktionsterm 

grr(r) für die Funktion grr abhängig vom Abstand r 

zum Mittelpunkt des Himmelskörpers. 

Bestimmung des metrischen Tensors im Unendli-

chen: Für den Grenzwert r  ∞ finden die Schüler 

sofort heraus, dass der Raum ungekrümmt ist, also 

dσ = dr und somit grr(∞) = 1. 

Abb.6: Ist ein Ball beim Abschuss schnell genug, so 

kommt er nicht mehr zurück. 

Bestimmung des metrischen Tensors beim Schwarz-

schildradius: Um nicht nur sehr schwache, sondern 

auch sehr starke Schwerkräfte zu analysieren, unter-

suchen die Schüler, ob ein senkrecht nach oben 

geschossener Ball immer zurückkommt (s. Abb. 6). 

Dazu vergleichen sie die potenzielle Energie mit der 

kinetischen. Sie stellen fest, dass der Ball nicht mehr 

zurückkehrt, wenn die kinetische die potenzielle 

Energie übertrifft. Ab einer bestimmen Anfangsge-

schwindigkeit, der sogenannten Fluchtgeschwindig-

keit vF, kommt der Ball nicht zurück. Sie bestimmen 

diese Fluchtgeschwindigkeit durch Gleichsetzen der 

Bewegungsenergie mit der potenziellen Energie:  

vF
2
 = 2GM/r

Dabei ist G die newtonsche Gravitationskonstante 

und M die Masse des Himmelskörpers. Ist die 

Fluchtgeschwindigkeit größer als die Lichtge-

schwindigkeit, so kann selbst Licht nicht mehr vom 

Himmelskörper entweichen. Im Grenzfall ist vF = c. 

Die Schülerinnen und Schüler bestimmen den ent-

sprechenden Radius, den sogenannten Schwarz-

schildradius:  

RS = 2GM/c
2

Für den Grenzwert r  RS finden die Schüler sofort 

heraus, dass das Licht gerade nicht entkommen 

kann. Da es sich mit Lichtgeschwindigkeit ausbrei-

tet, muss der Weg dσ unendlich lang sein. Demnach 

ist grr(RS) = ∞. 

Bestimmung der Schwarzschildmetrik für die Senk-

rechte: Als nächstes wird der Funktionsterm für 

grr(r) durch lineare Regression aus den beiden Stütz-

stellen bei r  ∞ und r  RS bestimmt: 

Für r  ∞ ist grr = 1. 

Für r  RS gilt grr  ∞. 

Zur konkreten Berechnung beseitigen die Schüler 

die Unendlichkeiten durch Einsetzen der Kehrwerte 

u = 1/r und q = 1/grr. Damit sind die beiden Stütz-

stellen q(0) = 1 und q(US) = 0. Die Schüler finden

durch lineare Regression den Funktionsterm:

q(u) = 1 – u/US 

Durch Einsetzen der ursprünglichen Variablen ent-

decken die Schüler die Schwarzschildmetrik: 

grr(r) = 1/(1 – RS/r) 

Reflexion der Methode: Die Schülerinnen und Schü-

ler fragen, ob man den Funktionsterm einfach durch 

Regression bestimmen darf. Sie erkennen, dass der 

Funktionsterm ein neues Naturgesetz darstellt, das 

beschreibt, wie der Raum in der Nähe einer Masse 

gekrümmt wird. Sie erinnern sich, dass man neue 

Naturgesetze durch Messwerte und Regression be-

stimmt. Sie erkennen weiter, dass hier anstelle der 

Messwerte zwei durch Überlegung erschlossene 

Stützstellen verwendet wurden. Abschließend teile 

ich mit, dass das Naturgesetz in einer relativ frühen 

Darstellung in Form der sogenannten Einstein-

Gleichung formuliert wurde und von Einstein eben-

so durch Regression mit möglichst kleinen Exponen-

ten bestimmt wurde. 
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Abb.7: Dreieck ABC aus Laserstrahlen: Im Bezugssystem 

mit der Beschleunigungssensoranzeige null ist das Dreieck 

gleichschenklig und rechtwinklig. Denn das Licht hat 

keinen Grund von der geradlinigen Ausbreitung abzuwei-

chen. Wie groß ist die Winkelsumme im Bezugssystem 

am Erdboden? 

4. Anwendung auf die Winkelsumme im Dreieck

Die Schüler fragten nach der Raumkrümmung in 

andere Raumrichtungen. Sie erkennen selbst, dass in 

Tangentialrichtung der ruhende Beschleunigungs-

sensor null anzeigt. Das bedeutet, dass der Raum in 

Tangentialrichtung nicht gekrümmt ist. Das entspre-

chende Element des metrischen Tensors wird hier 

mit gxx bezeichnet und hat den Betrag 1. 

Zur Veranschaulichung untersuchen wir die Winkel-

summe in einem Dreieck ABC (s. Abb. 7). Weil 

Licht als invarianter Maßstab gewählt wurde, wird 

das Dreieck durch Lichtstrahlen bestimmt: Ein 

Strahl geht von C nach A senkrecht nach unten 

(grün), während ein zweiter Strahl (rot) von C zu 

einem senkrechten Spiegel bei B geht, dort reflek-

tiert wird und bei A den ersten Strahl schneidet. A 

liegt am Erdboden 6378 km über dem Erdmittel-

punkt, B 200 km höher bei 6578 km und C 400 km 

höher bei r = 6778 km. Das Dreieck hat im Bezugs-

system mit Beschleunigungssensoranzeige null die 

Winkel α = γ = 45° und β = 90°. Zu Berechnung der 

Winkel werden vier Hilfsdreiecke (gelb) betrachtet 

mit dr = 1m = dx. 

Die Schülerinnen und Schüler berechneten 

zunächst den Winkel α des Hilfsdreiecks bei A: Die 

waagerechte Kantenlänge beträgt dx = 1m. Die 

senkrechte Kantenlänge beträgt dσ = dr/(1-RS/r)
0,5

mit r = 6378 km. Dabei ist RS = 2GM/c
2
 = 2 ∙

6,67∙10
-11

 Nm
2
/kg

2
 ∙ 5,97∙10

24
kg/(3∙10

8
m/s)

2
 = 8,85 

mm. Daher ist:

dσ = 1m/(1-8,85mm/6378km)
0,5

 = 1m+693,791 pm

Die Schülerinnen und Schüler berechneten den

Winkel:

α = arctan(1/dσ) = 45° – 19,8757n° 

Für den Winkel β1 ist entsprechend dσ = 1/(1-

8,85mm/6578km)
0,5

 = 1m+672,697 pm. Also ist β1 =

arctan(dσ) = 45° + 19,2714n°. Da β2 auf der glei-

chen Höhe liegt, ist β2 = β1. 

Für den Winkel γ ist analog dσ = 1/(1-

8,85mm/6778km)
0,5

 = 1m+652,848 pm. Also ist γ = 

arctan(1/dσ) = 45° – 18,7027n°.   

Die Winkelsumme beträgt daher: 

α + β1 + β2 + γ = 180° – 35,6p° 

So entdeckten die Schülerinnen und Schüler, dass 

die Winkelsumme in diesem Dreieck am Erdboden 

um 35,6 p° von dem aus dem Geometrieunterricht 

bekannten Wert 180° abweicht. Auch bemerkten sie, 

dass ein waagerecht liegendes Dreieck genau die 

bekannte Winkelsumme 180° hat. Ferner verallge-

meinerten sie, dass für beide waagerechte Richtun-

gen das Element des metrischen Tensors gleich eins 

ist. 

Abb.8: Das GPS: Satelliten umkreisen die Erde [9]. 

5. Anwendungen auf das GPS

Die Schüler merkten, dass die Abweichung der 

Winkelsumme im Dreieck sehr klein ist und fragten, 

ob die Raumkrümmung überhaupt eine praktische 

Bedeutung im Alltag hat. Sie stimmten zu, dass das 

GPS aktuell ein weit verbreitetes geometrisches 

Messsystem ist. Also untersuchten wir, welchen 

Einfluss die Raumkrümmung auf das GPS hat. 

Die Schülerinnen und Schüler konnten das Prinzip 

der Laufzeitmessung anhand einer Abbildung (s. 

Abb. 8) erklären. Damit war klar, dass wir den Gang 

der Uhren an Bord der Satelliten in 20200 km Flug-

höhe über dem Erdboden untersuchen müssen. 

Entdeckung der Schwarzschildmetrik der Zeitachse: 

Die Schülerinnen und Schüler untersuchten Licht, 

das sich von großer Entfernung radial in Richtung 

eines schwarzen Lochs ausbreitet. Sie stellten fest, 

dass die Schwerkraft die Ausbreitung des Lichts 

nicht behindert, sondern allenfalls begünstigt. Das 

begründeten sie damit, dass das schwarze Loch 

aufsteigendes Licht behindert. Sie folgerten, dass 

eine Uhr im Bezugssystem des Himmelskörpers eine 

endliche Zeit anzeigt, wenn das Licht den Schwarz-

schildradius erreicht. Da das Licht im Bezugssystem 

des Himmelskörpers eine unendliche Strecke zu-
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rückgelegt hat, muss die Uhr unendlich langsam 

gegangen sein. Daher geht das Element gtt des metri-

schen Tensors gegen null, wenn r gegen den 

Schwarzschildradius geht. Hier nennen wir ein Zeit-

intervall dt, wenn die Uhr in einem unendlich hohen 

Bezugssystem ruht. Das entsprechende Zeitintervall 

nennen wir dτ, wenn die Uhr im Bezugssystem des 

Himmelskörpers ruht. Damit ist gtt = dτ
2
/dt

2
.

Im Folgenden konnten die Schüler den gesuchten 

Funktionsterm für gtt analog zu der Bestimmung von 

grr völlig selbstständig ermitteln: 

Für r  ∞ ist gtt = 1. 

Für r  RS gilt gtt  0. 

Das Einsetzen des Kehrwerts u = 1/r ergibt  gtt(0) = 

1 und  gtt (US) = 0. Die Schüler bestimmten durch 

lineare Regression den Funktionsterm  gtt (u) = 1 – 

u/US sowie: 

gtt (r) = 1 – RS/r 

Berechnung der Abweichung der Uhr im Satelliten: 

Mithilfe der hergeleiteten Schwarzschildmetrik für 

die Zeitachse konnten die Schülerinnen und Schüler 

selbstständig berechnen, um wie viel Prozent die 

Uhr im Satelliten schneller geht als auf der Erdober-

fläche: Zunächst bestimmten sie für den Erdradius 

gtt(rErde) = 1 – 1,39∙10
-9

 und für den Satelliten

gtt(rSat)= 1 – 0,33∙10
-9

. Weiter bestimmten sie für dt

= 1s die Dauer dτErde = dt ∙ [ gtt (rErde) ]
0,5

 = 1s-694ps.

Analog bestimmten sie für dt = 1s die Dauer dτSat = 

dt ∙ [ gtt (rSat) ]
0,5

 = 1s-166ps. Die Abweichung be-

trägt 527ps je Sekunde oder 52,7 n%. Das entspricht 

einer Abweichung von 45,6 μs pro Tag. Der entspre-

chende Streckenfehler beträgt 45,6 μs/Tag ∙ 300000 

km/s = 13,7 km/Tag. Das wäre ein völlig inakzep-

tabler Fehler des GPS. Daher ist klar, dass das GPS 

nur dadurch funktioniert, dass es die Raumkrüm-

mung richtig berücksichtigt. Zusätzlich ist die Zeit-

dilatation aufgrund der Geschwindigkeit des Satelli-

ten zu berücksichtigen [10]. 

Abb.9: Anschauliche Darstellung der Schwarzschild-

Metrik: Betrachtet wird eine zweidimensionale Fläche des 

Raums. In der Nähe der Masse sind die Strecken verlän-

gert. Das wird dadurch veranschaulicht, dass die Fläche in 

eine visuell vorhandene weitere Richtung gedehnt wurde. 

In der Nähe der Masse vergeht die Zeit verlangsamt. Das 

wird dadurch illustriert, dass die Uhr noch nicht weit 

gegangen ist. Der Lichtstrahl, der von der Lichtquelle ins 

Auge läuft, müsste eine sehr gedehnte Fläche durchque-

ren, wenn er näher an der Masse verlaufen würde. Daher 

macht der Lichtstrahl einen Bogen um die Masse. 

6. Erklärung der Lichtbögen

Die Schwarzschild-Metrik wird wie üblich durch die 

radiale und eine tangentiale Raumrichtung in Form 

eines Trichters dargestellt (s. Abb. 9). Licht, das von 

der Lichtquelle zum Beobachter gelangt, würde auf 

dem scheinbar geraden Weg tief durch den Trichter 

verlaufen und somit einen Umweg nehmen. Der 

scheinbar gekrümmte Weg ist kürzer. So entsteht die 

Lichtablenkung (s. Abb. 2). Auf diese Weise erklär-

ten die Schülerinnen und Schüler die fotografierten 

Lichtbögen (s. Abb. 1). Auch wurde ihnen veran-

schaulicht, dass die obige Winkelsumme im Dreieck 

kleiner als 180° ist.  

7. Weiterführende Themen

In den obigen Abschnitten wurde gezeigt, wie die 

Schülerinnen und Schüler auf einfache Weise die 

Raumkrümmung in der Umgebung der Erde herlei-

ten und anwenden können. Das interessiert viele 

Schülerinnen und Schüler der Sekundarstufe zwei. 

Es folgen drei Blöcke von Abschnitten mit weiter-

führenden Themen. Im ersten Block mit den Ab-

schnitten 9 bis 12 werden Flugbahnen von Objekten 

in der Schwarzschildmetrik entwickelt. Im zweiten 

Block mit den Abschnitten 13 bis 19 werden Gravi-

tationswellen behandelt. Im dritten Block in den 

Abschnitten 20-24 wird die durch die Eigenrotation 

eines Körpers verursachte raumzeitliche Krümmung 

behandelt. Diese drei Blöcke erscheinen besonders 

für die Begabtenförderung beispielsweise in Ar-

beitsgemeinschaften geeignet. 

8. Flugbahn: Energieterm

Die Schülerinnen und Schüler konnten die Krüm-

mung des Lichtwegs nachvollziehen (s. Abb. 9). 

Nun soll der beobachtete Ablenkwinkel (s. [3], S. 

113) berechnet werden. Dazu wird zunächst der

Energieterm entwickelt:

Wir betrachten zuerst den flachen Raum. Hier 

gilt für die Summe aus Ruheenergie und kinetischer 

Energie:  

Eflach = m0∙c
2
/(1 – v

2
/c

2
)

0,5

Die Schülerinnen und Schüler erkannten an 

dem Divisor (1–v
2
/c

2
)

0,5
, dass ein Objekt mit Ruhe-

masse m0 die Lichtgeschwindigkeit c nicht erreichen 

kann. Auch können die Schülerinnen und Schüler 

ein masseloses oder massives Teilchen als Welle 

beschreiben mit: 

Eflach = h∙fflach = h/Tflach 

Nun transformieren wir in ein System mit der 

Anzeige ungleich null des Beschleunigungssensors, 

konkret wählen wir ein zum Himmelskörper ruhen-

des Bezugssystem bei einer Koordinate r. Hier wird 

die folgende Periodendauer beobachtet: 

T = Tflach∙(1 – RS/r)
0,5

Einsetzen ergibt folgenden Energieterm: Eunten = h/T; 

Eunten = h/[Tflach∙(1 – RS/r)
0,5

] = Eflach/(1 – RS/r)
0,5
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Nach dem Prinzip der Energieerhaltung ist die 

Summe aus der Energie der relativistischen oder 

dynamischen Masse und der potenziellen Energie 

Epot konstant, auch ist die potenzielle Energie im 

flachen Raum gleich null. Somit gilt: 

Eflach = Eunten + Epot 

Auflösen und Einsetzen ergibt: 

Epot = Eflach – Eunten = Eflach ∙ [1 – 1/(1 – RS/r)
0,5

]

Mit der Tangentennäherung für kleine RS/r gilt: 

Epot = – Eflach ∙ 0,5 RS/r 

Für die invariante Gesamtenergie E gilt: 

E = Epot + Eflach = Eflach ∙ [1 – 0,5 RS/r] 

Mit der Tangentennäherung für kleine RS/r gilt: 

E = Eflach ∙ (1 – RS/r)
0,5

Einsetzen des geschwindigkeitsabhängigen Terms 

für Eflach führt zu dem Energieterm für einen im 

gekrümmten Raum bewegten Körper mit einer Ru-

hemasse m0: 

E = m0∙c
2
 ∙(1 – RS/r)

0,5
/(1 – v

2
/c

2
)

0,5

So können die Schülerinnen und Schüler den übli-

chen Energieterm (s. [4], S. 299) auf elementare 

Weise im Rahmen der Tangentennäherung finden, 

eine exakte Herleitung befindet sich im Anhang 32. 

Die Schülerinnen und Schüler deuten den 

Energieterm, indem sie für v
2
/c

2
 sowie für RS/r die

Tangentennäherung durchführen und erhalten so:  

E0 = m0∙c
2
 + m0v

2
/2 – GMm0/r

Sie erkennen den Term für die potenzielle Energie 

mit seiner rein radialen Abhängigkeit sowie den 

Term für die kinetische Energie mit der in v enthal-

tenen radialen und tangentialen Komponente.  

Die Schülerinnen und Schüler analysieren nun die 

Komponenten der kinetischen Energie. Dazu zerle-

gen sie v
2
 in Polarkoordinaten: v

2
 = (dσ/dt)

2
 + 

(r∙dφ/dt)
2
. Hier wurde gφφ = gxx = 1 verwendet. Ein-

setzen der Schwarzschildmetrik ergibt: 

v
2
 = (dr/dt)

2
/(1 – RS/r) + (r∙dφ/dt)

2

Die verlängerte radiale Strecke überträgt sich auf 

den Term der kinetischen Energie. 

9. Flugbahn: Bewegungsgleichung

Zur Berechnung des Ablenkwinkels wird die Be-

wegungsgleichung aus dem obigen Energieterm 

hergeleitet. Das Verfahren wird am Beispiel des 

obigen klassischen Energieterms erprobt:  

E0 = m0∙c
2
 + m0v

2
/2 – GMm0/r

Diese Gleichung wird als Funktion der Zeit aufge-

fasst und abgeleitet:  

0 = m0∙v∙v‘ + v∙GMm0/r
2

Die Schülerinnen und Schüler dividieren durch v, 

erkennen in v‘ die Beschleunigung a und erhalten so 

die bekannte Bewegungsgleichung:  

m0∙a = – GMm0/r
2

Die Schülerinnen und Schüler wissen, dass 

die Bewegung besonders einfach ist, wenn der Im-

puls erhalten ist. Zum Auffinden von allen mögli-

chen erhaltenen Impulsen wird als weiteres Beispiel 

ein schräger Wurf betrachtet. Dabei ist der Ener-

gieterm: 

E = 0,5mvx
2
 + 0,5mvy

2
 + mgy

Diese Gleichung wird wie oben abgeleitet: 

0 = mvxvx‘ + mvyvy‘ +mgvy 

Weil E nicht von x abhängt, ist vx‘ = 0 und mvx = px 

ein erhaltener Impuls. Damit ist 0 = mvyvy‘ +mgvy. 

Division durch mvy ergibt die Bewegungsgleichung: 

0 = vy‘ + g. 

Die Schülerinnen und Schüler übertragen das 

Verfahren auf den obigen Energieterm für einen im 

gekrümmten Raum bewegten Körper: 

E
2
 = m0

2
∙c

4
 ∙(1 – RS/r)/(1 – v

2
/c

2
)

Für Körper, deren Geschwindigkeiten klein im Ver-

gleich zur Lichtgeschwindigkeit sind, können die 

Schüler die Tangentennäherung für kleine v/c an-

wenden:  

E
2
 = m0

2
∙c

4
 ∙(1 – RS/r)∙(1 + v

2
/c

2
)

Um einen erhaltenen Impuls zu finden, werden die 

obigen Polarkoordinaten für v
2
 eingesetzt:  

E
2
 = m0

2
∙c

4
 ∙(1 – RS/r) ∙

[1 + 1/c
2
 (dr/dt)

2
/(1 – RS/r) + 1/c

2
 (r∙dφ/dt)

2
]

Die Schülerinnen und Schüler können merken, dass 

E nicht von φ abhängt. In Analogie zum obigen 

Beispiel ist dann  r
2
∙dφ/dt∙d(dφ/dt)/dt null und 

r
2
∙dφ/dt = B ein erhaltener Impuls. Versuche mit 

dem Drehstuhl motivieren, dass es sich um den 

Drehimpuls pro Masse handelt. Da solche erhaltenen 

Größen durch ihre Invarianz die Analyse vereinfa-

chen, wird B eingesetzt. Das ergibt: 

E
2
/m0

2
∙c

4
 = (1 – RS/r) + 1/c

2
 (dr/dt)

2
 +

1/c
2
B

2
/r

2
∙(1 – RS/r)

Um Quotienten zu vermeiden wird wieder u = 1/r 

verwendet. Zur Verringerung der Dimensionen wird 

mit u(φ) gerechnet. Damit sind die Terme nun: B/r = 

B∙u und mit der Kettenregel sowie der Abkürzung 

du/dφ=u‘ ist dr/dt = dr/du∙du/dφ∙dφ/dt = -1/u
2
∙ 

u‘∙B∙u
2
 = - B∙u‘. Somit ist: 

E
2
/m0

2
∙c

4
 = (1 – uRS) + B

2
/c

2
u‘

2
 + B

2
/c

2
∙u

2
∙(1 – uRS)

Die Schülerinnen und Schüler übertragen das obige 

Verfahren zur Gewinnung einer Bewegungsglei-

chung, indem sie diese Gleichung bzgl. φ ableiten 

und dabei die Invarianz von E und B nutzen: 

0 = -u‘RS + 2B
2
/c

2
∙u∙u‘ – 3RS B

2
/c

2
∙u

2
∙u‘ +

2B
2
/c

2
∙u’u‘‘ 

Zur Vereinfachung wird durch  2B
2
∙u’/c

2 
geteilt: 

0 = -0,5RS∙c
2
/B

2
 + u – 1,5RS u

2
 + u‘‘

Das ist die übliche Bewegungsgleichung (s. [3], S. 

105) für einen Körper in der Schwarzschildmetrik.

Diese Herleitung verwendet eine Tangenten-

näherung. Binnendifferenzierend kann eine exakte 

Herleitung eingesetzt werden, siehe den Anhang im 

Abschnitt 31. 
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10. Flugbahn: Bewegungsgleichung für Licht

Die Schülerinnen und Schüler konnten diese Glei-

chung auf Photonen oder Licht wie folgt anwenden. 

Der Drehimpuls pro Ruhemasse, also B geht für 

Licht gegen unendlich, da Licht keine Ruhemasse 

hat. Folglich verschwindet der Term mit 1/B
2
 und 

die Bewegungsgleichung für Licht lautet: 

0 = u – 1,5RS u
2
 + u‘‘

Abb.10: Periheldrehung des Merkur: Die elliptische Bahn 

dreht sich als Ganzes. 

11. Flugbahn: Berechnung

Aus den obigen Bewegungsgleichungen konnten die 

Schülerinnen und Schüler mit Hilfe des Eulerschen 

Polygonzugverfahrens am PC leicht die Bahnen 

bestimmen. So fanden sie für die Lichtstrahlen, 

welche die Sonne passieren, den beobachteten Ab-

lenkwinkel von 1,75 Bogensekunden. Ebenso konn-

ten sie die Periheldrehung von Planeten mit großer 

Exzentrizität und kleinem Halbradius simulieren (s. 

Abb. 10). Die beobachtete Periheldrehung von 43 

Bogensekunden pro Jahrhundert können die Schüle-

rinnen und Schüler mit Hilfe eines Computeral-

gebrasystems ermitteln. 

12. Gravitationswellen: Übersicht

Die Schülerinnen und Schüler können mithilfe der 

von ihnen entwickelten Schwarzschildmetrik die 

Eigenschaften von Gravitationswellen herleiten. 

Darauf aufbauend können sie die Abnahme der Um-

laufdauer des Pulsardoppelsterns B1913 + 16 durch 

die Aussendung von Gravitationswellen qualitativ 

und quantitativ erklären. Das Vorgehen stelle ich in 

den folgenden Abschnitten 14 bis 19 dar. 

Abb. 11: Raumdehnung: Eine Raumdehnung in y-

Richtung wird durch ε = Δy/dy =  hyy/2 beschrieben. 

Die Ableitungen ε‘ kann im Prinzip mit dem Beschleuni-

gungssensor gemessen werden. 

13. Gravitationswellen: Kleine Dehnung

Die Schülerinnen und Schüler haben im Zusammen-

hang mit der Schwarzschildmetrik gelernt, wie eine 

Raumdehnung durch eine Masse erzeugt wird. Bei 

einem Doppelsternsystem drehen sich die Massen 

um einander und bewegen sich somit schnell. Damit 

stellt sich die Frage, was aus einer Raumdehnung 

wird, wenn sich die ursächliche Masse inzwischen 

wegbewegt hat. Wie bildet sich diese Raumdehnung 

zurück? 

Wir betrachten eine sehr kleine Raumdehnung und 

beschreiben diese durch das Element gyy = 1 + hyy 

des metrischen Tensors, wobei die metrische Abwei-

chung hyy viel kleiner als eins ist (s. Abb. 11). Zur 

Deutung wird die resultierende Längenänderung Δy 

analysiert:  

(dσy)
2
 = (dy+Δy)

2
 = (1 + hyy)∙dy

2

Da hyy sehr klein ist, ist auch Δy sehr klein und die 

Tangentennäherung kann angewendet werden: dy
2
 + 

2dyΔy = dy
2
 + hyy∙dy

2
. Daraus folgt:

Δy/dy = hyy/2 

Der Quotient Δy/dy wird in der Materialforschung 

und Werkstoffkunde als Dehnung ε bezeichnet [12], 

kurz: 

ε = Δy/dy 

Also ist die Dehnung halb so groß wie die metri-

sche Abweichung, kurz ε =  hyy/2. Hier wird exemp-

larisch die Dehnung Δy/dy betrachtet. Allgemein 

liegt ein Dehnungstensor εik = Δxi/dxk vor. Dieser 

wird im Anhang Abschnitt 33 untersucht. 

14. Gravitationswellen: Ausbreitung

Der Einfachheit halber wird eine ebene Welle be-

trachtet, die sich in die x-Richtung ausbreitet, und 

deren Wellenfronten parallel zur y-z-Ebene liegen. 

Also ist die Wellengleichung: 

ε = εA ∙ sin(ωt - k∙x) 

Dabei ist εA die Amplitude.  Dieser Zugang ist all-

gemein, da man andere Wellenformen durch solche 

ebenen Wellen ausdrücken kann. 

Die Schülerinnen und Schüler können die zu-

gehörige Bewegungsgleichung mithilfe ihrer Kennt-

nisse über Quantenobjekte und die relativistische 

Energie herleiten: Weil die Dehnung masselos ist, 

gilt für die Energie E
2
 = p

2
 ∙ c

2
. Für ein Quantenob-

jekt ist E = h∙f und p = h/λ. Einsetzen ergibt: h
2
 ∙f

2
 = 

h
2
/λ

2
 ∙ c

2
. 

Auflösen führt zu f∙λ = c. Also breiten sich Gravita-

tionswellen mit Lichtgeschwindigkeit aus. Diese 

Dynamik stimmt mit dem Ergebnis der Einsteinglei-

chung über ein, siehe den Anhang Abschnitt 34. 

15. Gravitationswellen: Messung

Als Nächstes wird untersucht, wie man die Dehnung 

in der Nähe eines Himmelskörpers mithilfe der 

Schwarzschildmetrik und des Beschleunigungs-

sensors lokal im Prinzip messen kann. Das Messver-

fahren wird auf das Vakuum verallgemeinert. 
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Die Schülerinnen und Schüler können das Tenso-

relement gyy = 1/(1-RS/r) mit dem der kleinen 

Raumdehnung gyy = 1 + hyy vergleichen. In der Tan-

gentennäherung ist gyy = 1 + RS/r. Durch Vergleich 

folgt: 

hyy = RS/r = 2ε 

Zur geplanten Messung von ε müssen die Variab-

len RS und r durch die Gravitationsfeldstärke g er-

setzt werden. Hierzu setzen die Schülerinnen und 

Schüler für den Schwarzschildradius den obigen 

Term ein und erhalten so:  

G∙M/r ∙ 1/c
2
 = ε 

Hier kann den Schülerinnen und Schülern auffal-

len, dass sich der Raum grundsätzlich anders dehnt 

als beispielsweise Stahl: Während bei Stahl die 

Dehnung proportional zu Kraft ist, ist beim Raum 

die Dehnung proportional zur potenziellen Gravita-

tionsenergie. Um das geplante Messverfahren zu 

erreichen, leiten wir bezüglich r ab und erweitern 

mit einer Probemasse wie folgt:  

G∙M∙m/r
2
 ∙ 1/m ∙ 1/c

2
 = -ε‘ 

Der erste Quotient ist die Kraft F. Also bilden die 

ersten beiden Quotienten zusammen die Gravitati-

onsfeldstärke F/m=g und es gilt:  

-g/c
2
 = ε‘

Die Schülerinnen und Schüler können mithilfe der 

oben entwickelten Ausbreitungsdynamik feststellen, 

wie man die zeitliche Änderung dε/dt misst: Zu-

nächst gilt die obige Wellengleichung: 

ε = εA ∙ sin(ωt - k∙x) 

Ableiten bezüglich t ergibt: dε/dt = ωε, während 

Ableiten bezüglich r für  x = r zu ε‘ = -kε führt. Also 

ist der Quotient (dε/dt)/ε‘= - ω/k = -c. Demnach ist 

ε‘ = -dε/dt ∙ 1/c. Einsetzen in die obige Gleichung 

für ε‘ = -g/c
2
 ergibt: 

dε/dt = g/c 

Zusammenfassend können die Schülerinnen und 

Schüler somit feststellen, dass man die räumliche 

Änderung der Dehnung mithilfe des Beschleuni-

gungssensors überall und jederzeit im Prinzip mes-

sen kann (s. Abb. 11). Denn der Beschleunigungs-

sensor kann die Gravitationsfeldstärke g bestimmen 

(s. Abb. 4). Auch erkennen sie, dass eine räumliche 

Änderung der Dehnung einer Gravitationsfeldstärke 

entspricht. Für den Fall einer Gravitationswelle kann 

man damit auch die zeitliche Änderung der Dehnung 

mit dem Beschleunigungssensor ermitteln. 

Abb.12: Gedankenexperiment zur Energiemessung: Mas-

se M (grün) auf Kugelfläche mit Radius r. Gravitations-

feldstärke g (rot), innen null. Bewegung der Masse (dr). 

Dabei entsteht neues Gravitationsfeld in Kugelschale 

(blau). Kinetische Energie 0,5Mdv2 ist quadratisch in dv 

und somit verschwindend. Fazit: Die Energie des neuen 

Gravitationsfeldes ist gleich dem Energieverlust M∙g∙dr 

der Masse beim Absinken. Die Energiedichte des Gravita-

tionsfeldes kann somit im Prinzip mit dem Beschleuni-

gungssensor gemessen werden. 

16. Gravitationswellen: Energiemessung

Als Nächstes wird untersucht, wie man die Energie-

dichte einer Raumdehnung mithilfe des Beschleuni-

gungssensors im Prinzip messen kann. Dazu wird 

der Zusammenhang zwischen dem 1/r
2
-Gesetz der 

Zentralkraft und dem Flächeninhalt A = 4πr
2
 der 

Kugel verwendet. Es wird eine Kugel mit einem 

Radius r betrachtet, auf deren Oberfläche eine Masse 

M gleichmäßig verteilt ist (s. Abb. 12). 

Die Masse M erzeugt auf der Kugeloberflä-

che die folgende Gravitationsfeldstärke: g = GM/r
2
. 

Erweitern mit A ergibt:  

g∙A = 4 G ∙ M 

Um die auf die Masse M wirkende Kraft F zu analy-

sieren, wird mit g erweitert:  

g
2
 ∙A = 4 G ∙ Mg 

Um die Energie dE des Feldes innerhalb einer Ku-

gelschale mit dem Radius r und einer Dicke dr zu 

untersuchen, wird die Masse M eine Strecke dr 

durch die auf sie wirkende Gravitationskraft Mg 

bewegt. Formal wird die obige Gleichung mit dr 

erweitert:  

dr∙g
2
 ∙A = 4 G ∙ Mg∙dr = 4 G ∙ dE. 

Dabei entsteht das Gravitationsfeld in der Kugel-

schale neu. Seine Energie erhält es aus dem Ener-

gieverlust dE = M∙g∙dr der Masse M beim Absinken. 

Denn die kinetische Energie 0,5∙M∙dv
2
 ist quadra-

tisch in dv und somit verschwindend. Die Kugel-

schale hat das Volumen dV = dr∙A. Zur Bestimmung 

der Energiedichte dE/dV des Gravitationsfeldes wird 
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die obige Gleichung durch dV dividiert und man 

erhält so: 

g
2
 = 4 G ∙ dE/dV 

Auflösen ergibt für die Energiedichte des Gravitati-

onsfeldes den folgenden Term:  

dE/dV = g
2
/(4 G) 

Auf diese Weise kann die Energiedichte des Gravita-

tionsfeldes überall und jederzeit lokal im Prinzip 

mithilfe des Beschleunigungssensors gemessen 

werden. Denn der Beschleunigungssensor kann die 

Gravitationsfeldstärke g bestimmen (s. Abb. 4). Das 

hergeleitete Ergebnis stimmt mit dem üblichen Re-

sultat der allgemeinen Relativitätstheorie überein, 

siehe den Anhang Abschnitt 35. 

Abb.13: Zwei Pulsare kreisen um den gemeinsamen 

Schwerpunkt (rechts). In großer Entfernung R vom ge-

meinsamen Schwerpunkt werden Gravitationswellen 

beobachtet (links). Der Einheitsvektor n zum Abstands-

vektor R heißt n. Eine Masse Mk hat den Abstandsvektor 

rk zum Schwerpunkt und den Abstandsvektor ak zum 

Beobachter. 

17. Gravitationswellen: Abstrahlung

Die Schülerinnen und Schüler können diese Theorie 

der Gravitationswellen anhand eines Beobachtungs-

beispiels testen. Dazu wird die Abstrahlung durch 

eine lokale Quelle, beispielsweise ein Doppelstern-

system, analysiert. Der Beobachter stellt die oben 

entwickelte Energiedichte dE/dV = g
2
/(4πG) fest. 

Dabei erzeugt jede Masse Mk einen Teil gk der Gra-

vitationsfeldstärke g, kurz g = ∑k gk. Für jede Masse 

Mk können die Schülerinnen und Schüler die Gravi-

tationsfeldstärke gk durch das Potenzial darstellen:  

gk = -G∙Mk/ak 

Damit ist die beobachtete Energiedichte dE/dV im 

Prinzip vollständig bestimmt. Allerdings ist sie 

durch viele große Entfernungen ak dargestellt. Prak-

tischer ist die Verwendung nur einer großen Entfer-

nung R und vieler kleiner Entfernungen rk (s. Abb. 

13). Für diesen Zweck wird für die Energiedichte 

eine Quadrupoldarstellung verwendet, die binnendif-

ferenzierend von einigen Schülerinnen und Schülern 

hergeleitet werden kann (siehe Anhang 36): 

dE/dV = G/(144πc
6
R

2
) ∙ 

{[(d/dt)
3
 Dyy

 
-

 
(d/dt)

3
 Dzz]

2 
+ [2(d/dt)

3
 Dyz]

2
}

Dabei ist das Quadrupolmoment 

Dij = ∑k Mk ∙(3∙rik ∙ rjk – δijrk
2
)

und der Abstand zwischen Mi und Mk ist rik. 

Um den Energieverlust pro Zeit dE/dt der 

Quelle zu erhalten, multiplizieren die Schülerinnen 

und Schüler zunächst die Energiedichte mit der 

Ausbreitungsgeschwindigkeit c und erhalten so die 

Energiestromdichte: 

cdE/dV = G/(144πc
5
R

2
) ∙ 

{[(d/dt)
3
 Dyy

 
-
 
(d/dt)

3
 Dzz]

2 
+ [2(d/dt)

3
 Dyz]

2
}

Dieser Term wird mit dem Flächeninhalt 4πR
2
 der 

Kugeloberfläche mit Radius R multipliziert: 

dE/dt = G/(36c
5
) ∙  

{[(d/dt)
3
 Dyy

 
-
 
(d/dt)

3
 Dzz]

2 
+ [2(d/dt)

3
 Dyz]

2
}

Abb.14: Verkürzung der Periodendauer T des Pulsar-

Doppelsterns B1913+16: Die Periode T der Bahnbewe-

gung des Doppelsternsystems hat sich seit 1975 um über 

40 s verkürzt. Das können die Schülerinnen und Schüler 

mit einer Genauigkeit von ungefähr 1% durch die Abstrah-

lung von Gravitationswellen erklären. 

18. Gravitationswellen: Beobachtung 1974

Die Schülerinnen und Schüler können mithilfe des 

oben bestimmten Energieverlustes pro Zeit die beo-

bachtete Verkürzung der Periodendauer des Pul-

sardoppelsterns B1913+126 erklären (s. [4], S. 424-

425 und [11], S. 58-63). 

Zunächst können die Schülerinnen und Schü-

ler mit Hilfe der beobachteten Periodendauer der 

Bahnbewegung von T = 27907 s und den Massen m1 

= 2,88∙10
30

 kg sowie m2 = 2,78∙10
30

 kg die Bahnbe-

wegung analysieren:  

Zuerst bestimmten sie den Abstand der bei-

den Pulsare: 

r = (T
2
∙G∙[m1 + m2]∙0,25/π

2
)

1/3
 = 1,95∙10

9
 m

Darauf aufbauend folgt die Energie der Bahnbewe-

gung, das ist die Hälfte der potenziellen Energie. 

Diese Hälfte können die Schülerinnen und Schüler 

aus den beiden Massen und deren Abstand r wie 

folgt bestimmen: 

E = -0,5∙G∙m1 ∙m2/r = -1,37∙10
41

 J
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Die Dynamik und damit das Quadrupolmoment 

können sie mithilfe der reduzierten Masse 

μ=m1m2/(m1+m2) und des Abstandes r untersuchen. 

Dazu können sie exemplarisch das Quadrupolmo-

ment wie folgt ausdrücken: 

Dyy = μ∙r
2
(3∙cos

2
φ-1)

Dabei ist φ der ebene Polarwinkel. Sie können drei-

mal ableiten und dabei jeweils dφ/dt = ω = 2π/T = 

0,225mHz einsetzen, denn ω ändert sich kaum: 

(d/dt)
3
 Dyy = 24μ∙r

2
∙ω

3
 ∙cosφ∙sinφ

Vereinfachend können die Schülerinnen und Schüler 

annehmen, dass die vier Quadrupolelemente gleich 

groß sind. Damit  können sie die Energieänderung 

pro Zeit bestimmen:  

dE/dt = G/(9c
5
)∙[(d/dt)

3
 Dyy]

2
 =

64Gμ
2
∙r

4
∙ω

6
∙cos

2
φ∙sin

2
φ/c

5
 

Um die mittlere Energieänderung zu bestimmen, 

können sie vereinfachend über den ebenen Polar-

winkel mitteln, wobei <cos
2
φ ∙ sin

2
φ> = 1/8 ist und 

erhalten so den Betrag der mittleren Energieabnah-

me pro Zeit:  

<dE/dt> = 8Gμ
2
∙r

4
∙ω

6
/c

5
 

Gemessen wurde die Änderung der Periodendauer 

dT/dt = 2,4∙10
-12

. Mit dem obigen Zusammenhang 

von T und r können sie (dT/dt)/T = 1,5(dr/dt)/r fest-

stellen. Weiter können sie mit dem obigen Ener-

gieterm E = -0,5∙G∙m1∙m2/r  der Bahnbewegung 

(dr/dt)/r = -(dE/dt)/E ermitteln. Einsetzen ergibt: 

(dT/dt) = -1,5 T/E∙<dE/dt> = 0,25∙10
-12

 

Das Ergebnis trifft in etwa die Größenordnung. Das 

kommt durch die vereinfachende Gleichsetzung von 

Quadrupolelementen, die vereinfachende Mittelung 

über den ebenen Polarwinkel sowie durch die Ver-

nachlässigung der Bahnexzentrizität von e = 0,62. 

Die Bahnexzentrizität führt zu dem Faktor (s. [4], S. 

423-425):

(1 + 73/24 e
2
 + 37/96 e

4
)/(1 – e

2
)

3,5

Mit diesem Faktor ist (dT/dt) = 3,1∙10
-12

. Die ver-

bleibende Abweichung von 29% können die Schüle-

rinnen und Schüler auf unter 1% senken (s. Abb. 

14), wenn sie mit Hilfe eines entsprechenden Ab-

schnitts im Buch von Landau und Lifschitz die übri-

gen Näherungen durch ausführliche Berechnungen 

ersetzen (s. [4], S. 423-425). 

19. Erdrotation

In den Abschnitten zu Gravitationswellen habe ich 

gezeigt, wie Schülerinnen und Schüler auf elementa-

re Weise erkennen können, dass beschleunigte Mas-

sen die Metrik verändern. In den folgenden Ab-

schnitten 21-14 zur Erdrotation stelle ich eine einfa-

che Möglichkeit vor, durch die Schülerinnen und 

Schüler entdecken können, dass schon eine Rotation 

eines Körpers um die eigene Achse die Metrik än-

dert. Diese Behandlung Raumkrümmung ist didak-

tisch besonders wertvoll, weil sie einer Untergenera-

lisierung entgegen wirkt, eine Strukturgleichheit 

nutzt und aufdeckt und so eine hohe Lernwirksam-

keit erwarten lässt [13-15]. 

20. Erdrotation: Metrik

Die Schülerinnen und Schüler wissen, dass die euro-

päischen Weltraumraketen in Französisch Guyana 

gestartet werden. Sie können den Grund dafür ange-

ben: Das Land liegt dicht am Äquator und hat daher 

eine hohe Bahngeschwindigkeit der Erdrotation. 

Diese wird als Anfangsgeschwindigkeit der Rakete 

genutzt. So wird Energie gespart. 

An diesem Beispiel erkennen die Schülerinnen 

und Schüler, dass die Erdrotation die Fluchtge-

schwindigkeit verändert. Damit verändert sich auch 

der Schwarzschildradius. Somit verändert die Erdro-

tation die Metrik in der Nähe der Erde. Anscheinend 

ist die Metrik in der Umgebung eines Himmelskör-

pers abhängig von dessen Drehgeschwindigkeit. 

Abb.15: Das magnetische B-Feld (links) kennen die Schü-

lerinnen und Schüler gut. Bewegte Massen ändern die 

Metrik. Das können die Lernenden bei relativ geringer 

Geschwindigkeit und niedriger Gravitationsfeldstärke 

durch das strukturgleiche Bg-Feld leicht verstehen und 

handhaben. Das Bg-Feld wird auch gravito-magnetisches 

Feld genannt. Es ist aber nicht magnetisch, sondern ledig-

lich mathematisch strukturgleich zum magnetischen B-

Feld. 

21. Erdrotation: Strukturgleichheit

Man könnte die Wirkung der Erdrotation mit der so 

genannten Kerr-Metrik beschreiben (s. [4], S. 384-

393). Hier sollen aber aktuelle Beobachtungsdaten 

des Satelliten Gravity Probe B (s. Abb. 16 und [16]) 

modelliert werden. Hierfür gibt es einen einfacheren 

Zugang: 

Die Schülerinnen und Schüler wissen, dass das 

magnetische Feld B durch die bewegte Ladung Q 

erzeugt wird, wogegen das elektrische Feld E durch 

die ruhende Ladung Q erzeugt wird. Die Gravitati-

onsfeldstärke g = GM/r
2
 ist formal strukturgleich zur 

elektrischen Feldstärke E = 1/(4πε0)∙Q/r
2
. Entspre-

chend könnte es ein zum B-Feld strukturgleiches Bg-

Feld geben (s. Abb. 15). Diese Idee wurde bereits im 

Jahr 1893 von Heavyside vorgeschlagen (s. [17-20]). 

Inzwischen wurde gezeigt, dass ein solches Bg-Feld 

aus der Einstein-Gleichung folgt für Felder mit ge-

ringer Gravitationsfeldstärke, die sich als retardierte 

Potenziale darstellen lassen (s. z. B. [17-20]). Die 

Schülerinnen und Schüler können mit ihren Kennt-
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nissen des B-Feldes die Struktur des Bg-Feldes wie 

folgt nachvollziehen und anwenden. 

22. Erdrotation: Felderzeugung

Die Schülerinnen und Schüler kennen die Erzeugung 

eines B-Feldes durch eine Spule mit einer Länge L, 

durch die ein Strom mit einer Stromstärke I fließt. 

Mit der magnetischen Feldkonstante μ0 und einer 

Windung gilt für das B-Feld B = μ0∙I/L. 

Die Schülerinnen und Schüler folgern, dass zur 

Erzeugung des Bg-Feldes statt der Ladung die Masse 

kreisen muss. Das wird bei der Erdrotation durch die 

Kreisfrequenz ω und das Trägheitsmoment 

θ=0,4∙ME ∙RE∙0,83 beschrieben. Hierbei fasst der 

Faktor 0,83 Inhomogenitäten der Kugel zusammen 

(s. [22], S. 7). In einem Abstand R vom Mittelpunkt 

beträgt das Bg-Feld Bg = G
0,5

/(2c) ∙θ∙ω/R
3
  (s. [17-

20], S. 2). Denn auch in der Magnetostatik nimmt 

das B-Feld in großer Entfernung proportional zu R
-3

 

ab. Genau genommen hängt der Proportionalitäts-

faktor G
0,5

/(2c) ein wenig vom Breitengrad ab. Diese 

geringe Abhängigkeit wird im Folgenden vernach-

lässigt. Hier ist G Newtons Gravitationskonstante 

und c die Lichtgeschwindigkeit. 

Abb.16: Der Satellit Gravity Probe B: Start 2004. Ergeb-

nisse: Kreisel präzedieren mit 6,6 Bogensekunden pro Jahr 

aufgrund der durch die Erdrotation verursachten Raum-

krümmung sowie um 39,2 Millibogensekunden pro Jahr 

entsprechend dem Lense-Thirring-Effekt. Hier wird die 

zweite Erscheinung durch das Bg-Feld erklärt. 

23. Erdrotation: Präzession

Die Schülerinnen und Schüler kennen die Präzession 

eines Kreisels. Sie kennen auch die Kernspintomo-

graphie. Dabei ist der Atomkern der Kreisel, der im 

Magnetfeld des Kernspintomographen eine Präzes-

sion ausführt. Sie erfahren durch geeignetes Infor-

mationsmaterial, dass die Kreisfrequenz Ω dieser 

Präzession proportional zu B ist: Ω = γ∙B. Dabei 

nennt man den Proportionalitätsfaktor γ das gy-

romagnetische Verhältnis. Bei der Gravitation be-

trägt das mittlere gyromagnetische Verhältnis γ = 

G
0,5

/c. Man kann γ mithilfe des magnetischen Mo-

ments herleiten. Dabei hängt γ vom aktuellen Brei-

tengrad des Satelliten ab und ist bereits entlang sei-

ner Flugbahn über diese Breitengrade gemittelt [18]. 

Eine konkrete Berechnung des Proportionalitätsfak-

tors erscheint zum grundlegenden Verständnis nicht 

unbedingt nötig. 

Mit dieser Analogie zum Kernspintomographen 

können die Schülerinnen und Schüler die Kreisfre-

quenz der Präzession eines Kreisels, der sich in 

einem Abstand R vom Erdmittelpunkt befindet her-

leiten. Dazu setzen sie den Term für Bg ein und 

erhalten: Ω = γ∙Bg = G
0,5

/c∙ G
0,5

∙θ∙ω/(2c∙R
3
) = 0,5 ∙

G∙θ∙ω/(c
2
∙R

3
). 

Mit diesem Ergebnis analysieren sie die Präzessi-

on eines Kreisels im Satelliten Gravity Probe B mit 

der Flughöhe 649 km. Mit der Erdmasse 6∙10
24

 kg 

und dem Erdradius 6378 km erhalten sie das Träg-

heitsmoment θ = 8,07∙10
37

 kg∙m
2
. Mit der Umlauf-

dauer von 24 Stunden erhalten sie die Kreisfrequenz 

ω = 72,7 μHz. Einsetzen ergibt Ω = 0,5G/c
2
∙θ∙ω/R

3
 = 

40,8 Millibogensekunden pro Jahr. Bei diesem Sa-

telliten wurde die Kreisfrequenz Ω = 37,2 +/– 7,2 

Millibogensekunden pro Jahr gemessen (s. [18] S. 

15). 

Der Satellit Gravity Probe B hat eine weitere Prä-

zession, die so genannte geodätische Präzession, von 

6,6 Bogensekunden pro Jahr gemessen [18]. Auch 

diese beruht auf der Erdrotation und kann durch das 

Bg-Feld erklärt werden [17-20]. Allerdings ist hier-

bei die Lernbarriere durch eine benötigte Transfor-

mation des Bezugssystems ein wenig erhöht. 

24. Einsteingleichung

Die von den Schülerinnen und Schülern auf elemen-

tare Weise entwickelten Kompetenzen zur allgemei-

nen Relativitätstheorie sind direkt anschlussfähig. 

Das begründe ich dadurch, dass ich zeige, wie man 

aus den behandelten Beispielen die Einsteinglei-

chung entwickeln kann. 

Die oben entwickelte Schwarzschildmetrik legt 

das Konzept der gekrümmten Raumzeit nahe. Zu-

gleich liefert sie dessen Beschreibung durch den 

metrischen Tensor. 

Aus der obigen Analyse der Gravitationsfeldstärke 

g lässt sich zunächst die Einsteingleichung für kleine 

Abweichungen vom flachen Raum (s. z. B. [3], [4] 

oder [17-20]) wie folgt entwickeln: In großer Ent-

fernung einer Masse M ist die Gravitationsfeldstär-

ke: 

g = - G∙M/r
2
 

Erweitern mit 4πr
2
 ergibt: 

4πgr
2
 = - 4πGM 

Diese beiden Terme lassen sich wie üblich als Ober-

flächen- bzw. Volumenintegral sowie mit der Mas-

sendichte ρ deuten: 

∫gdA = - 4πG∫ρdV 

Diese Gleichung lässt sich wie üblich mithilfe des 

Nablaoperators differenziell darstellen: 

𝛁g = - 4πGρ 

Mithilfe der obigen Analyse der Dehnungen ε ist die 

Gravitationsfeldstärke g = - ε’c
2
. Also wird das Gra-
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vitationspotenzial φ wegen g = - φ‘ wie folgt identi-

fiziert: 

φ = ε∙c
2
 

Die Raumdehnungen entsprechen also im Wesentli-

chen dem Gravitationspotenzial. Hier ist ein Ver-

gleich mit der Werkstoffkunde interessant. Da das 

Potenzial im Wesentlichen die Spannungen darstellt, 

so ist die für das Material charakteristische Span-

nungs-Dehungs-Relation beim Raum im Wesentli-

chen durch den Faktor c
2
 gegeben. Gemäß der oben 

entwickelten Gleichung ε = 0,5 hyy ist das Potenzial 

φ = 0,5c
2
 hyy. Einsetzen in  𝛁g = - 4πGρ ergibt:

𝛁2
hyy = 8πGρ/c

2

Mit der Äquivalenz von Energie und Masse, E = 

mc
2
, ist ρ/c

2
 gleich der Energiedichte E/V. Damit ist: 

𝛁2
hyy = 8πG/c

4
 ∙ E/V

Die Gravitationswelle entspricht der oben entwickel-

ten Wellengleichung 1/c
2
 ∂t

2
 hyy  - ∂x

2
 hyy = 0. Wird

die Welle durch eine Masse oder Energie erzeugt, so 

sollte ein entsprechender Term statt der null auf der 

rechten Seite der Gleichung stehen. Auch sollte für 

den stationären Fall die obige Gleichung 𝛁2
hyy =

8πG/c
4
 ∙ E/V entstehen. Diese beiden Forderungen 

erfüllt die Gleichung: 

1/c
2
 ∂t

2
 hyy - 𝛁

2
hyy = - 8πG/c

4
 ∙ E/V

Entsprechend der Schwarzschildmetrik sollte die 

obige Gleichung zu einer tensoriellen Gleichung 

verallgemeinert werden. Dazu wird das Tensorele-

ment hyy durch hij ersetzt. Auch wird anstelle der 

Energiedichte E/V der Energie-Impuls-Tensor Tij 

verwendet. Da die Gravitationswelle zwei unabhän-

gige Polarisationen hat, wird die Energiedichte ver-

doppelt. Das ergibt die Gleichung: 

1/c
2
 ∂t

2
 hij - 𝛁

2
hij = - 16πG/c

4
 ∙ Tij

Dieses ist die Einsteingleichung für den Fall kleiner 

Abweichungen hij vom flachen Raum (s. z. B. [25]). 

Aus dieser Gleichung lässt sich die Einstein-

gleichung durch folgende Überlegung entwickeln. 

Die übliche Geometrie nach Euklid wurde durch 

Gauss und Riemann durch das Zulassen von Raum-

krümmung verallgemeinert. Dazu wurde neben dem 

metrischen Tensor der Riemannsche Krümmungs-

tensor Rijkl verwendet. Man sucht nun eine Glei-

chung, die für kleine Abweichungen hij zu der obi-

gen Gleichung führt und durch den Krümmungsten-

sor ausgedrückt wird. Dazu muss die Stufe von vier 

auf zwei durch Verjüngung verringert werden. Die 

einzige Möglichkeit bieten der Riccitensor Rij und 

der Krümmungsskalar R (s. z.B. [3], S. 62). Eine 

Gleichung aus diesen beiden Größen, die bei kleinen 

Abweichungen hij in die obige übergeht ist: 

Rij -  0,5R gij =  - 8πG/c
4
 ∙ Tij

Das ist die allgemeine Einsteingleichung. 

Ein solcher Zugang zur Einsteingleichung über 

elementar entwickelte Zwischenergebnisse ver-

spricht eine hohe Lernwirksamkeit (s. z. B. [26], 

[27] und [28]). Beispielsweise entsteht hierbei eine

hohe Effektstärke von d = 1,32 durch das Wiederer-

kennen bekannter Strukturen durch die Lernenden.

Auch entsteht hierbei eine hohe Effektstärke von

d=1,17 durch den Einsatz von Heuristiken. Auch 

werden die Lernenden hier von Anfang an dazu 

befähigt selbstständig mit Symbolen erfolgreich zu 

experimentieren und können so eine Effektstärke 

von d = 0,89 erreichen. Dagegen ist ein Zugang, der 

direkt von der Einsteingleichung ausgeht, auf länge-

re Phasen von rezeptivem Lernen angewiesen, es sei 

denn, die Lernenden kennen bereits wesentliche 

Komponenten der allgemeinen Relativitätstheorie. 

Das lässt selbst beim Einsatz von Advance Organi-

zern nur eine Effektstärke von d = 0,41 erwarten. 

Der vorgestellte Zugang ist auch deshalb Erfolg 

versprechend, weil er Prinzipien des exemplarischen 

und genetischen Lernens berücksichtigt [29].  

25. Möglichkeiten und Grenzen des vorge-

schlagenen Zugangs

Für die Schwarzschildmetrik bietet der vorgestellte 

Zugang den Schülerinnen und Schülern eine einfa-

che und anschauliche Herleitung (s. Abb. 17), wo-

gegen bisherige Ansätze im Rahmen der Schulma-

thematik teils grobe Näherungen einführen [5]. 

Durch die Separation der vierdimensionalen Raum-

zeit in vier einzelne Dimensionen, in denen die je-

weilige Schwarzschildmetrik zunächst eindimensio-

nal bestimmt wird, wird eine besonders einfache und 

zugleich exakte Herleitung möglich, wogegen die 

üblichen Zugänge den aufwändigen Weg über die 

vierdimensionale Differenzialgeometrie und Tenso-

ralgebra wählen [2-4].  

Abb.17: Lernstruktur zur Schwarzschildmetrik: Einfach 

und unkompliziert.  

Selbstverständlich gilt die hier entwickelte 

Schwarzschildmetrik für das Zentralkraftproblem 

und ersetzt daher nicht die auf beliebige Massenver-

teilungen anwendbare Einstein-Gleichung. Dennoch 

kann man wohl sagen, dass das hier gelöste Zentral-

kraftproblem die am häufigsten untersuchte und 

angewendete Lösung der Einstein-Gleichung ist.  

Unter einer „exakten Herleitung“ verstehe ich 

hier, dass man von einer sachgemäßen geometri-

schen Beschreibung ausgeht. Das ist hier der metri-

sche Tensor und bei den üblichen Herleitungen 

zusätzlich der Krümmungstensor [2-4]. Die Dyna-

mik wird dadurch eingeführt, dass nur Terme mit 

möglichst niedrigen Exponenten betrachtet werden. 

Das geschieht hier durch lineare Regression. Das 

Ergebnis ist die richtige Schwarzschildmetrik. 

Die Herleitung beruht auf dem newtonschen 

Gravitationsgesetz. Genutzt werden die zwei 

Grenzwerte, die Kräftefreiheit im Unendlichen und 

der Lichteinfang am bereits 1784 von John Mitchell 

hergeleiteten schwarzen Loch (s. [21] S. 319).  
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Interessant ist, dass zur Entwicklung der 

Schwarzschildmetrik durch Regression schon die 

lineare Regression genügt. Zu untersuchen bleibt, 

inwieweit diese Linearität zur Entwicklung weiterer 

Lösungen genutzt werden kann. Festzustellen bleibt 

ferner, inwieweit das lineare Verfahren Lösungen zu 

offenen Fragen der Gravitation, beispielsweise zur 

Flyby-Anomalie [22,23], ermöglicht. 

Anhand der Schwarzschildmetrik können die 

Schülerinnen und Schüler bereits aussagekräftige 

quantitative Tests nachvollziehen, beispielsweise die 

Uhren in Satelliten des GPS-Systems oder die Shapi-

ro-Verzögerung (s. [11], S. 42). 

Bei diesem Zugang werden die räumlichen 

und zeitlichen Koordinaten mithilfe des Beschleuni-

gungssensors gedeutet: Mit einem im Bezugssystem 

des Himmelskörpers ruhenden Beschleunigungs-

sensor lässt sich im Prinzip die Gravitationsfeldstär-

ke und damit die Änderung ε‘ der Dehnung ε mes-

sen. Durch Messung von ε‘ an mehreren Stellen r 

lässt sich ε(r) extrapolieren und integrieren. Mit ε 

lässt sich das Verhältnis der Länge dσ und der Ko-

ordinate dr bestimmen sowie das Verhältnis der Zeit 

dτ und der Koordinate dt. Dagegen verzichten klas-

sische Lehrbücher auf eine konkrete Deutung der 

Koordinaten (s. z. B. [24] S. 246), Stephani schreibt 

beispielsweise „r und t sind nur Koordinaten und 

haben keine unmittelbare physikalische Bedeutung“ 

(s. [4], S. 103). Der Beschleunigungssensor, der den 

Schülerinnen und Schülern durch Smartphones ver-

fügbar und auch im Innenohr [25] verankert ist, 

ermöglicht eine unmittelbare Deutung der Koordina-

ten für den Fall der Sensoranzeige null. Das kann 

den Lernprozess erleichtern. 

Hier habe ich die übliche Einstein-

Interpretation verwendet. Im Prinzip wäre eine ähn-

liche Herleitung vermutlich auch im Rahmen der 

Lorentz-Interpretation möglich [24]. 

Abb.18: Lernstruktur zu Flugbahnen: Im Prinzip elemen-

tar, es werden verallgemeinerbare Kompetenzen zu Erhal-

tungsgrößen entwickelt.  

Aufbauend auf der Schwarzschildmetrik 

können die Schülerinnen und Schüler die Dynamik 

eines Objekts in der Schwarzschildmetrik analy-

sieren. Hierzu können sie den üblichen Energieterm 

elementar herleiten. 

Mit Hilfe des Energieterms können die Schülerin-

nen und Schüler die übliche Bewegungsgleichung 

für ein Teilchen in der Schwarzschildmetrik herlei-

ten. Daraus sind die beobachteten Bahnen mit Hilfe 

einer einfachen Computersimulation oder durch 

Anwendung eines Computeralgebrasystems ermit-

telbar. Dadurch werden den Schülerinnen und Schü-

lern weitere genaue Tests der allgemeinen Relativi-

tätstheorie zugänglich. 

Dieses Thema wird auch elementar behandelt und 

gut transferierbare Kompetenzen zu Invarianten 

werden entwickelt. Allerdings sind diese Kompeten-

zen relativ anspruchsvoll (s. Abb. 18). Daher er-

scheint diese Thematik eher für die Begabtenförde-

rung geeignet. 

Die Anwendung des elementaren Herlei-

tungsverfahrens auf Gravitationswellen ist aus drei 

Gründen besonders interessant: Während die ele-

mentar hergeleitete Schwarzschildmetrik nur den 

Raum in der Umgebung einer Masse beschreibt, 

wurde zur Erklärung der Gravitationswellen die 

Dynamik der Raumdehnung im Vakuum elementar 

hergeleitet. In der Folge wurde diese Dynamik am 

Beispiel der vom Pulsardoppelstern B1913+16 aus-

gehenden Gravitationswellen (s. [11], S. 58-63) 

getestet. 

Die Einführung der Gravitationswellen ist 

elementar und unkompliziert (s. Abb. 19). Dagegen 

erscheint der Nachweis der Gravitationswellen we-

gen der nötigen Feldenergiedichte und Quadrupolst-

rahlung relativ komplex und daher eher für die Be-

gabtenförderung geeignet (s. Abb. 20). 

Die Analyse der durch Rotation veränder-

ten Metrik ist für die Schülerinnen und Schüler 

besonders einfach, weil eine Strukturgleichheit zur 

bekannten Magnetostatik besteht. Das Thema ist 

besonders interessant, weil es empirische Tests gibt 

und weil es eine für die Schülerinnen und Schüler 

völlig unerwartete Eigenschaft der Schwerkraft 

verdeutlicht. 

Eine weitere wichtige Anwendung der allge-

meinen Relativitätstheorie ist die Dynamik des 

Urknalls. Auch diese lässt sich aus der newtonschen 

Gravitationstheorie gewinnen [21] und für den Un-

terricht elementarisieren [26,27]. Ein aktueller Be-

richt hierzu erscheint ebenfalls in dieser Ausgabe 

[27] und beschreibt auch die von Schülern durchge-

führte theoretische Deutung der aktuellen und mit

dem Physiknobelpreis 2011 ausgezeichneten Be-

obachtung der beschleunigten Expansion des Welt-

alls [28]. Zudem wird beschrieben, wie Schüler die

beim Urknall wesentliche Robertson-Walker-Metrik

elementar hergeleitet haben [27]. Die Urknall-

Thematik konnte ich auch im regulären Unterricht

mit großem Erfolg einsetzen [26]. Das führe ich auf

das große allgemeine Interesse am Urknall zurück.

Insgesamt können die hier dargestellten ele-

mentaren Herleitungen der Schwarzschildmetrik, der 

Flugbahnberechnung von Objekten in der Schwarz-

schildmetrik, der Gravitationswellen sowie der Met-
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riken in der Nähe rotierender Körper als Teil der 

Tradition der Gewinnung von Ergebnissen der all-

gemeinen Relativitätstheorie direkt aus der einfache-

ren newtonschen oder der maxwellschen Theorie 

aufgefasst werden. Auch für die Dynamik des Ur-

knalls ist eine solche elementare Herleitung im Un-

terricht erprobt [27]. Eine Besonderheit der elemen-

taren Herleitung der Schwarzschildmetrik besteht 

darin, dass sie auch sehr große Gravitationsfeldstär-

ken exakt beschreibt. 

Abb.19: Lernstruktur zu Gravitationswellen: Einfach und 

unkompliziert.  

26. Erfahrungen aus dem Unterricht

Eine Unterrichtseinheit zur Schwarzschildmetrik 

(Abschnitte 1-7) wurde in einer Arbeitsgemeinschaft 

für Astronomie erprobt. Die Schülerinnen und Schü-

ler waren in den Klassenstufen 10-12 und kannten 

bereits die newtonsche Gravitationsgleichung sowie 

das Verfahren der linearen Regression. Erwartungs-

gemäß war das Interesse an dem Thema sehr groß 

und die Schüler arbeiteten konzentriert. Sie erfassten 

schnell die jeweils gestellten Probleme. In anschlie-

ßenden Plenumsphasen der Ideenfindung machten 

sie zielführende Vorschläge, die durch Aushandeln 

in Lösungsansätze überführt wurden. Auf dieser 

Basis arbeiteten die Schüler die jeweiligen Lösungen 

weitgehend selbstständig aus, wobei binnendifferen-

zierend individuelle Lernhilfen erteilt wurden. Die 

Schülerinnen und Schüler präsentierten ihre jeweili-

gen Lösungen ausführlich an der Tafel und stellten 

sich der Diskussion im Plenum. 

Damit der Unterricht offen für verschiedene 

Reaktionen der Lerngruppe durchgeführt werden 

konnte, wurden verschiedene Lernhilfen vorbereitet, 

siehe Anhang.   

Die Erprobung dieser Unterrichtseinheit 

zeigt, dass Schülerinnen und Schüler der Klassenstu-

fen 10-12 die Schwarzschildmetrik aus der 

newtonschen Mechanik weitgehend selbstständig 

entwickeln können, wenn sie die vier Dimensionen 

der Raumzeit separat behandeln. Dabei entwickeln 

sie die grundlegende Dynamik wie üblich durch 

Regression mit möglichst niedrigen Exponenten. 

Anschließend konnten die Schüler ihre 

selbstentwickelte Schwarzschildmetrik auf ein geo-

metrisches Problem und ein Navigationsproblem 

anwenden. 

Die Abschnitte 9 bis 12 zu Flugbahnen wurden 

bis auf die Herleitung der Bewegungsgleichung in 

der Arbeitsgemeinschaft für Astronomie und teils in 

Physikleistungskursen erprobt. Die Herleitung der 

Bewegungsgleichung dürfte für die Schülerinnen 

und Schüler im Prinzip eine ähnliche Lernbarriere 

darstellen wie die Entdeckung der Schwarzschild-

metrik. Denn in beiden Fällen eröffnet die Separati-

on der Dimensionen einen Zugang mit einfachen 

eindimensionalen Funktionstermen. Allerdings sind 

die auftretenden Berechnungen bei der Flugbahnbe-

rechnung etwas komplexer als bei der Bestimmung 

der Metrik. Die verwendeten Ergebnisse der speziel-

len Relativitätstheorie und der Computersimulation 

wurden bereits mit Schülerinnen und Schülern er-

folgreich getestet. 

Abb.20: Lernstruktur zum indirekten Nachweis von  

Gravitationswellen: Im Prinzip ist das Vorgehen elemen-

tar. Die mögliche Herleitung des Quadrupolterms ist 

allerdings aufwändig. 

Zu den Abschnitten 13 bis 19 zu Gravitations-

wellen liegen Erfahrungen zur Analyse des Pul-

sardoppelsterns B1913 + 16 aus dem Bereich der 

Arbeitsgemeinschaft für Astronomie vor. Das The-

ma wurde relativ selbstständig von zwei Schülern 

bearbeitet, die später beide Physik studierten. Die 

Ergebnisse wurden der gesamten Arbeitsgemein-

schaft und der Öffentlichkeit auf einem Astronomie-

abend in der Aula vorgestellt. Das Thema stieß auf 

allgemeines Interesse und erweiterte den Horizont 

der Zuhörerinnen und Zuhörer. Durch die hier vor-

gestellte grundlegende Herleitung der Gravitations-

wellen mit einfachen Mitteln kann das Thema Pul-

sar-Doppelsterne in Zukunft im Bereich der Begab-

tenförderung sehr viel umfassender und für die Be-

teiligten befriedigender behandelt werden. 

Es ist zu erwarten, dass das Thema Metrik bei ro-

tierenden Körpern als Anwendung der Magne-

tostatik die Schülerinnen und Schüler interessieren 

kann. So habe ich die Erfahrung gemacht, dass auch 

der Geodynamo als Anwendung der Magnetostatik 

für Schülerinnen und Schüler interessant ist. Auch 

arbeitet ein Jugend forscht Team an diesem Thema.  

Mit dieser Thematik werden viele für das Leben 

grundlegende exemplarische [29] Kontexte ange-

sprochen. Beispiele sind der Raum, die Zeit, die 

Entstehung der Welt beim Urknall, die Beschleuni-
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gung, die Trägheit, die Schwerkraft, die Masse, die 

Energie und die Drehung. Auch werden viele All-

tagskontexte berührt, beispielsweise der Beschleuni-

gungssinn im Innenohr, das GPS, der Kreisel, die 

Überprüfung der Geradlinigkeit beim Hausbau durch 

Laser, die elastische oder plastische Dehnung von 

Werkstoffen oder die Abstrahlung von Wellen durch 

eine lokale Quelle, beispielsweise ein Handy.  

Mit dieser Thematik werden viele Kompetenzen 

entwickelt. Beispiele sind die Erkenntnisgewinnung 

durch Beobachtung, Modellierung sowie Mathema-

tisierung. Weitere geförderte Kompetenzen sind das 

Problemlösen, das Argumentieren, das Auswerten, 

das Planen, dass Arbeiten mit Analogien und Struk-

turgleichheit, das Bilden von Begriffen, das Be-

schreiben von Erkenntniswegen, das Arbeiten mit 

Computersimulationen, das Arbeiten mit Computer-

algebrasystemen sowie das räumliche Denken. 

Abb.21: Lernstruktur zur Metrik bei rotierenden Körpern. 

Im Prinzip ist das Vorgehen elementar und es gibt kaum 

Lernbarrieren, sofern die Schülerinnen und Schüler die 

Lernvoraussetzungen aus der Magnetostatik mitbringen. 

27. Zusammenfassung

Es wurde eine innovative Herleitung der Schwarz-

schildmetrik einschließlich des Energieterms und der 

Bewegungsgleichungen für  massive sowie masselo-

se Teilchen vorgestellt. Diese Herleitung ist beson-

ders einfach, weil die vier Dimensionen der Raum-

zeit separat behandelt werden. Auch ist dieser Zu-

gang begrifflich besonders konkret, weil die Koordi-

naten durch die Anzeige des Beschleunigungs-

sensors eingeführt und gedeutet werden. Die vorge-

stellte Einführung der Schwarzschildmetrik wurde 

bei Schülerinnen und Schülern der Klassenstufen 

10-12 erfolgreich erprobt. Die Schüler benötigten als

besondere Lernvoraussetzung lediglich die Kenntnis

der newtonschen Gravitationsgleichung. Sie konnten

bereits bei der Herleitung relativ eigenständig mit-

wirken. Auch konnten sie anschließend selbstständig

Probleme der Geometrie, der Satellitennavigation 

sowie Bahnberechnung im gekrümmten Raum lösen. 

Somit konnten sie verschiedene quantitative Tests 

der allgemeinen Relativitätstheorie von der Herlei-

tung bis zur Berechnung beobachteter Werte nach-

vollziehen. 

Das Lösungsverfahren ist auch deshalb so 

einfach, weil es durch lineare Regression zur exak-

ten Metrik führt. 

Aufbauend auf dem Lösungsverfahren zur 

Schwarzschildmetrik wurden in elementarer Weise 

die Bahnbewegungen von Objekten in der Schwarz-

schildmetrik, die Gravitationswellen sowie die Met-

riken in der Nähe rotierender Körper behandelt. Für 

alle behandelten Fälle wurden exakte Gleichungen 

hergeleitet, quantitative Vergleiche mit Beobach-

tungsdaten durchgeführt sowie im Unterricht ein-

setzbare Konzepte und Lernmaterialien entwickelt.  

Es wurde konkret gezeigt, wie das vorgestellte 

Konzept einen elementaren und einfachen Zugang 

zur Einsteingleichung bietet. Es wurde durch Ergeb-

nisse der Lernforschung begründet, dass die präsen-

tierte Entwicklung der allgemeinen Relativitätstheo-

rie eine hohe Lernwirksamkeit erwarten lässt. 

Abb.22: Pound-Rebka-Snyder-Versuch: Nachweis der 

Raumkrümmung durch die Verkleinerung der Perioden-

dauer elektromagnetischer Wellen im Schwerefeld der 

Erde. Die Zeitstauchung wird durch drei auf Balkonen 

stehende Uhren veranschaulicht. Die Uhren verwenden 

nicht die Gravitation, wie es beispielsweise bei einer 

Pendeluhr oder bei einer Sanduhr der Fall wäre. Je tiefer 

die Uhr steht, desto weniger weit ist sie gegangen. 

28. Anhang: Lernhilfe zur Krümmung

Wie kann man die Krümmung der Raumzeit veran-

schaulichen und experimentell nachweisen? 

Das Experiment von Pound und Rebka [30] zeigt, 

dass eine elektromagnetische Welle auf dem Weg 

nach unten ihre Periodendauer verkürzt (s. Abb. 22). 

Im frei fallenden System ist die Periodendauer 

gleichbleibend. Die Tatsache, dass der Beobachter 

unten eine verkürzte Periodendauer feststellt, wird 

dadurch gedeutet, dass er die Uhren zum Vergleich 
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heranzieht und diese unten verlangsamt gehen. Diese 

Lernhilfe habe ich eingesetzt. 

29. Anhang: Lernhilfe zur Messung von r

Man kann für die Umgebung eines Himmelskörpers 

der Masse M die Metrik grr = 1/(1 – RS/r)
0,5

 = 1/(1 –

2GM/[rc
2
])

0,5
 ermitteln, indem man r bestimmt. Aber 

wie bestimmt man r? 

In großem Abstand vom Himmelskörper ist der 

Raum kaum gekrümmt. Ist der Himmelskörper ein 

Stern, so kann man das Spektrum untersuchen und 

daraus mit Hilfe von Sternmodellen [31] die Leis-

tung P bestimmen. Der Beobachter kann die Leis-

tungsdichte S messen. Andererseits verteilt sich die 

Leistung P des Sterns gleichmäßig auf eine Kugel-

fläche A = 4πr
2
 mit dem Radius r um den Stern. 

Somit ist die Leistungsdichte S = P/(4πr
2
). Also ist r 

= (P/[4πS])
0,5

. Diese Lernhilfe wurde nicht einge-

setzt. 

30. Anhang: Exakte Herleitung der Bewe-

gungsgleichung für Objekte in der Schwarz-

schildmetrik

Im Bereich der Begabtenförderung können die Schü-

lerinnen und Schüler die Bewegungsgleichung für 

Objekte in der Schwarzschildmetrik auch exakt 

herleiten: Die Schüler kennen eine weitere Invarian-

te: Sie wissen, dass die Energie nicht explizit von 

der Zeit t abhängt. Daher bietet sich diese Variable 

als weiterer invarianter verallgemeinerter Impuls an. 

Zur Nutzung dieses Impulses werden zwei Konven-

tionen eingeführt. Die raumzeitliche Änderung wird 

ds genannt und erhält folgende Vorzeichenkonventi-

on: 

ds
2
 = dr

2
/(1 – RS/r) + (r∙dφ)

2
 – c

2
 dt

2
∙(1 – RS/r)

Es wird eine weitere Zeit benötigt: Eine Uhr, welche 

so kalibriert ist, dass sie die sogenannte Eigenzeit dτ 

mit – c
2
 dτ

2
 = ds

2
 misst, wird als Standarduhr be-

trachtet (dσ steht für räumliche Ausdehnung, ds für 

raum-zeitliche). 

Die Schülerinnen und Schüler können nun 

die Eigenzeit in die Gleichung für ds einsetzen und 

erhalten so: 

– c
2
 = (dr/dτ)

2
/(1 – RS/r) + (r∙dφ/dτ)

2
 –

c
2
(dt/dτ)

2
∙(1 – RS/r)

Auch können sie c
2
 in die Gleichung für die Energie 

E = m0∙c
2  

einsetzen und erhalten so:

E = – m0∙(dr/dτ
 
)

2
/(1 – RS/r)

– m0∙(r∙dφ/dτ)
2
 + m0∙c

2
 (dt/dτ)

2
∙(1 – RS/r)

Da E nicht von der unabhängigen Veränderlichen t 

abhängt, ist in Analogie zum obigen Beispiel der 

folgende Term ein erhaltener verallgemeinerter 

Impuls: 

cdt/dτ∙(1 – RS/r) = A 

Um wie in den vorherigen Beispielen eine Bewe-

gungsgleichung durch Ableiten zu erhalten, werden 

in dem obigen Term für – c
2
 die beiden erhaltenen 

Impulse B und A eingesetzt:  

– c
2
 = (dr/dτ)

2
/(1 – RS/r) + B

2
/r

2
 – A

2
/(1 – RS/r).

 Wie oben wird mit u = 1/r gerechnet, somit ist: 

– c
2
 = B

2
∙u‘

2
/(1 – uRS) + B

2
∙u

2
 – A

2
/(1 – uRS)

Multiplikation mit dem Nenner ergibt: 

– c
2
(1 – uRS) = B

2
∙u‘

2
 + B

2
∙u

2
 – RSB

2
u

3
 – A

2

Die Schülerinnen und Schüler übertragen das Ver-

fahren, indem sie diese Funktion von φ ableiten:  

u‘c
2
RS = + 2B

2
∙u∙u‘ – 3RS B

2
∙u

2
∙u‘ + 2B

2
∙u’u‘‘

Zur Vereinfachung wird durch  2B
2
∙u’ geteilt:  

0,5RS∙c
2
/B

2
 = u – 1,5RS u

2
 + u‘‘

Das ist wieder die übliche Bewegungsgleichung (s. 

[3], S. 105) für einen Körper in der Schwarzschild-

metrik. 

31. Anhang: Analyse des Dehnungstensors

Im Allgemeinen könnte bei einer Gravitationswelle 

jedes Element gik des metrischen Tensors ungleich 

null sein. Wir analysieren die metrischen Abwei-

chungen hik = 2εik = Δxi/dxk, siehe oben. Da sich die 

ebene Welle mit Lichtgeschwindigkeit in x- Rich-

tung ausbreitet, ändern sich die räumlichen Verlän-

gerungen Δxi periodisch wie folgt: 

Δxi = ΔxiA ∙ cos(ωt-2πx/λ) 

Mit der Kettenregel folgt:  

Δxi/dx = Δxi/dt∙dt/dx = Δxi/dt∙1/c 

Wir betrachten ein Koordinatensystem, das sich mit 

der Gravitationswelle mitbewegt, so wie ein Wellen-

reiter auf der Welle reitet. In diesem System ändern 

sich die Verlängerungen Δxi nicht mit der Zeit, kurz 

Δxi/dt = 0. Gemäß der obigen Überlegung mit der 

Kettenregel ändern sich die Verlängerungen dann 

auch nicht mit der x-Koordinate, kurz Δxi/dx = 0. 

Also sind nur die vier Dehnungen εyy, εzz, εzy sowie 

εyz ungleich null. Wegen der Symmetrie des metri-

schen Tensors sind die beiden Dehnungen in unter-

schiedliche Raumrichtungen gleich, kurz εzy = εyz.  

Für die Berechnung der Energieänderung pro 

Zeit ist es wichtig, zu wissen, wie viele voneinander 

unabhängige Polarisationen es gibt. Da die z-

Koordinate abhängig von der y-Koordinate skaliert 

werden kann, können die beiden diagonalen Deh-

nungen εyy und εzz zu einer gemeinsamen Polarisati-

onsrichtung zusammengefasst werden. Dabei ist es 

üblich die z-Koordinate so zu transformieren, dass 

die beiden Dehnungen der diagonalen Raumrichtun-

gen zueinander Gegenzahlen sind, kurz εyy = - εzz. 

Dazu multipliziert man die alte z-Koordinate mit 

(Δz/dz)/(-Δy/dy) und erhält so die neue z-Koordinate 

(s. Abb. 19). 

Insgesamt werden die Dehnungen der Gravi-

tationswelle durch die beiden Parameter εyy und εyz 

vollständig beschrieben. Jedem dieser beiden Para-

meter ordnet man eine Polarisationsrichtung der 

Gravitationswelle zu. Daher beschreibt εyy zusam-

men mit εzz = - εyy eine Dehnung in y-Richtung mit 

einer Stauung in z-Richtung (s. Abb. 23). Dabei 

wechseln sich Dehnungen und Stauungen zeitlich 

periodisch ab. 
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Da die Dehnungen nur senkrecht zur Aus-

breitungsrichtung auftreten, ist die Gravitationswelle 

transversal.  

Insgesamt entspricht diese Analyse des Deh-

nungstensors der Gravitationswellen den üblichen 

Ergebnissen und Konventionen der allgemeinen 

Relativitätstheorie (s. [4], S. 411-413). Die Dehnung 

des Vakuums ist ebenso wie die Dehnung eines 

Werkstoffes ein Tensor zweiter Stufe [12]. 

Abb.23: Polarisation von Gravitationswellen: Eine der 

beiden Polarisationen ist dadurch gekennzeichnet, dass 

sich der Raum in y-Richtung dehnt, während er sich in z-

Richtung kontrahiert. Dabei breitet sich die Gravitations-

wellen x-Richtung aus, also in die Zeichenebene hinein. 

Durch die zeitliche Periodizität wechseln sich Dehnung 

und Kontraktion regelmäßig ab. 

32. Anhang: Vergleich der Dynamiken

Die oben hergeleitete Dynamik von Gravitationswel-

len ist durch die Wellengleichung ε = εA ∙ sin(ωt - 

k∙x) bestimmt. Die zweite Ableitung nach der Zeit 

ist ∂t
2
 ε = - ω

2
∙ε. Die zweite Ableitung nach der Aus-

breitungsrichtung x ist ∂x
2
 ε = - k

2
∙ε = (k/ ω)

2
  ∂t

2
 ε =

1/c
2
 ∂t

2
 ε. Das stimmt mit dem Ergebnis der Ein-

steingleichung über ein (s. [4], S. 411-412). 

33. Anhang: Vergleich der Energiedichten

Die oben hergeleitete Energiedichte von Gravitati-

onswellen ist durch dE/dV = g
2
/(4πG) bestimmt.  

Für die Dehnung εyy wurde oben dεyy/dt = g/c = 

0,5∙dhyy/dt hergeleitet. Aufgelöst nach dem Quadrat 

der Gravitationsfeldstärke g
2
 folgt g

2
 = 0,25∙c

2
 

∙[dhyy/dt]
2
.

Bei der obigen Herleitung der Energiedichte 

wurde g
2
 über eine Kugelschale gemittelt. Zur Be-

rücksichtigung aller vier Dehnungen ist auch hier 

quadratisch zu mitteln: g
2
 = 0,25∙c

2
 ∙ 0,25 ∙{[dhyy/dt]

2

+ [dhzz/dt]
2 
+ [dhyz/dt]

2 
+ [dhzy/dt]

2
}.

Einsetzen ergibt die folgende Energiedichte: 

(dE/dV) = c
2
/(64 G)∙{[dhyy/dt]

2
 + [dhzz/dt]

2 
+

[dhyz/dt]
2 

+ [dhzy/dt]
2
}. Das stimmt mit dem üblichen

Ergebnis der allgemeinen Relativitätstheorie überein 

(s. [4], S. 413). 

34. Anhang: Quadrupole

Im Bereich der Begabtenförderung oder bin-

nendifferenzierend können die Schülerinnen und 

Schüler die Quadrupoldarstellung der Energiedichte 

von Gravitationswellen selbst entwickeln: 

Das Potenzial der Masse Mk ist (siehe oben): 

εk = -G∙Mk/ak ∙ 1/c
2

Da der Beobachter weit entfernt ist, gilt für den 

Abstandsvektor ak = Rk – nk ∙ rk. Dieser Term wird in 

das Potenzial eingesetzt:  

εk = -G∙Mk/(R- n∙rk) ∙ 1/c
2

Damit die Schülerinnen und Schüler hier eine geo-

metrische Reihe identifizieren können, klammern sie 

Nenner R aus:  

εk = -G∙Mk/R∙1/[1- n∙rk ∙1/R] ∙ 1/c
2

Den zweiten Faktoren können Sie als geometrische 

Reihe ausdrücken:  

εk = -G∙Mk/R∙ [1 + n∙rk ∙1/R + (n∙rk )
2
 ∙1/R

2
 + …]

Zur Bestimmung der Gravitationsfeldstärke gk wird 

die zeitliche Ableitung dieses Potenzials verwendet 

(siehe oben):  

gk = c∙dεk/dt = -G∙Mk/(Rc) ∙ 

d/dt [n∙rk ∙1/R + (n∙rk )
2
 ∙1/R

2
 + …]

Durch die zeitliche Ableitung konnte der erste 

Summand 1 beseitigt werden. 

Zur Bestimmung der gesamten Gravitationsfeld-

stärke g summieren die Schülerinnen und Schüler 

über die Massen Mk und erhalten so:  

g = ∑k gk = -G/(Rc) ∙  d/dt 

[n∙∑k Mk ∙rk ∙1/R + ∑k Mk ∙ (n∙rk )
2
 ∙1/R

2
 + …]

Hier können die Schülerinnen und Schüler mithilfe 

des Hebelgesetzes erkennen, dass der erste Sum-

mand gleich null ist. Also stellt der zweite Summand 

den größten Term der geometrischen Reihe dar. Die 

weiteren Terme sind vernachlässigbar, weil der 

Abstand R sehr groß ist:  

g = -G/(cR
3
) ∙ d/dt ∑k Mk ∙ (n∙rk )

2

Die Schülerinnen und Schüler können hier die übli-

chen Quadrupole einführen, indem sie das Produkt 

n∙rk durch die kartesischen Komponenten xi darstel-

len:  

∑k Mk ∙ (n∙rk )
2
 = ∑k Mk ∙ (∑i ni ∙ rki )

2
 =

∑k Mk ∙ ∑ij ni ∙ nj ∙ rki ∙ rkj =  

∑ij ni ∙ nj ∑k Mk ∙ rki ∙ rkj 

Um den üblichen Term für die Quadrupole  zu erhal-

ten, wird mit 3 erweitert:  

∑k Mk ∙ (n∙rk )
2
 = 1/3∙  ∑ij ni ∙ nj ∑k 3Mk ∙ rki ∙ rkj

Um den üblichen Term für die Quadrupole  zu erhal-

ten, wird wie oben die z-Koordinate so transfor-

miert, dass ∑k Mk ∙ ∑ij δij rki ∙ rkj = ∑k Mk ∙ rk 
2
 = ∑k

Mk ∙ (xk
2
 + yk

2
 + zk

2
) gleich null ist. Dann kann δij rki 

∙ rkj in der obigen Summe subtrahiert werden und

man erhält:

∑k Mk ∙ (n∙rk )
2
 =

1/3∙  ∑ij ni ∙ nj ∑k Mk ∙ (3rki ∙ rkj – rk 
2
 δij)

Hier können die Schülerinnen und Schüler die oben 

eingeführten Quadrupole erkennen und erhalten so: 

∑k Mk ∙ (n∙rk )
2
 = 1/3∙  ∑ij ni ∙ nj Dij

Durch Einsetzen ermitteln sie für die Gravitations-

feldstärke den folgenden Term:  

g = -G/(3cR
3
)∙ ∑ij ni ∙ nj d/dt Dij

Da dieser Term mit R
3
 abklingt, könnte man in 

großer Entfernung praktisch keine Gravitationswel-

len beobachten. Den in großem Abstand dominanten 

Term können die Schülerinnen und Schüler durch 
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die Analyse der retardierten Potenziale wie folgt 

ermitteln: Für den Beobachter ist zu einem Zeitpunkt 

t der Quadrupol Dij zu den früheren Zeitpunkt t – R/c 

maßgeblich, kurz Dij(t-R/c). Binnendifferenzierend 

können die Schülerinnen und Schüler dieses bis zur 

zweiten Ordnung entwickeln:  

Dij(t-R/c) = Dij(t)+d/dt∙ Dij(t)∙(-R/c)+0,5(d/dt)
2

Dij(t)∙(R/c)
2

Hier ist der zweite Term in großer Entfernung domi-

nant. Einsetzen ergibt:   

g = -G/(6R∙c
3
)∙ ∑ij ni ∙ nj (d/dt)

3
 Dij

Zur Bestimmung der Energiedichte wird zunächst 

das Quadrat der Gravitationsfeldstärke gebildet:  

g
2
 = G

2
/(36∙R

2
∙c

6
)∙[∑ij ni ∙ nj (d/dt)

3
 Dij]

2

Da bei der Herleitung der Formel dE/dV = g
2
/(4 G) 

zur Energiedichte lediglich die Komponente hyy der 

metrischen Abweichung betrachtet wurde, wird der 

Energieterm so verallgemeinert, dass jede Polarisa-

tion genau einen Beitrag leistet:  

dE/dV = ∑Polarisationen g
2

Polarisation
 
/(4πG)

Entsprechend ist:  

g
2
yy = G

2
/(36∙R

2
∙c

6
)∙[ (d/dt)

3
 Dyy - (d/dt)

3
 Dzz]

2
 und

g
2
yz = G

2
/(36∙R

2
∙c

6
)∙[2(d/dt)

3
 Dyz]

2

Diese Ausdrücke werden in den Term für die Ener-

giedichte eingesetzt:  

dE/dV = G/(144π∙R
2
∙c

6
)∙{[(d/dt)

3
 Dyy - (d/dt)

3
 Dzz]

2
 +

[2(d/dt)
3
 Dyz]

2
}

Diese Energiedichte für die Quadrupolstrahlung 

entspricht der Literatur (s. [4], S. 425). 

Die hier hergeleiteten Terme sind strukturgleich 

zur elektrischen Dipolstrahlung sowie zur elektri-

schen Quadrupolstrahlung (s. [4], S. 223) und be-

schreiben insofern Alltagsgeräte wie das Handy. 

Diese Strukturgleichheit hat ihre Ursache in der 

Strukturgleichheit der Coulombkraft und der 

newtonschen Gravitationskraft. 
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