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Kurzfassung

Es wird eine innovative und besonders einfache sowie konkrete Einfiihrung der Schwarz-
schildmetrik vorgestellt. Das Grundprinzip ist die Separation des vierdimensionalen Problems
in vier einzelne Dimensionen. Diese Trennung der Dimensionen ist moglich, weil ein Zentral-
kraftproblem vorliegt, somit Isotropie besteht und entsprechend die nicht diagonalen Elemente
des metrischen Tensors null sind. Auch ist fur die Trennung der Dimensionen entscheidend,
dass die Geometrie-Dynamik ausgehend von der newtonschen Gravitationstheorie durch Re-
gression entwickelt werden kann und somit die Einstein-Gleichung nicht eingeflhrt werden
muss. Die vorgestellte Losung der Schwarzschildmetrik wird auch dadurch so einfach, dass ei-
ne lineare Regression die exakte Metrik ergibt. Ich présentiere auch Erfahrungen der Erpro-
bung des Konzepts mit einer Lerngruppe aus Schiilerinnen und Schiilern der Klassenstufen 10-
12. Weiter wird gezeigt, wie man aus der Losung der Schwarzschildmetrik in elementarer Wei-
se die exakten Gleichungen zur Bahnbewegung, zu Gravitationswellen und zu durch Rotation
entstehende Metriken entwickeln und diese anhand empirischer Beobachtungen bestétigen
kann. Diese Thematik ist fUr die Schule interessant, weil die Erfahrung zeigt, dass sich immer
viele Schillerinnen und Schuler fur die geheimnisvolle Relativitatstheorie interessieren, weil
das rdumliche Denken geschult wird und weil die PISA-Testergebnisse zeigen, dass die deut-
sche Schule im Bereich der Begabtenférderung durchaus noch Nachholbedarf hat. Der vorge-
stellte Zugang entwickelt anschlussfdhige Kompetenzen, indem er einen einfachen Zugang zur
Einsteingleichung eroffnet.

1.Einleitung

Viele Schilerinnen und Schiiler wiirden gerne auf
einfache Weise verstehen, wie die Einstein-
Geometrie funktioniert, wie man sie mit einfachen
Mitteln misst, wie man Raumkriimmungen einfach
berechnet sowie herleitet und welche Bedeutung
Raumkrimmungen fiir den Alltag haben. Ein Beleg
hierfiir sind Interessenstudien, die zeigen, dass ast-
ronomische Themen viele Schiilerinnen und Schiiler
besonders ansprechen [1]. Im Vergleich zu den bis-
her bekannten Zugéngen bietet der hier vorgestellte
Lernprozess eine Kombination aus exakter Herlei-
tung und besonderer Einfachheit. Die Ublichen Bi-
cher Gber allgemeine Relativitéatstheorie wahlen den
Weg Uber die vierdimensionale Differenzialgeomet-
rie sowie Tensoralgebra und sind daher nicht einfach

[2-4]. Bekannte allgemein verstédndliche Darstellun-
gen verzichten auf eine exakte Herleitung [5,6].

Hier présentiere ich eine Unterrichtseinheit,
bei der Schulerinnen und Schiler die Schwarzschild-
Metrik mithilfe eines Beschleunigungssensors und
durch Separation der vierdimensionalen Raumzeit in
vier einzelne Dimensionen weitgehend selbststandig
entdecken. Auch berichte ich tber Erfahrungen aus
dem Unterricht.

Abb.1: Gravitationslinse [7]: Galaxienhaufen Abell 2218.
Die konzentrischen Lichtbdgen scheinen von einer ge-
meinsamen Lichtquelle zu kommen.

In drei weiterflihrenden Blocken (Abschnitte
9-12, 13-19 und 20-24) zeige ich, wie man aufbau-
end auf der Schwarzschildmetrik Flugbahnen, Gra-
vitationswellen und durch Rotation erzeugte Raum-
krimmungen im Bereich der Begabtenférderung auf
elementare und zugleich exakte Weise behandeln
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kann. Auch hier berichte ich Uber bereits vorhandene
Erfahrungen aus dem Unterricht.

Leserinnen und Lesern, die hauptsachlich an der
Behandlung der Schwarzschildmetrik im Unterricht
interessiert sind, empfehle ich die Blécke tber Flug-
bahnen, Gravitationswellen und Rotation zu (ber-
springen.

) \@O
Lichtquelle

Abb.2: Deutung der Gravitationslinse: Licht der Licht-
quelle wird von der Galaxie abgelenkt und gelangt oben
und unten zum Beobachter. Im Raum entstehen so kon-
zentrische Bogen.

2.Entdeckung der Raumkrimmung

Problemstellung und Vermutungen: Zum Einstieg
sehen die Schulerinnen und Schiler eine Aufnahme
einer Gravitationslinse (s. Abb. 1 und 2). Zum Zu-
standekommen dieser Aufnahme nennen die Schiler
zwei Vermutungen:

- Der Raum ist gekriimmt.

- Das Licht wird durch die Schwerkraft der
passierten Galaxien beschleunigt.

Abb.3: Ein Schiler springt mit einem Beschleunigungs-
sensor am Bauch vom Tisch.

Versuch mit dem Beschleunigungssensor: Zur Unter-
suchung der Beschleunigungshypothese erhélt ein
Schiler einen Beschleunigungssensor, befestigt
diesen in der Nahe des Kérperschwerpunkts und
springt vom Tisch (s. Abb. 3). Die Anzeige des
Sensors wird als Funktion der Zeit grafisch darge-
stellt (s. Abb. 4).
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Abb.4: Anzeige des Beschleunigungssensors [8].

Die wesentlichen Phasen werden gedeutet:

- Zunéchst steht der Schuler auf dem Tisch,
die Anzeige betragt ungefahr 10 m/s?, ob-
wohl die Beschleunigung gleich null ist.

- Wahrend des Absprungs holt der Schiler
aus und die Anzeige schwankt.

- Beim Fallen ist die Anzeige 0 m/s?, obwohl
die Beschleunigung ungefahr 10 m/s? be-
tragt.

Deutung des Versuchsergebnisses: Die Schiiler
erkennen, dass der Sensor nicht einfach eine absolu-
te Beschleunigung anzeigt. Die Schler wollen ver-
stehen, was der Sensor anzeigt und entwickeln ge-
meinsam folgende Ergebnisse:

- Beschleunigung ist eine Frage des Bezugs-
systems.

- Im frei fallenden Bezugssystem ist die Be-
schleunigung gleich null.

- Im frei fallenden Fahrstuhl breitet sich ein
Laserstrahl geradlinig aus (s. Abb. 5).

- Im Fahrstuhlschacht breitet sich ein Laser-
strahl ungeféhr parabelférmig aus (s. Abb.
5).

- Wenn sich ein Laserstrahl im Vakuum von
einem Punkt A zu einem Punkt B ausbrei-
tet, dann geschieht das auf dem kdirzesten
Weg. Da dieser kirzeste Weg im Fahrstuhl-
schacht gekrimmt ist, ist der Raum ge-
krimmt (s. Abb. 5). Hier reflektieren die
Schiiler bewusst, dass das Licht zum MaR-
stab fur den Raum wird.

Damit haben die Schiler die Raumkrimmung ent-
deckt.
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Abb.5: Fallender Fahrstuhl: Links: Im fallenden Fahrstuhl
verluft der Lichtstrahl geradlinig. Nach dem Einschalten
breitet sich die Spitze des Lichtstrahls aus. Rechts: Ein
sehr schneller Schiiler markiert im Gedankenexperiment
zu verschiedenen Zeitpunkten die Spitze des Lichtstrahls
am Fahrstuhlschacht (grau). Es entsteht eine parabelfor-
mige Kurve.

Die Schiler erkennen weiter, dass die Masse, die
den Fahrstuhl oder den Sensor anzieht, die Ursache
dafir ist, dass der Raum gekrimmt ist und ein Be-
schleunigungssensor nicht null anzeigt. Aber in
unendlicher Entfernung von der Masse ist der Raum
nicht gekrimmt und der Sensor zeigt null an. Auch
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im frei fallenden Bezugssystem zeigte der Beschleu-
nigungssensor null an. Insofern zeigt der Beschleu-
nigungssensor den flachen Raum durch die Anzeige
null an.

3.Entdeckung der Schwarzschild-Metrik

Die Schiler wollen nun wissen, wie stark der Raum
gekrummt ist. Dazu betrachten wir wieder den frei
fallenden Fahrstuhl und darin der Einfachheit halber
nur die radiale Raumrichtung.

Die vertikale Strecke, die ein Laserstrahl zuruicklegt,
hangt vom Bezugssystem ab (s. Abb. 5). Im Beispiel
des auf den Himmelskorper Erde hin frei fallenden
Fahrstuhls ist die Anzeige des Beschleunigungs-
sensors null. Dieser fallende Fahrstuhl ist durch die
Geschwindigkeit unnoétig kompliziert. Daher suchen
die Schiler ein anderes Bezugssystem, bei dem der
Beschleunigungssensor null anzeigt. Sie schlagen
das Bezugssystem in unendlicher Hohe tber dem
Himmelskdrper vor.

Einfihrung des metrischen Tensors fiir die Senk-
rechte: Wir vereinbaren die Raumkrimmung mithil-
fe von Streckenléngen in Bezugssystemen zu unter-
suchen, die in unterschiedlicher Hohe iber einem
Himmelskdrper sind. Im Bezugssystem mit unendli-
cher Hohe nennen wir die zurlickgelegte Strecke dr,
im anderen Bezugssystem nennen wir sie do. Der
Quotient do?/dr? wird metrischer Tensor der Senk-
rechten g, genannt. Wir suchen den Funktionsterm
0y(r) fur die Funktion g,, abhdngig vom Abstand r
zum Mittelpunkt des Himmelskdrpers.

Bestimmung des metrischen Tensors im Unendli-
chen: Fir den Grenzwert r - oo finden die Schiiler
sofort heraus, dass der Raum ungekrimmt ist, also
do = dr und somit g,(o0) = 1.
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Abb.6: Ist ein Ball beim Abschuss schnell genug, so
kommt er nicht mehr zurtick.

Bestimmung des metrischen Tensors beim Schwarz-
schildradius: Um nicht nur sehr schwache, sondern
auch sehr starke Schwerkrafte zu analysieren, unter-
suchen die Schler, ob ein senkrecht nach oben
geschossener Ball immer zuriickkommt (s. Abb. 6).
Dazu vergleichen sie die potenzielle Energie mit der
kinetischen. Sie stellen fest, dass der Ball nicht mehr
zuruckkehrt, wenn die kinetische die potenzielle
Energie Ubertrifft. Ab einer bestimmen Anfangsge-
schwindigkeit, der sogenannten Fluchtgeschwindig-
keit v, kommt der Ball nicht zuriick. Sie bestimmen

diese Fluchtgeschwindigkeit durch Gleichsetzen der
Bewegungsenergie mit der potenziellen Energie:
Ve2 = 2GMIr
Dabei ist G die newtonsche Gravitationskonstante
und M die Masse des Himmelskorpers. Ist die
Fluchtgeschwindigkeit groRer als die Lichtge-
schwindigkeit, so kann selbst Licht nicht mehr vom
Himmelskdrper entweichen. Im Grenzfall ist vi = c.
Die Schulerinnen und Schuler bestimmen den ent-
sprechenden Radius, den sogenannten Schwarz-
schildradius:
Rs = 2GM/c?
Fir den Grenzwert r = Rs finden die Schiiler sofort
heraus, dass das Licht gerade nicht entkommen
kann. Da es sich mit Lichtgeschwindigkeit ausbrei-
tet, muss der Weg do unendlich lang sein. Demnach
ist grr(RS) = .
Bestimmung der Schwarzschildmetrik fur die Senk-
rechte: Als nichstes wird der Funktionsterm fur
0r(r) durch lineare Regression aus den beiden Stitz-
stellen bei r 2 oo und r 2 Rg bestimmt:
Firr 2 oo ist g, = 1.
Furr > Rs gilt g, > oo.
Zur konkreten Berechnung beseitigen die Schiler
die Unendlichkeiten durch Einsetzen der Kehrwerte
u=1/rund q = 1/g,;. Damit sind die beiden Stiitz-
stellen g(0) = 1 und q(Us) = 0. Die Schuler finden
durch lineare Regression den Funktionsterm:
g(u) =1 —u/Us
Durch Einsetzen der urspriinglichen Variablen ent-
decken die Schiler die Schwarzschildmetrik:
gn(r) = 1/(1 - Re/r)
Reflexion der Methode: Die Schilerinnen und Schi-
ler fragen, ob man den Funktionsterm einfach durch
Regression bestimmen darf. Sie erkennen, dass der
Funktionsterm ein neues Naturgesetz darstellt, das
beschreibt, wie der Raum in der Nahe einer Masse
gekrimmt wird. Sie erinnern sich, dass man neue
Naturgesetze durch Messwerte und Regression be-
stimmt. Sie erkennen weiter, dass hier anstelle der
Messwerte zwei durch Uberlegung erschlossene
Stitzstellen verwendet wurden. Abschlieend teile
ich mit, dass das Naturgesetz in einer relativ friihen
Darstellung in Form der sogenannten Einstein-
Gleichung formuliert wurde und von Einstein eben-
so durch Regression mit mdglichst kleinen Exponen-
ten bestimmt wurde.
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NC Tr=6778 km

7l B r=6578 km

dr=1
do =1

A r=6378 km

Abb.7: Dreieck ABC aus Laserstrahlen: Im Bezugssystem
mit der Beschleunigungssensoranzeige null ist das Dreieck
gleichschenklig und rechtwinklig. Denn das Licht hat
keinen Grund von der geradlinigen Ausbreitung abzuwei-
chen. Wie groR ist die Winkelsumme im Bezugssystem
am Erdboden?

4. Anwendung auf die Winkelsumme im Dreieck

Die Schuler fragten nach der Raumkriimmung in
andere Raumrichtungen. Sie erkennen selbst, dass in
Tangentialrichtung der ruhende Beschleunigungs-
sensor null anzeigt. Das bedeutet, dass der Raum in
Tangentialrichtung nicht gekriimmt ist. Das entspre-
chende Element des metrischen Tensors wird hier
mit gy bezeichnet und hat den Betrag 1.

Zur Veranschaulichung untersuchen wir die Winkel-
summe in einem Dreieck ABC (s. Abb. 7). Weil
Licht als invarianter Mal3stab gewahlt wurde, wird
das Dreieck durch Lichtstrahlen bestimmt: Ein
Strahl geht von C nach A senkrecht nach unten
(grtin), wéhrend ein zweiter Strahl (rot) von C zu
einem senkrechten Spiegel bei B geht, dort reflek-
tiert wird und bei A den ersten Strahl schneidet. A
liegt am Erdboden 6378 km (iber dem Erdmittel-
punkt, B 200 km héher bei 6578 km und C 400 km
héher bei r = 6778 km. Das Dreieck hat im Bezugs-
system mit Beschleunigungssensoranzeige null die
Winkel o=y =45° und 3 = 90°. Zu Berechnung der
Winkel werden vier Hilfsdreiecke (gelb) betrachtet
mit dr = 1m = dx.

Die Schilerinnen und Schiler berechneten
zundchst den Winkel a des Hilfsdreiecks bei A: Die
waagerechte Kantenlange betragt dx = 1m. Die
senkrechte Kantenlange betragt do = dr/(1-Rg/r)*°
mit r = 6378 km. Dabei ist Rs = 2GM/c*=2 -
6,67-10"" Nm?/kg? - 5,97-10%*kg/(3-10°m/s)* = 8,85
mm. Daher ist:

do = 1m/(1-8,85mm/6378km)®° = 1m+693,791 pm
Die Schulerinnen und Schiler berechneten den
Winkel:
a = arctan(1/do) = 45° — 19,8757n°

Fir den Winkel B, ist entsprechend do = 1/(1-
8,85mm/6578km)®° = 1m+672,697 pm. Also ist B; =
arctan(do) = 45° + 19,2714n°. Da B, auf der glei-
chen Hoéhe liegt, ist B, = Bs.

Far den Winkel vy ist analog do = 1/(1-
8,85mm/6778km)°° = 1m+652,848 pm. Also ist y =
arctan(1/ds) = 45° — 18,7027n°.

Die Winkelsumme betragt daher:

o+ B+ Py +y=180°—35,6p°
So entdeckten die Schillerinnen und Schuler, dass
die Winkelsumme in diesem Dreieck am Erdboden
um 35,6 p° von dem aus dem Geometrieunterricht
bekannten Wert 180° abweicht. Auch bemerkten sie,
dass ein waagerecht liegendes Dreieck genau die
bekannte Winkelsumme 180° hat. Ferner verallge-
meinerten sie, dass fur beide waagerechte Richtun-
gen das Element des metrischen Tensors gleich eins
ist.

Abb.8: Das GPS: Satelliten umkreisen die Erde [9].

5. Anwendungen auf das GPS

Die Schiler merkten, dass die Abweichung der
Winkelsumme im Dreieck sehr klein ist und fragten,
ob die Raumkriimmung uberhaupt eine praktische
Bedeutung im Alltag hat. Sie stimmten zu, dass das
GPS aktuell ein weit verbreitetes geometrisches
Messsystem ist. Also untersuchten wir, welchen
Einfluss die Raumkrimmung auf das GPS hat.

Die Schulerinnen und Schiler konnten das Prinzip
der Laufzeitmessung anhand einer Abbildung (s.
Abb. 8) erklaren. Damit war Kklar, dass wir den Gang
der Uhren an Bord der Satelliten in 20200 km Flug-
hohe iber dem Erdboden untersuchen miissen.
Entdeckung der Schwarzschildmetrik der Zeitachse:
Die Schulerinnen und Schiler untersuchten Licht,
das sich von groRer Entfernung radial in Richtung
eines schwarzen Lochs ausbreitet. Sie stellten fest,
dass die Schwerkraft die Ausbreitung des Lichts
nicht behindert, sondern allenfalls beginstigt. Das
begrindeten sie damit, dass das schwarze Loch
aufsteigendes Licht behindert. Sie folgerten, dass
eine Uhr im Bezugssystem des Himmelskorpers eine
endliche Zeit anzeigt, wenn das Licht den Schwarz-
schildradius erreicht. Da das Licht im Bezugssystem
des Himmelskdrpers eine unendliche Strecke zu-
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rickgelegt hat, muss die Uhr unendlich langsam
gegangen sein. Daher geht das Element g des metri-
schen Tensors gegen null, wenn r gegen den
Schwarzschildradius geht. Hier nennen wir ein Zeit-
intervall dt, wenn die Uhr in einem unendlich hohen
Bezugssystem ruht. Das entsprechende Zeitintervall
nennen wir dt, wenn die Uhr im Bezugssystem des
Himmelskarpers ruht. Damit ist gy = de’/dt?.
Im Folgenden konnten die Schiler den gesuchten
Funktionsterm fiir gy analog zu der Bestimmung von
0y VOllig selbststandig ermitteln:
FUI’ r 9 o0 lst it = l
Furr > Rsgilt g = 0.
Das Einsetzen des Kehrwerts u = 1/r ergibt gy(0) =
1lund gy (Us) = 0. Die Schuler bestimmten durch
lineare Regression den Funktionsterm gy (u) =1 -
u/Usg sowie:
Ou (N =1-Ryr
Berechnung der Abweichung der Uhr im Satelliten:
Mithilfe der hergeleiteten Schwarzschildmetrik fir
die Zeitachse konnten die Schilerinnen und Schiler
selbststdndig berechnen, um wie viel Prozent die
Uhr im Satelliten schneller geht als auf der Erdober-
flache: Zundchst bestimmten sie fur den Erdradius
O(Fere) = 1 — 1,39-10 und fiir den Satelliten
Ou(rsa)=1— 0,33-10°°. Weiter bestimmten sie fur dt
= Is die Dauer dtgge = dt - [ gy (Fere) 1°° = 15-694ps.
Analog bestimmten sie fiir dt = 1s die Dauer dtsy =
dt - [ gy (rsa)) 1°° = 1s-166ps. Die Abweichung be-
tragt 527ps je Sekunde oder 52,7 n%. Das entspricht
einer Abweichung von 45,6 ps pro Tag. Der entspre-
chende Streckenfehler betragt 45,6 ps/Tag - 300000
km/s = 13,7 km/Tag. Das wére ein véllig inakzep-
tabler Fehler des GPS. Daher ist klar, dass das GPS
nur dadurch funktioniert, dass es die Raumkriim-
mung richtig berlicksichtigt. Zusétzlich ist die Zeit-
dilatation aufgrund der Geschwindigkeit des Satelli-
ten zu berlcksichtigen [10].
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Abb.9: Anschauliche Darstellung der Schwarzschild-
Metrik: Betrachtet wird eine zweidimensionale Flache des
Raums. In der N&he der Masse sind die Strecken verlan-
gert. Das wird dadurch veranschaulicht, dass die Flache in
eine visuell vorhandene weitere Richtung gedehnt wurde.
In der N&he der Masse vergeht die Zeit verlangsamt. Das
wird dadurch illustriert, dass die Uhr noch nicht weit
gegangen ist. Der Lichtstrahl, der von der Lichtquelle ins
Auge lauft, misste eine sehr gedehnte Flache durchque-
ren, wenn er naher an der Masse verlaufen wiirde. Daher
macht der Lichtstrahl einen Bogen um die Masse.

6.Erklarung der Lichtbdgen

Die Schwarzschild-Metrik wird wie tblich durch die
radiale und eine tangentiale Raumrichtung in Form
eines Trichters dargestellt (s. Abb. 9). Licht, das von
der Lichtquelle zum Beobachter gelangt, wirde auf
dem scheinbar geraden Weg tief durch den Trichter
verlaufen und somit einen Umweg nehmen. Der
scheinbar gekrimmte Weg ist kiirzer. So entsteht die
Lichtablenkung (s. Abb. 2). Auf diese Weise erklar-
ten die Schilerinnen und Schiiler die fotografierten
Lichtbdgen (s. Abb. 1). Auch wurde ihnen veran-
schaulicht, dass die obige Winkelsumme im Dreieck
kleiner als 180° ist.

7.Weiterfihrende Themen

In den obigen Abschnitten wurde gezeigt, wie die
Schiilerinnen und Schiiler auf einfache Weise die
Raumkrimmung in der Umgebung der Erde herlei-
ten und anwenden kénnen. Das interessiert viele
Schiilerinnen und Schiler der Sekundarstufe zwei.
Es folgen drei Blocke von Abschnitten mit weiter-
fihrenden Themen. Im ersten Block mit den Ab-
schnitten 9 bis 12 werden Flugbahnen von Objekten
in der Schwarzschildmetrik entwickelt. Im zweiten
Block mit den Abschnitten 13 bis 19 werden Gravi-
tationswellen behandelt. Im dritten Block in den
Abschnitten 20-24 wird die durch die Eigenrotation
eines Korpers verursachte raumzeitliche Krimmung
behandelt. Diese drei Blocke erscheinen besonders
fiir die Begabtenforderung beispielsweise in Ar-
beitsgemeinschaften geeignet.

8.Flugbahn: Energieterm

Die Schilerinnen und Schiler konnten die Krim-
mung des Lichtwegs nachvollziehen (s. Abb. 9).
Nun soll der beobachtete Ablenkwinkel (s. [3], S.
113) berechnet werden. Dazu wird zundchst der
Energieterm entwickelt:

Wir betrachten zuerst den flachen Raum. Hier
gilt fur die Summe aus Ruheenergie und kinetischer
Energie:

Eftach = Moc”/(1 — V?/c?)*®

Die Schuilerinnen und Schiler erkannten an
dem Divisor (1-v%/c?)®®, dass ein Objekt mit Ruhe-
masse mg die Lichtgeschwindigkeit ¢ nicht erreichen
kann. Auch konnen die Schiilerinnen und Schiiler
ein masseloses oder massives Teilchen als Welle
beschreiben mit:

Eftach = h-ffiach = W/ T fiacn
Nun transformieren wir in ein System mit der
Anzeige ungleich null des Beschleunigungssensors,
konkret wahlen wir ein zum Himmelsk&rper ruhen-
des Bezugssystem bei einer Koordinate r. Hier wird
die folgende Periodendauer beobachtet:
T = Thaer(1 - Rg/1)"°
Einsetzen ergibt folgenden Energieterm: Een = W/T;
Eunten = N[ Ttiacn (1 — RS/r)OVS] = Efiacn/(1 - RS/I‘)OY5
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Nach dem Prinzip der Energieerhaltung ist die
Summe aus der Energie der relativistischen oder
dynamischen Masse und der potenziellen Energie
Epot konstant, auch ist die potenzielle Energie im
flachen Raum gleich null. Somit gilt:

Eﬂach = Eunten + Epot
Aufldsen und Einsetzen ergibt:
Epot = Eflach — Eunten = Eftach * [1 - 1/(1 - RS/r)O’S]

Mit der Tangentennaherung fur kleine Rg/r gilt:

Epot = — Eflach - 0,5 Ro/r
Fur die invariante Gesamtenergie E gilt:

E = Epot + Efiach = Efiacn - [1 — 0,5 Rg/r]

Mit der Tangentennaherung fur kleine Rg/r gilt:

E = Efiaen - (1 - Rg/N)*°
Einsetzen des geschwindigkeitsabhdngigen Terms
flir Egaen fuhrt zu dem Energieterm flr einen im

gekrimmten Raum bewegten Korper mit einer Ru-
hemasse m:

E = my-c? -(1 — Re/r)*?/(1 — v?/c?)%®
So kdnnen die Schulerinnen und Schiler den Ubli-
chen Energieterm (s. [4], S. 299) auf elementare

Weise im Rahmen der Tangentennaherung finden,
eine exakte Herleitung befindet sich im Anhang 32.

Die Schilerinnen und Schiler deuten den
Energieterm, indem sie fir v?/c? sowie fiir Rg/r die
Tangentenn&herung durchfiihren und erhalten so:

Eo = My-c? + mev?/2 — GMmy/r
Sie erkennen den Term fir die potenzielle Energie
mit seiner rein radialen Abhédngigkeit sowie den

Term flr die kinetische Energie mit der in v enthal-
tenen radialen und tangentialen Komponente.

Die Schilerinnen und Schiler analysieren nun die
Komponenten der kinetischen Energie. Dazu zerle-
gen sie v? in Polarkoordinaten: v = (do/dt)? +
(r-dg/dt). Hier wurde gy, = gxx = 1 verwendet. Ein-
setzen der Schwarzschildmetrik ergibt:

V2 = (dr/dt)?/(1 — Re/r) + (r-de/dt)?

Die verlangerte radiale Strecke Ubertrégt sich auf

den Term der kinetischen Energie.

9.Flugbahn: Bewegungsgleichung

Zur Berechnung des Ablenkwinkels wird die Be-
wegungsgleichung aus dem obigen Energieterm
hergeleitet. Das Verfahren wird am Beispiel des
obigen klassischen Energieterms erprobt:

Eo = mgc? + mov/2 — GMmy/r
Diese Gleichung wird als Funktion der Zeit aufge-
fasst und abgeleitet:
0 = my'v-v* + v-GMmy/r?
Die Schulerinnen und Schiler dividieren durch v,
erkennen in v* die Beschleunigung a und erhalten so
die bekannte Bewegungsgleichung:
Mo-a = — GMmg/r?

Die Schilerinnen und Schuler wissen, dass
die Bewegung besonders einfach ist, wenn der Im-
puls erhalten ist. Zum Auffinden von allen mdogli-

chen erhaltenen Impulsen wird als weiteres Beispiel
ein schrager Wurf betrachtet. Dabei ist der Ener-
gieterm:

E = 0,5mv,” + 0,5mv,” + mgy
Diese Gleichung wird wie oben abgeleitet:
0 = mvyv, " + mvyv,© +mgvy

Weil E nicht von x abhéngt, ist v,* = 0 und mvy = py
ein erhaltener Impuls. Damit ist 0 = mvyv,‘ +mgv,.
Division durch mvy ergibt die Bewegungsgleichung:
0=vy+g.

Die Schillerinnen und Schiiler Ubertragen das

Verfahren auf den obigen Energieterm fir einen im
gekrimmten Raum bewegten Kdorper:

E? = mp>c* (1 — R¢/r)/(1 — VIc?)
Fur Korper, deren Geschwindigkeiten klein im Ver-
gleich zur Lichtgeschwindigkeit sind, kénnen die

Schiler die Tangentenndherung fur kleine v/c an-
wenden:

E? = mo®c* (1 — Ry/r)-(1 + V¥c?)
Um einen erhaltenen Impuls zu finden, werden die
obigen Polarkoordinaten fiir v2 eingesetzt:
E? = me>c* (1 = Ry/r) -
[1 + 1/c? (dr/dt)?/(1 — Rg/r) + 1/c? (r-de/dt)?]
Die Schulerinnen und Schiiler kénnen merken, dass
E nicht von ¢ abhéngt. In Analogie zum obigen
Beispiel ist dann  r*de/dt-d(de/dt)/dt null und
r’-de/dt = B ein erhaltener Impuls. Versuche mit
dem Drehstuhl motivieren, dass es sich um den
Drehimpuls pro Masse handelt. Da solche erhaltenen
GroRen durch ihre Invarianz die Analyse vereinfa-
chen, wird B eingesetzt. Das ergibt:
E¥mq>c* = (1 — Ry/r) + 1/c? (dr/dt)® +
1/c*B%r* (1 — Ry/r)
Um Quotienten zu vermeiden wird wieder u = 1/r
verwendet. Zur Verringerung der Dimensionen wird
mit u(e) gerechnet. Damit sind die Terme nun: B/r =
B-u und mit der Kettenregel sowie der Abkiirzung
du/de=u‘ ist dr/dt = dr/du-du/de-de/dt = -1/u*
uB-u? = - B-u‘. Somit ist:
E%m¢*c* = (1 — uRg) + BY/c?u? + B%/c®u*(1 — uRg)
Die Schilerinnen und Schiler Gibertragen das obige
Verfahren zur Gewinnung einer Bewegungsglei-
chung, indem sie diese Gleichung bzgl. ¢ ableiten
und dabei die Invarianz von E und B nutzen:
0 = -u‘Rs + 2B¥/c*u-u — 3Rg B%/c®uu‘ +
2B?/c?umu
Zur Vereinfachung wird durch 2B%u’/c? geteilt:
0=-0,5Rgc’/B? + u—1,5Rg U? + u‘*
Das ist die (ibliche Bewegungsgleichung (s. [3], S.
105) fur einen Kdrper in der Schwarzschildmetrik.
Diese Herleitung verwendet eine Tangenten-
naherung. Binnendifferenzierend kann eine exakte
Herleitung eingesetzt werden, siche den Anhang im
Abschnitt 31.
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10.  Flugbahn: Bewegungsgleichung fiir Licht

Die Schilerinnen und Schiiler konnten diese Glei-
chung auf Photonen oder Licht wie folgt anwenden.
Der Drehimpuls pro Ruhemasse, also B geht fur
Licht gegen unendlich, da Licht keine Ruhemasse
hat. Folglich verschwindet der Term mit 1/B? und
die Bewegungsgleichung fiir Licht lautet:
0=u—-15Rsu?+u

Abb.10: Periheldrehung des Merkur: Die elliptische Bahn
dreht sich als Ganzes.

11.  Flugbahn: Berechnung

Aus den obigen Bewegungsgleichungen konnten die
Schulerinnen und Schiiler mit Hilfe des Eulerschen
Polygonzugverfahrens am PC leicht die Bahnen
bestimmen. So fanden sie fir die Lichtstrahlen,
welche die Sonne passieren, den beobachteten Ab-
lenkwinkel von 1,75 Bogensekunden. Ebenso konn-
ten sie die Periheldrehung von Planeten mit groRRer
Exzentrizitat und kleinem Halbradius simulieren (s.
Abb. 10). Die beobachtete Periheldrehung von 43
Bogensekunden pro Jahrhundert kénnen die Schiile-
rinnen und Schiler mit Hilfe eines Computeral-
gebrasystems ermitteln.

12.  Gravitationswellen: Ubersicht

Die Schilerinnen und Schiiler kbnnen mithilfe der
von ihnen entwickelten Schwarzschildmetrik die
Eigenschaften von Gravitationswellen herleiten.
Darauf aufbauend kdénnen sie die Abnahme der Um-
laufdauer des Pulsardoppelsterns B1913 + 16 durch
die Aussendung von Gravitationswellen qualitativ
und quantitativ erkléren. Das VVorgehen stelle ich in
den folgenden Abschnitten 14 bis 19 dar.

Y
Y
Av-_
dy 4 dy 4
X X

Abb. 11: Raumdehnung: Eine Raumdehnung in y-
Richtung wird durch € = Ay/dy = h,,/2 beschrieben.

Die Ableitungen & kann im Prinzip mit dem Beschleuni-
gungssensor gemessen werden.

13.  Gravitationswellen: Kleine Dehnung

Die Schilerinnen und Schiler haben im Zusammen-
hang mit der Schwarzschildmetrik gelernt, wie eine
Raumdehnung durch eine Masse erzeugt wird. Bei
einem Doppelsternsystem drehen sich die Massen
um einander und bewegen sich somit schnell. Damit
stellt sich die Frage, was aus einer Raumdehnung
wird, wenn sich die urséchliche Masse inzwischen
wegbewegt hat. Wie bildet sich diese Raumdehnung
zurick?

Wir betrachten eine sehr kleine Raumdehnung und
beschreiben diese durch das Element gy, = 1 + hy,
des metrischen Tensors, wobei die metrische Abwei-
chung hy, viel kleiner als eins ist (s. Abb. 11). Zur
Deutung wird die resultierende Ladngen&nderung Ay
analysiert:

(doy)? = (dy+Ay)? = (1 + hyy)-dy?

Da hyy sehr klein ist, ist auch Ay sehr klein und die
Tangentenndherung kann angewendet werden: dy? +
2dyAy = dy” + hy,-dy?. Daraus folgt:

Ayldy = hy, /2

Der Quotient Ay/dy wird in der Materialforschung
und Werkstoffkunde als Dehnung & bezeichnet [12],
kurz:

€= Ayldy

Also ist die Dehnung halb so grof3 wie die metri-
sche Abweichung, kurz € = hy,/2. Hier wird exemp-
larisch die Dehnung Ay/dy betrachtet. Allgemein
liegt ein Dehnungstensor g; = Ax;/dx vor. Dieser
wird im Anhang Abschnitt 33 untersucht.

14.  Gravitationswellen: Ausbreitung

Der Einfachheit halber wird eine ebene Welle be-
trachtet, die sich in die x-Richtung ausbreitet, und
deren Wellenfronten parallel zur y-z-Ebene liegen.
Also ist die Wellengleichung:

€ =¢gp - sin(ot - kx)
Dabei ist ea die Amplitude. Dieser Zugang ist all-
gemein, da man andere Wellenformen durch solche
ebenen Wellen ausdriicken kann.

Die Schulerinnen und Schuler kdnnen die zu-
gehdrige Bewegungsgleichung mithilfe ihrer Kennt-
nisse Uber Quantenobjekte und die relativistische
Energie herleiten: Weil die Dehnung masselos ist,
gilt fiir die Energie E* = p® - ¢°. Fiir ein Quantenob-
jekt ist E = h-fund p = h/A. Einsetzen ergibt: h® -f* =
h?/A% - ¢
Auflosen fiihrt zu fA = c. Also breiten sich Gravita-
tionswellen mit Lichtgeschwindigkeit aus. Diese
Dynamik stimmt mit dem Ergebnis der Einsteinglei-
chung Uber ein, siehe den Anhang Abschnitt 34.

15.  Gravitationswellen: Messung

Als Néchstes wird untersucht, wie man die Dehnung
in der Néhe eines Himmelskdrpers mithilfe der
Schwarzschildmetrik und des Beschleunigungs-
sensors lokal im Prinzip messen kann. Das Messver-
fahren wird auf das Vakuum verallgemeinert.
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Die Schulerinnen und Schuler kénnen das Tenso-
relement g,, = 1/(1-Rs/r) mit dem der kleinen
Raumdehnung gy, = 1 + hy, vergleichen. In der Tan-
gentenndherung ist gy, = 1 + Rg/r. Durch Vergleich
folgt:

hyy = Rs/r =2¢

Zur geplanten Messung von € miissen die Variab-
len Rs und r durch die Gravitationsfeldstéarke g er-
setzt werden. Hierzu setzen die Schilerinnen und
Schuler fir den Schwarzschildradius den obigen
Term ein und erhalten so:

GM/r-1/c®=¢

Hier kann den Schulerinnen und Schiilern auffal-
len, dass sich der Raum grundsatzlich anders dehnt
als beispielsweise Stahl: Wahrend bei Stahl die
Dehnung proportional zu Kraft ist, ist beim Raum
die Dehnung proportional zur potenziellen Gravita-
tionsenergie. Um das geplante Messverfahren zu
erreichen, leiten wir beziiglich r ab und erweitern
mit einer Probemasse wie folgt:

GMm/r?- 1/m- 1/¢? = -¢¢

Der erste Quotient ist die Kraft F. Also bilden die
ersten beiden Quotienten zusammen die Gravitati-
onsfeldstérke F/m=g und es gilt:

-glc® = ¢

Die Schulerinnen und Schuler kdnnen mithilfe der
oben entwickelten Ausbreitungsdynamik feststellen,
wie man die zeitliche Anderung de/dt misst: Zu-
néchst gilt die obige Wellengleichung:

€ =r¢gp - Sin(mt - k-X)
Ableiten beziiglich t ergibt: de/dt = we, wihrend
Ableiten beziiglich r fir x =r zu ¢ = -ke fiihrt. Also
ist der Quotient (de/dt)/e‘= - w/k = -c. Demnach ist
g* = -de/dt - 1/c. Einsetzen in die obige Gleichung
fiir £ = -g/c? ergibt:

de/dt=g/c

Zusammenfassend kdnnen die Schilerinnen und
Schiler somit feststellen, dass man die radumliche
Anderung der Dehnung mithilfe des Beschleuni-
gungssensors tberall und jederzeit im Prinzip mes-
sen kann (s. Abb. 11). Denn der Beschleunigungs-
sensor kann die Gravitationsfeldstarke g bestimmen
(s. Abb. 4). Auch erkennen sie, dass eine raumliche
Anderung der Dehnung einer Gravitationsfeldstarke
entspricht. Fir den Fall einer Gravitationswelle kann
man damit auch die zeitliche Anderung der Dehnung
mit dem Beschleunigungssensor ermitteln.

Abb.12: Gedankenexperiment zur Energiemessung: Mas-
se M (grun) auf Kugelflache mit Radius r. Gravitations-
feldstarke g (rot), innen null. Bewegung der Masse (dr).
Dabei entsteht neues Gravitationsfeld in Kugelschale
(blau). Kinetische Energie 0,5Mdv? ist quadratisch in dv
und somit verschwindend. Fazit: Die Energie des neuen
Gravitationsfeldes ist gleich dem Energieverlust M-g-dr
der Masse beim Absinken. Die Energiedichte des Gravita-
tionsfeldes kann somit im Prinzip mit dem Beschleuni-
gungssensor gemessen werden.

16.  Gravitationswellen: Energiemessung

Als Néachstes wird untersucht, wie man die Energie-
dichte einer Raumdehnung mithilfe des Beschleuni-
gungssensors im Prinzip messen kann. Dazu wird
der Zusammenhang zwischen dem 1/r’-Gesetz der
Zentralkraft und dem Flacheninhalt A = 4zr? der
Kugel verwendet. Es wird eine Kugel mit einem
Radius r betrachtet, auf deren Oberflache eine Masse
M gleichmaRig verteilt ist (s. Abb. 12).

Die Masse M erzeugt auf der Kugeloberfl&-
che die folgende Gravitationsfeldstarke: g = GM/r2.
Erweitern mit A ergibt:

gA=41G-M
Um die auf die Masse M wirkende Kraft F zu analy-
sieren, wird mit g erweitert:
g*-A=4nG - Mg
Um die Energie dE des Feldes innerhalb einer Ku-
gelschale mit dem Radius r und einer Dicke dr zu
untersuchen, wird die Masse M eine Strecke dr
durch die auf sie wirkende Gravitationskraft Mg
bewegt. Formal wird die obige Gleichung mit dr
erweitert:
dr-g’ ‘A = 4nG - Mg-dr = 47G - dE.
Dabei entsteht das Gravitationsfeld in der Kugel-
schale neu. Seine Energie erhélt es aus dem Ener-
gieverlust dE = M-g-dr der Masse M beim Absinken.
Denn die kinetische Energie 0,5-M-dv? ist quadra-
tisch in dv und somit verschwindend. Die Kugel-
schale hat das Volumen dV = dr-A. Zur Bestimmung
der Energiedichte dE/dV des Gravitationsfeldes wird
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die obige Gleichung durch dV dividiert und man
erhélt so:

9% = 4G - dE/dV
Auflésen ergibt fiir die Energiedichte des Gravitati-
onsfeldes den folgenden Term:

dE/dV = g%/(4nG)
Auf diese Weise kann die Energiedichte des Gravita-
tionsfeldes Gberall und jederzeit lokal im Prinzip
mithilfe des Beschleunigungssensors gemessen
werden. Denn der Beschleunigungssensor kann die
Gravitationsfeldstérke g bestimmen (s. Abb. 4). Das
hergeleitete Ergebnis stimmt mit dem Ublichen Re-
sultat der allgemeinen Relativitétstheorie (iberein,
siehe den Anhang Abschnitt 35.

Abb.13: Zwei Pulsare kreisen um den gemeinsamen
Schwerpunkt (rechts). In groRer Entfernung R vom ge-
meinsamen Schwerpunkt werden Gravitationswellen
beobachtet (links). Der Einheitsvektor n zum Abstands-
vektor R heifit n. Eine Masse M, hat den Abstandsvektor
r, zum Schwerpunkt und den Abstandsvektor a, zum
Beobachter.

17.  Gravitationswellen: Abstrahlung

Die Schulerinnen und Schiler kdnnen diese Theorie
der Gravitationswellen anhand eines Beobachtungs-
beispiels testen. Dazu wird die Abstrahlung durch
eine lokale Quelle, beispielsweise ein Doppelstern-
system, analysiert. Der Beobachter stellt die oben
entwickelte Energiedichte dE/dV = g%/(4nG) fest.
Dabei erzeugt jede Masse My einen Teil g, der Gra-
vitationsfeldstirke g, kurz g = > gx. Fur jede Masse
My kénnen die Schiilerinnen und Schiiler die Gravi-
tationsfeldstérke gy durch das Potenzial darstellen:
Ok = -G-M,/Jay

Damit ist die beobachtete Energiedichte dE/dV im
Prinzip vollstdndig bestimmt. Allerdings ist sie
durch viele groRe Entfernungen ay dargestellt. Prak-
tischer ist die Verwendung nur einer grof3en Entfer-
nung R und vieler kleiner Entfernungen r, (s. Abb.
13). Fir diesen Zweck wird fiir die Energiedichte
eine Quadrupoldarstellung verwendet, die binnendif-
ferenzierend von einigen Schilerinnen und Schiilern
hergeleitet werden kann (siehe Anhang 36):

dE/dV = G/(144mc°R?) -
{[(d/dt)’ Dy, - (d/dlt)’ D,)* + [2(d/dt)° D]’}
Dabei ist das Quadrupolmoment
Djj = Y M -3+ = i)

und der Abstand zwischen M; und M, ist rjy.

Um den Energieverlust pro Zeit dE/dt der
Quelle zu erhalten, multiplizieren die Schulerinnen
und Schiler zunachst die Energiedichte mit der
Ausbreitungsgeschwindigkeit ¢ und erhalten so die
Energiestromdichte:

cdE/dV = G/(1441c’R?) -

{[(d/dt)® D,y - (d/dt)* D,,]* + [2(d/dt)® D]}
Dieser Term wird mit dem Flicheninhalt 47R? der
Kugeloberflache mit Radius R multipliziert:

dE/dt = G/(36¢°) -
{[(d/dt)® D,y - (d/dt)* D,,]* + [2(d/dt)® D,,]*}
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Abb.14: Verkirzung der Periodendauer T des Pulsar-
Doppelsterns B1913+16: Die Periode T der Bahnbewe-
gung des Doppelsternsystems hat sich seit 1975 um tber
40 s verkirzt. Das konnen die Schiilerinnen und Schiler
mit einer Genauigkeit von ungefahr 1% durch die Abstrah-
lung von Gravitationswellen erkléren.

18.  Gravitationswellen: Beobachtung 1974

Die Schilerinnen und Schiller kénnen mithilfe des
oben bestimmten Energieverlustes pro Zeit die beo-
bachtete Verkiirzung der Periodendauer des Pul-
sardoppelsterns B1913+126 erkléren (s. [4], S. 424-
425 und [11], S. 58-63).

Zunéchst kénnen die Schilerinnen und Schi-
ler mit Hilfe der beobachteten Periodendauer der
Bahnbewegung von T = 27907 s und den Massen m;
=2,88:10* kg sowie m, = 2,78-10% kg die Bahnbe-
wegung analysieren:

Zuerst bestimmten sie den Abstand der bei-
den Pulsare:

r=(T2G[my + m,]-0,25/7)** =1,95-10° m
Darauf aufbauend folgt die Energie der Bahnbewe-
gung, das ist die Hélfte der potenziellen Energie.
Diese Halfte kénnen die Schiilerinnen und Schiler
aus den beiden Massen und deren Abstand r wie
folgt bestimmen:

E =-0,5-G'm; ‘my/r =-1,37-10" J
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Die Dynamik und damit das Quadrupolmoment
kdnnen sie mithilfe der reduzierten Masse
p=mym,/(my+m,) und des Abstandes r untersuchen.
Dazu kdnnen sie exemplarisch das Quadrupolmo-
ment wie folgt ausdriicken:
D,y = wr’(3-cos’¢p-1)
Dabei ist ¢ der ebene Polarwinkel. Sie kdnnen drei-
mal ableiten und dabei jeweils do/dt = ® = 2n/T =
0,225mHz einsetzen, denn ® dndert sich kaum:
(d/dt)® Dy, = 24pr*®° -cose-sing
Vereinfachend kénnen die Schilerinnen und Schiler
annehmen, dass die vier Quadrupolelemente gleich
groR sind. Damit kdnnen sie die Energiednderung
pro Zeit bestimmen:
dE/dt = G/(9¢®)-[(d/dt)® Dyy)* =
64Gp?r*w®cos’p-sin‘p/c’
Um die mittlere Energiednderung zu bestimmen,
kdnnen sie vereinfachend (ber den ebenen Polar-
winkel mitteln, wobei <cos®op - sinp> = 1/8 ist und
erhalten so den Betrag der mittleren Energieabnah-
me pro Zeit:
<dE/dt> = 8Gp?r*w®/c®

Gemessen wurde die Anderung der Periodendauer
dT/dt = 2,4-10™. Mit dem obigen Zusammenhang
von T und r kdnnen sie (dT/dt)/T = 1,5(dr/dt)/r fest-
stellen. Weiter kénnen sie mit dem obigen Ener-
gieterm E = -0,5-G-my'my/r der Bahnbewegung
(dr/dt)/r = -(dE/dt)/E ermitteln. Einsetzen ergibt:

(dT/dt) = -1,5 T/E-<dE/dt> = 0,25-107*
Das Ergebnis trifft in etwa die GréRenordnung. Das
kommt durch die vereinfachende Gleichsetzung von
Quadrupolelementen, die vereinfachende Mittelung
Uber den ebenen Polarwinkel sowie durch die Ver-
nachlé&ssigung der Bahnexzentrizitat von e = 0,62.
Die Bahnexzentrizitat fuhrt zu dem Faktor (s. [4], S.
423-425):
(1 +73/24 €* + 37/96 e*)/(1 — %)*®

Mit diesem Faktor ist (dT/dt) = 3,1-10™*2 Die ver-
bleibende Abweichung von 29% kdnnen die Schile-
rinnen und Schuler auf unter 1% senken (s. Abb.
14), wenn sie mit Hilfe eines entsprechenden Ab-
schnitts im Buch von Landau und Lifschitz die bri-
gen Naherungen durch ausfiihrliche Berechnungen
ersetzen (s. [4], S. 423-425).

19.  Erdrotation

In den Abschnitten zu Gravitationswellen habe ich
gezeigt, wie Schulerinnen und Schiler auf elementa-
re Weise erkennen kdénnen, dass beschleunigte Mas-
sen die Metrik verandern. In den folgenden Ab-
schnitten 21-14 zur Erdrotation stelle ich eine einfa-
che Mdglichkeit vor, durch die Schilerinnen und
Schiler entdecken kdnnen, dass schon eine Rotation
eines Korpers um die eigene Achse die Metrik &n-
dert. Diese Behandlung Raumkrimmung ist didak-
tisch besonders wertvoll, weil sie einer Untergenera-
lisierung entgegen wirkt, eine Strukturgleichheit
nutzt und aufdeckt und so eine hohe Lernwirksam-
keit erwarten lasst [13-15].

10

20.  Erdrotation: Metrik

Die Schilerinnen und Schiler wissen, dass die euro-
paischen Weltraumraketen in Franzdsisch Guyana
gestartet werden. Sie kénnen den Grund dafir ange-
ben: Das Land liegt dicht am Aquator und hat daher
eine hohe Bahngeschwindigkeit der Erdrotation.
Diese wird als Anfangsgeschwindigkeit der Rakete
genutzt. So wird Energie gespart.

An diesem Beispiel erkennen die Schiilerinnen
und Schiler, dass die Erdrotation die Fluchtge-
schwindigkeit verandert. Damit verandert sich auch
der Schwarzschildradius. Somit veréndert die Erdro-
tation die Metrik in der Nahe der Erde. Anscheinend
ist die Metrik in der Umgebung eines Himmelskor-
pers abhangig von dessen Drehgeschwindigkeit.

B-Feld

B, Feld

3 \__'
Ladungs- Massen-
rotation rotation

Abb.15: Das magnetische B-Feld (links) kennen die Schii-
lerinnen und Schiiler gut. Bewegte Massen andern die
Metrik. Das kdnnen die Lernenden bei relativ geringer
Geschwindigkeit und niedriger Gravitationsfeldstérke
durch das strukturgleiche By-Feld leicht verstehen und
handhaben. Das By-Feld wird auch gravito-magnetisches
Feld genannt. Es ist aber nicht magnetisch, sondern ledig-
lich mathematisch strukturgleich zum magnetischen B-
Feld.

21.  Erdrotation: Strukturgleichheit

Man kénnte die Wirkung der Erdrotation mit der so
genannten Kerr-Metrik beschreiben (s. [4], S. 384-
393). Hier sollen aber aktuelle Beobachtungsdaten
des Satelliten Gravity Probe B (s. Abb. 16 und [16])
modelliert werden. Hierfir gibt es einen einfacheren
Zugang:

Die Schulerinnen und Schiller wissen, dass das
magnetische Feld B durch die bewegte Ladung Q
erzeugt wird, wogegen das elektrische Feld E durch
die ruhende Ladung Q erzeugt wird. Die Gravitati-
onsfeldstarke g = GM/r? ist formal strukturgleich zur
elektrischen Feldstirke E = 1/(4meo)-Q/r’. Entspre-
chend koénnte es ein zum B-Feld strukturgleiches Bg-
Feld geben (s. Abb. 15). Diese Idee wurde bereits im
Jahr 1893 von Heavyside vorgeschlagen (s. [17-20]).
Inzwischen wurde gezeigt, dass ein solches Bg-Feld
aus der Einstein-Gleichung folgt fiir Felder mit ge-
ringer Gravitationsfeldstarke, die sich als retardierte
Potenziale darstellen lassen (s. z. B. [17-20]). Die
Schilerinnen und Schiller kénnen mit ihren Kennt-
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nissen des B-Feldes die Struktur des B,-Feldes wie
folgt nachvollziehen und anwenden.

22.  Erdrotation: Felderzeugung

Die Schilerinnen und Schiiler kennen die Erzeugung
eines B-Feldes durch eine Spule mit einer Lange L,
durch die ein Strom mit einer Stromstérke | flief3t.
Mit der magnetischen Feldkonstante o und einer
Windung gilt fir das B-Feld B = pyI/L.

Die Schulerinnen und Schiler folgern, dass zur
Erzeugung des B4-Feldes statt der Ladung die Masse
kreisen muss. Das wird bei der Erdrotation durch die
Kreisfrequenz o und das Tragheitsmoment
0=0,4-Mg ‘R¢-0,83 beschrieben. Hierbei fasst der
Faktor 0,83 Inhomogenitaten der Kugel zusammen
(s. [22], S. 7). In einem Abstand R vom Mittelpunkt
betrégt das By-Feld By = G%/(2¢) -0-0/R® (s. [17-
20], S. 2). Denn auch in der Magnetostatik nimmt
das B-Feld in groRer Entfernung proportional zu R*®
ab. Genau genommen hangt der Proportionalitéts-
faktor G%%/(2c) ein wenig vom Breitengrad ab. Diese
geringe Abhdangigkeit wird im Folgenden vernach-
lassigt. Hier ist G Newtons Gravitationskonstante
und c die Lichtgeschwindigkeit.

Entfernung aus lizenzrechtlichen Grinden!
Autoren haben die Méglichkeit die

Verdffentlichungsrechte nachzuweisen.

Abb.16: Der Satellit Gravity Probe B: Start 2004. Ergeb-
nisse: Kreisel prazedieren mit 6,6 Bogensekunden pro Jahr
aufgrund der durch die Erdrotation verursachten Raum-
krimmung sowie um 39,2 Millibogensekunden pro Jahr
entsprechend dem Lense-Thirring-Effekt. Hier wird die
zweite Erscheinung durch das By-Feld erklart.

23.  Erdrotation: Prazession

Die Schilerinnen und Schiller kennen die Prézession
eines Kreisels. Sie kennen auch die Kernspintomo-
graphie. Dabei ist der Atomkern der Kreisel, der im
Magnetfeld des Kernspintomographen eine Prézes-
sion ausflhrt. Sie erfahren durch geeignetes Infor-
mationsmaterial, dass die Kreisfrequenz Q dieser
Prézession proportional zu B ist: Q = y-B. Dabei
nennt man den Proportionalitdtsfaktor y das gy-
romagnetische Verhaltnis. Bei der Gravitation be-
tragt das mittlere gyromagnetische Verhiltnis y =
G"?/c. Man kann y mithilfe des magnetischen Mo-
ments herleiten. Dabei hangt y vom aktuellen Brei-
tengrad des Satelliten ab und ist bereits entlang sei-

ner Flugbahn uber diese Breitengrade gemittelt [18].
Eine konkrete Berechnung des Proportionalitétsfak-
tors erscheint zum grundlegenden Verstandnis nicht
unbedingt nétig.

Mit dieser Analogie zum Kernspintomographen
koénnen die Schilerinnen und Schiler die Kreisfre-
quenz der Prazession eines Kreisels, der sich in
einem Abstand R vom Erdmittelpunkt befindet her-
leiten. Dazu setzen sie den Term fur By ein und
erhalten: Q = y-By = G*/c: G**0-w/(2¢:R%) = 0,5 -
G-0-0/(c*R5).

Mit diesem Ergebnis analysieren sie die Prézessi-
on eines Kreisels im Satelliten Gravity Probe B mit
der Flughdhe 649 km. Mit der Erdmasse 6:10% kg
und dem Erdradius 6378 km erhalten sie das Tréag-
heitsmoment 0 = 8,07-10% kg-mz. Mit der Umlauf-
dauer von 24 Stunden erhalten sie die Kreisfrequenz
o = 72,7 pHz. Einsetzen ergibt Q = 0,5G/c*0-w/R® =
40,8 Millibogensekunden pro Jahr. Bei diesem Sa-
telliten wurde die Kreisfrequenz Q = 37,2 +/- 7,2
Millibogensekunden pro Jahr gemessen (s. [18] S.
15).

Der Satellit Gravity Probe B hat eine weitere Pré-
zession, die so genannte geodétische Prazession, von
6,6 Bogensekunden pro Jahr gemessen [18]. Auch
diese beruht auf der Erdrotation und kann durch das
By-Feld erklart werden [17-20]. Allerdings ist hier-
bei die Lernbarriere durch eine benétigte Transfor-
mation des Bezugssystems ein wenig erhoht.

24.  Einsteingleichung

Die von den Schilerinnen und Schilern auf elemen-
tare Weise entwickelten Kompetenzen zur allgemei-
nen Relativitatstheorie sind direkt anschlussféhig.
Das begriinde ich dadurch, dass ich zeige, wie man
aus den behandelten Beispielen die Einsteinglei-
chung entwickeln kann.

Die oben entwickelte Schwarzschildmetrik legt
das Konzept der gekrimmten Raumzeit nahe. Zu-
gleich liefert sie dessen Beschreibung durch den
metrischen Tensor.

Aus der obigen Analyse der Gravitationsfeldstarke
g lasst sich zunéchst die Einsteingleichung fir kleine
Abweichungen vom flachen Raum (s. z. B. [3], [4]
oder [17-20]) wie folgt entwickeln: In groer Ent-
fernung einer Masse M ist die Gravitationsfeldstér-
ke:

=-G-M/*
Erweitern mit 47ur” ergibt:
4mgr® = - 4n1GM
Diese beiden Terme lassen sich wie (iblich als Ober-
flachen- bzw. Volumenintegral sowie mit der Mas-
sendichte p deuten:
[gdA = - 4nGlpdV

Diese Gleichung lasst sich wie tblich mithilfe des
Nablaoperators differenziell darstellen:

Vg =-4nGp
Mithilfe der obigen Analyse der Dehnungen ¢ ist die
Gravitationsfeldstérke g = - ¢’c”. Also wird das Gra-
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vitationspotenzial ¢ wegen g = - ¢° wie folgt identi-
fiziert:
0= gc?

Die Raumdehnungen entsprechen also im Wesentli-
chen dem Gravitationspotenzial. Hier ist ein Ver-
gleich mit der Werkstoffkunde interessant. Da das
Potenzial im Wesentlichen die Spannungen darstellt,
so ist die flr das Material charakteristische Span-
nungs-Dehungs-Relation beim Raum im Wesentli-
chen durch den Faktor c? gegeben. GemaR der oben
entwickelten Gleichung & = 0,5 hyy ist das Potenzial
9=0,5¢ hyy. Einsetzen in Vg = - 4nGp ergibt:

V’hy, = 87Gp/c’

Mit der Aquivalenz von Energie und Masse, E =
mc?, ist p/c? gleich der Energiedichte E/V. Damit ist:
V’hy, = 8nG/c* - E/V
Die Gravitationswelle entspricht der oben entwickel-
ten Wellengleichung 1/c® 82hy, - 6,>h,, = 0. Wird
die Welle durch eine Masse oder Energie erzeugt, so
sollte ein entsprechender Term statt der null auf der
rechten Seite der Gleichung stehen. Auch sollte fir

den stationaren Fall die obige Gleichung V’h,, =
8nG/c* - E/V entstehen. Diese beiden Forderungen
erflllt die Gleichung:
1/c® 8¢ hyy - V*hy, = - 82G/c* - E/V
Entsprechend der Schwarzschildmetrik sollte die
obige Gleichung zu einer tensoriellen Gleichung
verallgemeinert werden. Dazu wird das Tensorele-
ment hy, durch h;; ersetzt. Auch wird anstelle der
Energiedichte E/V der Energie-Impuls-Tensor Tj
verwendet. Da die Gravitationswelle zwei unabhén-
gige Polarisationen hat, wird die Energiedichte ver-
doppelt. Das ergibt die Gleichung:
1/c® 8¢ hyj - VPhy = - 16nG/c” - Ty

Dieses ist die Einsteingleichung fiir den Fall kleiner
Abweichungen h;; vom flachen Raum (s. z. B. [25]).

Aus dieser Gleichung l&sst sich die Einstein-
gleichung durch folgende Uberlegung entwickeln.
Die (ibliche Geometrie nach Euklid wurde durch
Gauss und Riemann durch das Zulassen von Raum-
krimmung verallgemeinert. Dazu wurde neben dem
metrischen Tensor der Riemannsche Krimmungs-
tensor Ry verwendet. Man sucht nun eine Glei-
chung, die fiir kleine Abweichungen h;; zu der obi-
gen Gleichung fuhrt und durch den Krimmungsten-
sor ausgedriickt wird. Dazu muss die Stufe von vier
auf zwei durch Verjingung verringert werden. Die
einzige Mdoglichkeit bieten der Riccitensor R;; und
der Krimmungsskalar R (s. z.B. [3], S. 62). Eine
Gleichung aus diesen beiden Gréfen, die bei kleinen
Abweichungen hj; in die obige tibergeht ist:

Rij - 0,5R gij= - 87‘CG/C4 . Tij

Das ist die allgemeine Einsteingleichung.

Ein solcher Zugang zur Einsteingleichung Gber
elementar entwickelte Zwischenergebnisse ver-
spricht eine hohe Lernwirksamkeit (s. z. B. [26],
[27] und [28]). Beispielsweise entsteht hierbei eine
hohe Effektstarke von d = 1,32 durch das Wiederer-
kennen bekannter Strukturen durch die Lernenden.
Auch entsteht hierbei eine hohe Effektstarke von
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d=1,17 durch den Einsatz von Heuristiken. Auch
werden die Lernenden hier von Anfang an dazu
befahigt selbststandig mit Symbolen erfolgreich zu
experimentieren und kdnnen so eine Effektstarke
von d = 0,89 erreichen. Dagegen ist ein Zugang, der
direkt von der Einsteingleichung ausgeht, auf lange-
re Phasen von rezeptivem Lernen angewiesen, es sei
denn, die Lernenden kennen bereits wesentliche
Komponenten der allgemeinen Relativitatstheorie.
Das l&sst selbst beim Einsatz von Advance Organi-
zern nur eine Effektstarke von d = 0,41 erwarten.
Der vorgestellte Zugang ist auch deshalb Erfolg
versprechend, weil er Prinzipien des exemplarischen
und genetischen Lernens berticksichtigt [29].

25.  Mdglichkeiten und Grenzen des vorge-
schlagenen Zugangs

Fur die Schwarzschildmetrik bietet der vorgestellte
Zugang den Schiilerinnen und Schlern eine einfa-
che und anschauliche Herleitung (s. Abb. 17), wo-
gegen bisherige Ansatze im Rahmen der Schulma-
thematik teils grobe N&herungen einfiihren [5].
Durch die Separation der vierdimensionalen Raum-
zeit in vier einzelne Dimensionen, in denen die je-
weilige Schwarzschildmetrik zunéchst eindimensio-
nal bestimmt wird, wird eine besonders einfache und
zugleich exakte Herleitung méglich, wogegen die
Ublichen Zugénge den aufwandigen Weg Uber die
vierdimensionale Differenzialgeometrie und Tenso-
ralgebra wahlen [2-4].

‘ Lineare Regression ‘ ‘ Newtons Gravitationstheorie ‘

I )

Schwarzschildmetrik ‘

‘ Gravitationslinse H GPS H Winkelsumme im Dreieck ‘

Abb.17: Lernstruktur zur Schwarzschildmetrik: Einfach
und unkompliziert.

Selbstverstandlich gilt die hier entwickelte
Schwarzschildmetrik flr das Zentralkraftproblem
und ersetzt daher nicht die auf beliebige Massenver-
teilungen anwendbare Einstein-Gleichung. Dennoch
kann man wohl sagen, dass das hier geldste Zentral-
kraftproblem die am hdufigsten untersuchte und
angewendete Lésung der Einstein-Gleichung ist.

Unter einer ,,exakten Herleitung* verstehe ich
hier, dass man von einer sachgeméaBen geometri-
schen Beschreibung ausgeht. Das ist hier der metri-
sche Tensor und bei den Ublichen Herleitungen
zusétzlich der Krimmungstensor [2-4]. Die Dyna-
mik wird dadurch eingefiihrt, dass nur Terme mit
maglichst niedrigen Exponenten betrachtet werden.
Das geschieht hier durch lineare Regression. Das
Ergebnis ist die richtige Schwarzschildmetrik.

Die Herleitung beruht auf dem newtonschen
Gravitationsgesetz. Genutzt werden die zwei
Grenzwerte, die Kréftefreiheit im Unendlichen und
der Lichteinfang am bereits 1784 von John Mitchell
hergeleiteten schwarzen Loch (s. [21] S. 319).
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Interessant ist, dass zur Entwicklung der
Schwarzschildmetrik durch Regression schon die
lineare Regression geniigt. Zu untersuchen bleibt,
inwieweit diese Linearitat zur Entwicklung weiterer
Losungen genutzt werden kann. Festzustellen bleibt
ferner, inwieweit das lineare Verfahren Losungen zu
offenen Fragen der Gravitation, beispielsweise zur
Flyby-Anomalie [22,23], ermdglicht.

Anhand der Schwarzschildmetrik kénnen die
Schiulerinnen und Schiler bereits aussagekréftige
quantitative Tests nachvollziehen, beispielsweise die
Uhren in Satelliten des GPS-Systems oder die Shapi-
ro-Verzdgerung (s. [11], S. 42).

Bei diesem Zugang werden die raumlichen
und zeitlichen Koordinaten mithilfe des Beschleuni-
gungssensors gedeutet: Mit einem im Bezugssystem
des Himmelskorpers ruhenden Beschleunigungs-
sensor lasst sich im Prinzip die Gravitationsfeldstar-
ke und damit die Anderung & der Dehnung & mes-
sen. Durch Messung von & an mehreren Stellen r
lasst sich (r) extrapolieren und integrieren. Mit &
lasst sich das Verhéltnis der Lange do und der Ko-
ordinate dr bestimmen sowie das Verhéltnis der Zeit
dt und der Koordinate dt. Dagegen verzichten klas-
sische Lehrblcher auf eine konkrete Deutung der
Koordinaten (s. z. B. [24] S. 246), Stephani schreibt
beispielsweise ,,r und t sind nur Koordinaten und
haben keine unmittelbare physikalische Bedeutung*
(s. [4], S. 103). Der Beschleunigungssensor, der den
Schilerinnen und Schilern durch Smartphones ver-
fligbar und auch im Innenohr [25] verankert ist,
ermdglicht eine unmittelbare Deutung der Koordina-
ten flr den Fall der Sensoranzeige null. Das kann
den Lernprozess erleichtern.

Hier habe ich die (ibliche Einstein-
Interpretation verwendet. Im Prinzip wére eine &hn-
liche Herleitung vermutlich auch im Rahmen der
Lorentz-Interpretation méglich [24].

mit

Energie in
spezieller
Relativitats-
theorie ‘ Schwarzschildmetrik H Photonenenergie
‘ Energieterm ‘
‘ Drehimpuls 4‘ Bewegungsgleichung F Ldsungsweg

Invarianten

Lichtweg

Computer-

Simulation .
“1 Periheldrehung

Abb.18: Lernstruktur zu Flugbahnen: Im Prinzip elemen-
tar, es werden verallgemeinerbare Kompetenzen zu Erhal-
tungsgroRen entwickelt.

Aufbauend auf der Schwarzschildmetrik
kénnen die Schilerinnen und Schiler die Dynamik
eines Objekts in der Schwarzschildmetrik analy-
sieren. Hierzu koénnen sie den tblichen Energieterm
elementar herleiten.

Mit Hilfe des Energieterms kénnen die Schilerin-
nen und Schiler die tbliche Bewegungsgleichung
fur ein Teilchen in der Schwarzschildmetrik herlei-
ten. Daraus sind die beobachteten Bahnen mit Hilfe
einer einfachen Computersimulation oder durch
Anwendung eines Computeralgebrasystems ermit-
telbar. Dadurch werden den Schiilerinnen und Schii-
lern weitere genaue Tests der allgemeinen Relativi-
tatstheorie zugénglich.

Dieses Thema wird auch elementar behandelt und
gut transferierbare Kompetenzen zu Invarianten
werden entwickelt. Allerdings sind diese Kompeten-
zen relativ anspruchsvoll (s. Abb. 18). Daher er-
scheint diese Thematik eher fiir die Begabtenforde-
rung geeignet.

Die Anwendung des elementaren Herlei-
tungsverfahrens auf Gravitationswellen ist aus drei
Griinden besonders interessant: Wahrend die ele-
mentar hergeleitete Schwarzschildmetrik nur den
Raum in der Umgebung einer Masse beschreibt,
wurde zur Erklarung der Gravitationswellen die
Dynamik der Raumdehnung im Vakuum elementar
hergeleitet. In der Folge wurde diese Dynamik am
Beispiel der vom Pulsardoppelstern B1913+16 aus-
gehenden Gravitationswellen (s. [11], S. 58-63)
getestet.

Die Einfiihrung der Gravitationswellen ist
elementar und unkompliziert (s. Abb. 19). Dagegen
erscheint der Nachweis der Gravitationswellen we-
gen der nitigen Feldenergiedichte und Quadrupolst-
rahlung relativ komplex und daher eher fiir die Be-
gabtenforderung geeignet (s. Abb. 20).

Die Analyse der durch Rotation verénder-
ten Metrik ist fir die Schilerinnen und Schiler
besonders einfach, weil eine Strukturgleichheit zur
bekannten Magnetostatik besteht. Das Thema ist
besonders interessant, weil es empirische Tests gibt
und weil es eine fiir die Schilerinnen und Schiler
vollig unerwartete Eigenschaft der Schwerkraft
verdeutlicht.

Eine weitere wichtige Anwendung der allge-
meinen Relativitétstheorie ist die Dynamik des
Urknalls. Auch diese lasst sich aus der newtonschen
Gravitationstheorie gewinnen [21] und fur den Un-
terricht elementarisieren [26,27]. Ein aktueller Be-
richt hierzu erscheint ebenfalls in dieser Ausgabe
[27] und beschreibt auch die von Schilern durchge-
fiihrte theoretische Deutung der aktuellen und mit
dem Physiknobelpreis 2011 ausgezeichneten Be-
obachtung der beschleunigten Expansion des Welt-
alls [28]. Zudem wird beschrieben, wie Schiler die
beim Urknall wesentliche Robertson-Walker-Metrik
elementar hergeleitet haben [27]. Die Urknall-
Thematik konnte ich auch im reguléren Unterricht
mit groRem Erfolg einsetzen [26]. Das fuhre ich auf
das grofRe allgemeine Interesse am Urknall zurtick.

Insgesamt kénnen die hier dargestellten ele-
mentaren Herleitungen der Schwarzschildmetrik, der
Flugbahnberechnung von Objekten in der Schwarz-
schildmetrik, der Gravitationswellen sowie der Met-
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riken in der N&he rotierender Korper als Teil der
Tradition der Gewinnung von Ergebnissen der all-
gemeinen Relativitatstheorie direkt aus der einfache-
ren newtonschen oder der maxwellschen Theorie
aufgefasst werden. Auch fiir die Dynamik des Ur-
knalls ist eine solche elementare Herleitung im Un-
terricht erprobt [27]. Eine Besonderheit der elemen-
taren Herleitung der Schwarzschildmetrik besteht
darin, dass sie auch sehr groBe Gravitationsfeldstar-
ken exakt beschreibt.

| Schwarzschildmetrik ‘

der Arbeitsgemeinschaft fir Astronomie und teils in
Physikleistungskursen erprobt. Die Herleitung der
Bewegungsgleichung dirfte fur die Schilerinnen
und Schiler im Prinzip eine &dhnliche Lernbarriere
darstellen wie die Entdeckung der Schwarzschild-
metrik. Denn in beiden Féllen eréffnet die Separati-
on der Dimensionen einen Zugang mit einfachen
eindimensionalen Funktionstermen. Allerdings sind
die auftretenden Berechnungen bei der Flugbahnbe-
rechnung etwas komplexer als bei der Bestimmung
der Metrik. Die verwendeten Ergebnisse der speziel-
len Relativitatstheorie und der Computersimulation
wurden bereits mit Schilerinnen und Schilern er-
folgreich getestet.

Gravitations-

. » Newtons
Ableiten }—| e-Messung |—— .
J Theorie
Wellen- Gravitations- Quanten-
lehre wellen objekte

Abb.19: Lernstruktur zu Gravitationswellen: Einfach und
unkompliziert.

26.  Erfahrungen aus dem Unterricht

Eine Unterrichtseinheit zur Schwarzschildmetrik
(Abschnitte 1-7) wurde in einer Arbeitsgemeinschaft
flr Astronomie erprobt. Die Schiilerinnen und Schi-
ler waren in den Klassenstufen 10-12 und kannten
bereits die newtonsche Gravitationsgleichung sowie
das Verfahren der linearen Regression. Erwartungs-
gemal war das Interesse an dem Thema sehr grof3
und die Schiler arbeiteten konzentriert. Sie erfassten
schnell die jeweils gestellten Probleme. In anschlie-
Renden Plenumsphasen der Ideenfindung machten
sie zielfuhrende Vorschlage, die durch Aushandeln
in Losungsansétze uberfuhrt wurden. Auf dieser
Basis arbeiteten die Schiller die jeweiligen Lésungen
weitgehend selbststdndig aus, wobei binnendifferen-
zierend individuelle Lernhilfen erteilt wurden. Die
Schiulerinnen und Schiiler présentierten ihre jeweili-
gen Losungen ausfihrlich an der Tafel und stellten
sich der Diskussion im Plenum.

Damit der Unterricht offen fir verschiedene
Reaktionen der Lerngruppe durchgefiihrt werden
konnte, wurden verschiedene Lernhilfen vorbereitet,
siehe Anhang.

Die Erprobung dieser Unterrichtseinheit
zeigt, dass Schulerinnen und Schiler der Klassenstu-
fen 10-12 die Schwarzschildmetrik aus der
newtonschen Mechanik weitgehend selbststéandig
entwickeln kénnen, wenn sie die vier Dimensionen
der Raumzeit separat behandeln. Dabei entwickeln
sie die grundlegende Dynamik wie Ublich durch
Regression mit moglichst niedrigen Exponenten.

AnschlieBend konnten die Schiiler ihre
selbstentwickelte Schwarzschildmetrik auf ein geo-
metrisches Problem und ein Navigationsproblem
anwenden.

Die Abschnitte 9 bis 12 zu Flugbahnen wurden
bis auf die Herleitung der Bewegungsgleichung in
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Abb.20: Lernstruktur zum indirekten Nachweis von
Gravitationswellen: Im Prinzip ist das VVorgehen elemen-
tar. Die mdgliche Herleitung des Quadrupolterms ist
allerdings aufwandig.

Zu den Abschnitten 13 bis 19 zu Gravitations-
wellen liegen Erfahrungen zur Analyse des Pul-
sardoppelsterns B1913 + 16 aus dem Bereich der
Arbeitsgemeinschaft fur Astronomie vor. Das The-
ma wurde relativ selbststdndig von zwei Schillern
bearbeitet, die spater beide Physik studierten. Die
Ergebnisse wurden der gesamten Arbeitsgemein-
schaft und der Offentlichkeit auf einem Astronomie-
abend in der Aula vorgestellt. Das Thema stieR auf
allgemeines Interesse und erweiterte den Horizont
der Zuhdrerinnen und Zuhérer. Durch die hier vor-
gestellte grundlegende Herleitung der Gravitations-
wellen mit einfachen Mitteln kann das Thema Pul-
sar-Doppelsterne in Zukunft im Bereich der Begab-
tenférderung sehr viel umfassender und fir die Be-
teiligten befriedigender behandelt werden.

Es ist zu erwarten, dass das Thema Metrik bei ro-
tierenden Koérpern als Anwendung der Magne-
tostatik die Schulerinnen und Schiler interessieren
kann. So habe ich die Erfahrung gemacht, dass auch
der Geodynamo als Anwendung der Magnetostatik
fir Schilerinnen und Schiler interessant ist. Auch
arbeitet ein Jugend forscht Team an diesem Thema.

Mit dieser Thematik werden viele fiir das Leben
grundlegende exemplarische [29] Kontexte ange-
sprochen. Beispiele sind der Raum, die Zeit, die
Entstehung der Welt beim Urknall, die Beschleuni-
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gung, die Tréagheit, die Schwerkraft, die Masse, die
Energie und die Drehung. Auch werden viele All-
tagskontexte berthrt, beispielsweise der Beschleuni-
gungssinn im Innenohr, das GPS, der Kreisel, die
Uberpriifung der Geradlinigkeit beim Hausbau durch
Laser, die elastische oder plastische Dehnung von
Werkstoffen oder die Abstrahlung von Wellen durch
eine lokale Quelle, beispielsweise ein Handy.

Mit dieser Thematik werden viele Kompetenzen
entwickelt. Beispiele sind die Erkenntnisgewinnung
durch Beobachtung, Modellierung sowie Mathema-
tisierung. Weitere geforderte Kompetenzen sind das
Problemldsen, das Argumentieren, das Auswerten,
das Planen, dass Arbeiten mit Analogien und Struk-
turgleichheit, das Bilden von Begriffen, das Be-
schreiben von Erkenntniswegen, das Arbeiten mit
Computersimulationen, das Arbeiten mit Computer-
algebrasystemen sowie das raumliche Denken.

Schwarzschildmetrik-Herleitung

7

Rotation dndert Fluchtgeschwindigkeit und Metrik
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Abb.21: Lernstruktur zur Metrik bei rotierenden Kdrpern.
Im Prinzip ist das Vorgehen elementar und es gibt kaum
Lernbarrieren, sofern die Schiilerinnen und Schuler die
Lernvoraussetzungen aus der Magnetostatik mitbringen.

27.  Zusammenfassung

Es wurde eine innovative Herleitung der Schwarz-
schildmetrik einschliellich des Energieterms und der
Bewegungsgleichungen fiir massive sowie masselo-
se Teilchen vorgestellt. Diese Herleitung ist beson-
ders einfach, weil die vier Dimensionen der Raum-
zeit separat behandelt werden. Auch ist dieser Zu-
gang begrifflich besonders konkret, weil die Koordi-
naten durch die Anzeige des Beschleunigungs-
sensors eingefuihrt und gedeutet werden. Die vorge-
stellte Einfihrung der Schwarzschildmetrik wurde
bei Schiilerinnen und Schiilern der Klassenstufen
10-12 erfolgreich erprobt. Die Schiler benétigten als
besondere Lernvoraussetzung lediglich die Kenntnis
der newtonschen Gravitationsgleichung. Sie konnten
bereits bei der Herleitung relativ eigenstandig mit-
wirken. Auch konnten sie anschlieBend selbststandig

Probleme der Geometrie, der Satellitennavigation
sowie Bahnberechnung im gekriimmten Raum Igsen.
Somit konnten sie verschiedene quantitative Tests
der allgemeinen Relativitéatstheorie von der Herlei-
tung bis zur Berechnung beobachteter Werte nach-
vollziehen.

Das Losungsverfahren ist auch deshalb so
einfach, weil es durch lineare Regression zur exak-
ten Metrik flhrt.

Aufbauend auf dem Ldsungsverfahren zur
Schwarzschildmetrik wurden in elementarer Weise
die Bahnbewegungen von Objekten in der Schwarz-
schildmetrik, die Gravitationswellen sowie die Met-
riken in der N&he rotierender Korper behandelt. Fur
alle behandelten Falle wurden exakte Gleichungen
hergeleitet, quantitative Vergleiche mit Beobach-
tungsdaten durchgefiihrt sowie im Unterricht ein-
setzbare Konzepte und Lernmaterialien entwickelt.

Es wurde konkret gezeigt, wie das vorgestellte
Konzept einen elementaren und einfachen Zugang
zur Einsteingleichung bietet. Es wurde durch Ergeb-
nisse der Lernforschung begriindet, dass die présen-
tierte Entwicklung der allgemeinen Relativitatstheo-
rie eine hohe Lernwirksamkeit erwarten I&sst.

Nt ol e
"\\l N

Abb.22: Pound-Rebka-Snyder-Versuch: Nachweis der
Raumkriimmung durch die Verkleinerung der Perioden-
dauer elektromagnetischer Wellen im Schwerefeld der
Erde. Die Zeitstauchung wird durch drei auf Balkonen
stehende Uhren veranschaulicht. Die Uhren verwenden
nicht die Gravitation, wie es beispielsweise bei einer
Pendeluhr oder bei einer Sanduhr der Fall ware. Je tiefer
die Uhr steht, desto weniger weit ist sie gegangen.

28.  Anhang: Lernhilfe zur Krimmung

Wie kann man die Kriimmung der Raumzeit veran-
schaulichen und experimentell nachweisen?

Das Experiment von Pound und Rebka [30] zeigt,
dass eine elektromagnetische Welle auf dem Weg
nach unten ihre Periodendauer verkirzt (s. Abb. 22).
Im frei fallenden System ist die Periodendauer
gleichbleibend. Die Tatsache, dass der Beobachter
unten eine verkirzte Periodendauer feststellt, wird
dadurch gedeutet, dass er die Uhren zum Vergleich
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heranzieht und diese unten verlangsamt gehen. Diese
Lernhilfe habe ich eingesetzt.

29.  Anhang: Lernhilfe zur Messung von r

Man kann fiir die Umgebung eines Himmelskdrpers
der Masse M die Metrik g,, = 1/(1 — Rg/r)*® = 1/(1 —
2GM/[rc?])®* ermitteln, indem man r bestimmt. Aber
wie bestimmt man r?

In groem Abstand vom Himmelskdrper ist der
Raum kaum gekrimmt. Ist der Himmelskorper ein
Stern, so kann man das Spektrum untersuchen und
daraus mit Hilfe von Sternmodellen [31] die Leis-
tung P bestimmen. Der Beobachter kann die Leis-
tungsdichte S messen. Andererseits verteilt sich die
Leistung P des Sterns gleichmaRig auf eine Kugel-
fliche A = 4mr® mit dem Radius r um den Stern.
Somit ist die Leistungsdichte S = P/(4nr®). Also ist r
= (P/[4nS])*°. Diese Lernhilfe wurde nicht einge-
setzt.

30. Anhang: Exakte Herleitung der Bewe-
gungsgleichung flr Objekte in der Schwarz-
schildmetrik

Im Bereich der Begabtenférderung kénnen die Schii-
lerinnen und Schiiler die Bewegungsgleichung fir
Objekte in der Schwarzschildmetrik auch exakt
herleiten: Die Schiller kennen eine weitere Invarian-
te: Sie wissen, dass die Energie nicht explizit von
der Zeit t abhéngt. Daher bietet sich diese Variable
als weiterer invarianter verallgemeinerter Impuls an.
Zur Nutzung dieses Impulses werden zwei Konven-
tionen eingefiihrt. Die raumzeitliche Anderung wird
ds genannt und erhélt folgende Vorzeichenkonventi-
on:

ds® = dr¥/(1 — Rg/r) + (r-dg)? — ¢ dt?(1 — Rg/r)
Es wird eine weitere Zeit bendtigt: Eine Uhr, welche
so kalibriert ist, dass sie die sogenannte Eigenzeit dt
mit — ¢ dr? = ds® misst, wird als Standarduhr be-
trachtet (do steht fiir riumliche Ausdehnung, ds fiir
raum-zeitliche).

Die Schilerinnen und Schiler kénnen nun
die Eigenzeit in die Gleichung fur ds einsetzen und
erhalten so:
— ¢? = (dr/dt)’/(1 — Rg/r) + (r-de/dt)? —
c?(dt/dt)*(1 — Rg/r)
Auch kénnen sie ¢? in die Gleichung fiir die Energie
E = my-c? einsetzen und erhalten so:
E = — my(dr/dt )?/(1 — Rg/r)
— My (r-de/dt)? + my-c? (dt/dr)*(1 — Rg/r)
Da E nicht von der unabhé&ngigen Veranderlichen t
abhéngt, ist in Analogie zum obigen Beispiel der
folgende Term ein erhaltener verallgemeinerter
Impuls:
cdt/dt(1 - R¢/r) = A

Um wie in den vorherigen Beispielen eine Bewe-
gungsgleichung durch Ableiten zu erhalten, werden

in dem obigen Term fiir — ¢? die beiden erhaltenen
Impulse B und A eingesetzt:

— % = (dr/dt)%(1 — Re/r) + B%/r* — A%/(1 — Ry/r).
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Wie oben wird mit u = 1/r gerechnet, somit ist:
—c?=B%u/(1 - uRg) + B?u? — A%(1 — uRg)
Multiplikation mit dem Nenner ergibt:
—¢%(1 - uRs) = B>u? + B?u? — RsB?U° — A?
Die Schilerinnen und Schuler Ubertragen das Ver-
fahren, indem sie diese Funktion von ¢ ableiten:

u‘cZRs =+ 2B%uu‘ — 3Rg BZuu‘ + 2B%uwu*
Zur Vereinfachung wird durch 2B%u’ geteilt:
0,5Rsc%/B% = u - 1,5Rs U+ u*
Das ist wieder die lbliche Bewegungsgleichung (s.

[3], S. 105) fir einen Korper in der Schwarzschild-
metrik.

31.  Anhang: Analyse des Dehnungstensors

Im Allgemeinen kdnnte bei einer Gravitationswelle
jedes Element g;« des metrischen Tensors ungleich
null sein. Wir analysieren die metrischen Abwei-
chungen hy = 2g; = Ax;/dxy, siehe oben. Da sich die
ebene Welle mit Lichtgeschwindigkeit in x- Rich-
tung ausbreitet, &ndern sich die rdumlichen Verlan-
gerungen Ax; periodisch wie folgt:
AX;j = AXja * cos(ot-2mx/))

Mit der Kettenregel folgt:

Axi/dx = Axy/dt-dt/dx = Axy/dt-1/c
Wir betrachten ein Koordinatensystem, das sich mit
der Gravitationswelle mitbewegt, so wie ein Wellen-
reiter auf der Welle reitet. In diesem System andern
sich die Verlangerungen Ax; nicht mit der Zeit, kurz
Ax;/dt = 0. GeméR der obigen Uberlegung mit der
Kettenregel andern sich die Verlangerungen dann
auch nicht mit der x-Koordinate, kurz Ax;/dx = 0.
Also sind nur die vier Dehnungen gy, &, &,y SOWie
&,; ungleich null. Wegen der Symmetrie des metri-
schen Tensors sind die beiden Dehnungen in unter-
schiedliche Raumrichtungen gleich, kurz &, = &,.

Fir die Berechnung der Energie&nderung pro
Zeit ist es wichtig, zu wissen, wie viele voneinander
unabhéngige Polarisationen es gibt. Da die z-
Koordinate abhéngig von der y-Koordinate skaliert
werden kann, kénnen die beiden diagonalen Deh-
nungen &,y und &, zu einer gemeinsamen Polarisati-
onsrichtung zusammengefasst werden. Dabei ist es
ublich die z-Koordinate so zu transformieren, dass
die beiden Dehnungen der diagonalen Raumrichtun-
gen zueinander Gegenzahlen sind, kurz gy = - &,.
Dazu multipliziert man die alte z-Koordinate mit
(Az/dz)/(-Ay/dy) und erhélt so die neue z-Koordinate
(s. Abb. 19).

Insgesamt werden die Dehnungen der Gravi-
tationswelle durch die beiden Parameter €,y und &,
vollstandig beschrieben. Jedem dieser beiden Para-
meter ordnet man eine Polarisationsrichtung der
Gravitationswelle zu. Daher beschreibt g,y zusam-
men mit &, = - &,y €ine Dehnung in y-Richtung mit
einer Stauung in z-Richtung (s. Abb. 23). Dabei
wechseln sich Dehnungen und Stauungen zeitlich
periodisch ab.
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Da die Dehnungen nur senkrecht zur Aus-
breitungsrichtung auftreten, ist die Gravitationswelle
transversal.

Insgesamt entspricht diese Analyse des Deh-
nungstensors der Gravitationswellen den tblichen
Ergebnissen und Konventionen der allgemeinen
Relativitatstheorie (s. [4], S. 411-413). Die Dehnung
des Vakuums ist ebenso wie die Dehnung eines
Werkstoffes ein Tensor zweiter Stufe [12].

hy

dy 4 dy

Y J

dz Az
Abb.23: Polarisation von Gravitationswellen: Eine der
beiden Polarisationen ist dadurch gekennzeichnet, dass
sich der Raum in y-Richtung dehnt, wahrend er sich in z-
Richtung kontrahiert. Dabei breitet sich die Gravitations-
wellen x-Richtung aus, also in die Zeichenebene hinein.
Durch die zeitliche Periodizitat wechseln sich Dehnung
und Kontraktion regelméagig ab.

z

32.  Anhang: Vergleich der Dynamiken

Die oben hergeleitete Dynamik von Gravitationswel-
len ist durch die Wellengleichung € = g - sin(wt -
k-x) bestimmt. Die zweite Ableitung nach der Zeit
ist & € = - w>¢. Die zweite Ableitung nach der Aus-
breitungsrichtung x ist 8, & = - ke = (k/ 0)? 62 e=
1/c? 8¢ €. Das stimmt mit dem Ergebnis der Ein-
steingleichung Uber ein (s. [4], S. 411-412).

33. Anhang: Vergleich der Energiedichten

Die oben hergeleitete Energiedichte von Gravitati-
onswellen ist durch dE/dV = g*/(47G) bestimmt.

Fur die Dehnung e, wurde oben ds,/dt = g/lc =
0,5-dhy,/dt hergeleitet. Aufgeldst nach dem Quadrat
der Gravitationsfeldstarke g® folgt g°> = 0,257
-[dhy,/dt]*.

Bei der obigen Herleitung der Energiedichte
wurde g° (iber eine Kugelschale gemittelt. Zur Be-
ricksichtigung aller vier Dehnungen ist auch hier
quadratisch zu mitteln: g* = 0,25-c - 0,25 - {[dhy,/dt]?
+ [dh,,/dt]* + [dhy,/dt]* + [dh,/dt]’}.

Einsetzen ergibt die folgende Energiedichte:
(dE/dV) = c%(64nG)-{[dhy/dt]* + [dh,/dt]* +
[dhy./dt]* + [dh,,/dt]*}. Das stimmt mit dem tblichen
Ergebnis der allgemeinen Relativitatstheorie Uberein
(s. [4], S. 413).

34.  Anhang: Quadrupole

Im Bereich der Begabtenférderung oder bin-
nendifferenzierend konnen die Schilerinnen und
Schiler die Quadrupoldarstellung der Energiedichte
von Gravitationswellen selbst entwickeln:

Das Potenzial der Masse My ist (siehe oben):
& = -G~Mk/ak : 1/C2
Da der Beobachter weit entfernt ist, gilt fir den
Abstandsvektor a, = Ry — n - ry. Dieser Term wird in
das Potenzial eingesetzt:
e = -GMW/(R- n'ry) - 1/c?
Damit die Schilerinnen und Schiler hier eine geo-
metrische Reihe identifizieren kénnen, klammern sie
Nenner R aus:
& = -G-M/R-1/[1- nr - 1/R] - 1/c?
Den zweiten Faktoren kénnen Sie als geometrische
Reihe ausdriicken:

g =-G' MR- [1 + n1g-1/R + (nry )2 1/R* + ]
Zur Bestimmung der Gravitationsfeldstarke gy wird
die zeitliche Ableitung dieses Potenzials verwendet
(siehe oben):

Ok = c-dg/Jdt = 'GMk/(RC) .
d/dt [nr - 1/R + (nre )? - 1/R? + ... ]
Durch die zeitliche Ableitung konnte der erste
Summand 1 beseitigt werden.

Zur Bestimmung der gesamten Gravitationsfeld-
starke g summieren die Schilerinnen und Schiler
Uber die Massen M, und erhalten so:

g=>x0k=-G/(Rc) - d/dt

[n~zk Mk 'I'k'l/R + Zk Mk : (n-rk)2 I/RZ + ]
Hier kdnnen die Schulerinnen und Schuler mithilfe
des Hebelgesetzes erkennen, dass der erste Sum-
mand gleich null ist. Also stellt der zweite Summand
den groBRten Term der geometrischen Reihe dar. Die
weiteren Terme sind vernachldssigbar, weil der
Abstand R sehr grol ist:
g =-G/(cR®) - d/dt 3 My - (n°1y.)?
Die Schilerinnen und Schiiler kénnen hier die tbli-
chen Quadrupole einfiihren, indem sie das Produkt
n-ry durch die kartesischen Komponenten x; darstel-
len:
Yk My ()’ = S M- (i - 1) =
DM i nj g1 =
25 Mi - 0y D My i - g

Um den Ublichen Term flr die Quadrupole zu erhal-
ten, wird mit 3 erweitert:

Zk Mk : (l’l'l'k)2 =1/3- Zij n; - n;j Zk 3Mk * Tyi* Ty
Um den Ublichen Term fur die Quadrupole zu erhal-
ten, wird wie oben die z-Koordinate so transfor-
miert, dass Y My - ¥jj 8ij i * Tig = Yk Mic - 1> = Yk
My - (xk2 + yk2 + Zkz) gleich null ist. Dann kann §;; I
- 1 in der obigen Summe subtrahiert werden und
man erhélt:

Yk My ()’ =
1/3- Zij Ni - n; Zk My - (3rki Ty — rk2 6ij)
Hier kdnnen die Schilerinnen und Schiler die oben
eingefiihrten Quadrupole erkennen und erhalten so:
zk My - (n-rk)z =1/3 Zij Ni - n; Dij
Durch Einsetzen ermitteln sie fiir die Gravitations-
feldstarke den folgenden Term:
g= -G/(3CR3) Zij N - nj d/dt Dij

Da dieser Term mit R® abklingt, kdnnte man in
grofRer Entfernung praktisch keine Gravitationswel-
len beobachten. Den in groRem Abstand dominanten
Term konnen die Schilerinnen und Schiiler durch
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die Analyse der retardierten Potenziale wie folgt
ermitteln: Flr den Beobachter ist zu einem Zeitpunkt
t der Quadrupol Dj; zu den fritheren Zeitpunkt t — R/c
mafgeblich, kurz Dj(t-R/c). Binnendifferenzierend
koénnen die Schiilerinnen und Schiler dieses bis zur
zweiten Ordnung entwickeln:
Dj(t-R/c) = Dij(t)+d/dt- Dyj(t)-(-R/c)+0,5(d/dt)*
Dii(t)(R/c)®
Hier ist der zweite Term in grof3er Entfernung domi-
nant. Einsetzen ergibt:
g = -G/(6R-c*)- Y ; - n; (d/dt)® Dy
Zur Bestimmung der Energiedichte wird zunéchst
das Quadrat der Gravitationsfeldstérke gebildet:
9° = GY/(36:R*c%)- [ ny - ny (d/dt)® Di,-z2
Da bei der Herleitung der Formel dE/dV = g°/(4nG)
zur Energiedichte lediglich die Komponente hy, der
metrischen Abweichung betrachtet wurde, wird der
Energieterm so verallgemeinert, dass jede Polarisa-
tion genau einen Beitrag leistet:
dE/dV = Y poarisationen gzPoIarisation 1(4nG)

Entsprechend ist:

9%y = G%/(36:R*c%) [ (d/dt)® D,y - (d/dt)* D,,)* und

9%y = GY(36:R*c®)[2(d/dt)® D, )?
Diese Ausdriicke werden in den Term fur die Ener-
giedichte eingesetzt:
dE/dV = G/(144n-R*c%)-{[(d/dt)’ Dy, - (d/dt)® D,,]* +
[2(d/dt)’ D]’}

Diese Energiedichte fiir die Quadrupolstrahlung
entspricht der Literatur (s. [4], S. 425).

Die hier hergeleiteten Terme sind strukturgleich
zur elektrischen Dipolstrahlung sowie zur elektri-
schen Quadrupolstrahlung (s. [4], S. 223) und be-
schreiben insofern Alltagsgerate wie das Handy.
Diese Strukturgleichheit hat ihre Ursache in der
Strukturgleichheit der Coulombkraft und der
newtonschen Gravitationskraft.
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