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Kurzfassung 

Innerhalb der Jugend forscht AG unserer Schule sowie einem Kurs über Quantengravitation lernten 

wir die fundamentalen Konzepte von Quantencomputern theoretisch kennen und entwickelten da-

rauf aufbauend demonstrative Experimente. In diesem Artikel erklären und demonstrieren wir ein 

universelles Set bestehend aus essenzielle Quantengattern. Des Weiteren zeigen wir darauf aufbau-

end zwei bekannte Quantenalgorithmen und präsentieren eine Möglichkeit zum Vervielfachen der 

allgemeinen Rechengeschwindigkeit von Quantencomputern. 

Abstract 

In a student research club, we explain elemental concepts of quantum computing with theory and 

experiments. For it, we demonstrate multiple fundamental quantum gates. These quantum gates re-

sult in a valuable universal set. By using this set, we derive two known algorithms showing quantum 

supremacy. Moreover, we present and discuss an opportunity to multiply the calculation speed of 

quantum computing. 

 

1. Introduction 

Since the production of the first computer humans 

have tried to achieve continuous growth in terms of 

efficiency. Hereby, transistors are often used as an in-

dicator due to their functionality. In 1965 Gordan 

Moor noticed a doubling of the number of transistors 

inside newly published computer chips in a time in-

terval of one to two years (Moore, 1965) which is of-

ten realized by downsizing. However, an end of this 

trend is suspected due to physical limitations like the 

size of an atom. Therefore, the focus started to shift 

towards new technologies like quantum computers. In 

a student research club, we try to understand the com-

plexity of this topic by developing functional demon-

stration experiments of quantum computing. In par-

ticular, we decided to focus on the technology of 

quantum computers based on light because of their 

leading efficiency (Madsen, et al., 2022). Further-

more, we even discovered a way to multiply the speed 

of processing inside a quantum computer by transfer-

ring the idea of multiplexing from the data transfer 

into the processing of optical computers including 

quantum computers based on light. Moreover, we 

learn about algorithms which have been used to 

demonstrate quantum supremacy in the past (Deutsch 

and Jozsa, 1992). To illustrate these, we employ ex-

emplary calculations and verify these with adequate 

simulations. 

1.1. Universal Set 

To understand quantum computing completely we 

wanted our demonstration experiments to explain the 

most fundamental way of processing inside a quan-

tum computer. This is the processing of qubits and 

mathematically known as unitary operations. They 

are realized by quantum gates. To be able to achieve 

every possible unitary operation we use a universal 

set of quantum gates. Mathematically this could be 

achieved by the set {C-NOT, single-qubit gate} 

(De_Ro, 2021). Yet it is physically impossible to re-

alize a universal and precise single-qubit gate which 

would be able to convert a qubit in every possible way 

(Circuit Library, 2023). Therefore, we use the Set {C-

NOT, H, T} approximating a universal Set (De_Ro, 

2021). 

1.2. Materials 

For our experiments we are mainly using a laser with 

a wavelength of 650nm. Yet in some experiments re-

quiring a second laser we additionally use a laser with 

a wavelength of 520nm. 

1.3. Qubits 

Based on the usage of the C-NOT gate as the only 

multiple qubit gate of our universal set, we need to 

realize a minimum of two qubits. We decided to use 

the linear polarization of the light as the first qubit de-

fining it being vertically polarized as |0⟩ and it being 

horizontally polarized as |1⟩. This qubit will also be 

used as the controlling qubit inside the C-NOT gate. 
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Therefore, the second qubit will only have to show an 

inversion in some of the cases in the C-NOT gate. For 

this reason, we decided to simply use an asymmetry 

of our laser creating a diagonal oval as a representa-

tion of the second Qubit. Thereby, it being antidiago-

nally oriented from the bottom left to the top right will 

be defined as |0⟩ whereas it being diagonally oriented 

from the bottom right to the top left will be defined as 
|1⟩. 

2. Experiments 

2.1. C-NOT Gate 

The C-NOT gate (CX gate) in optical quantum com-
puters is characterized by using the correlation be-
tween a control and a target qubit to control the in-
version of the target qubit. The crucial point here is 
that the C-NOT gate entangles the states of the 
qubits, thus, enabling complex quantum operations 
that are not realizable in classical systems. We have 
achieved this by guiding a laser beam, realizing the 
two previously described qubits, through an optical 
circuit. Inspired by an existing C-NOT realization 
(Lopez, et al., 2018), we designed the following 
setup (see fig. 1). 

 

Fig. 1: Schematic experimental setup of the C-NOT 

gate demonstration: 1. laser, 2. polarizing beamsplit-

ter, 3. pentaprism, 4. mirror, 5. detector 

The first polarizing beamsplitter reflects or transmits 
the beam depending on the state of the control qubit, 
being the polarization. In our case, the beamsplitter 
transmits horizontally polarized light, while verti-
cally polarized light is reflected. The pentaprism re-
flects the asymmetry of our laser, used as the second 
qubit, twice and thus ensures a double inversion of 
the target qubit. Therefore, the target qubit does not 
change. The mirror reflects the beam, causing the 
state of the target qubit to be inverted only once. The 
second polarizing beamsplitter combines the two 
previously separated light waves. 

To verify the general functionality of our demonstra-
tion experiment we implemented every combination 
of basis states and checked if their outcome corre-
sponds to the expected theoretical results (see fig. 2). 

 

Input 

control 

qubit 

Input 

target 

qubit 

Resul-

ting 

control 

qubit 

Resul-

ting tar-

get 

qubit 

Corre-

spon-

ding 

expe-

riment 

|0⟩ |0⟩ |0⟩ |0⟩ Fig 3 

|0⟩ |1⟩ |0⟩ |1⟩ Fig 4 

|1⟩ |0⟩ |1⟩ |1⟩ Fig 5 

|1⟩ |1⟩ |1⟩ |0⟩ Fig 6 

Fig. 2:  A table showing the implemented basis states 

of each qubit as well as their theoretical outcome and 

corresponding performed experiments. 

However, although this realization works fine for 

most demonstrative purposes, it cannot demonstrate 

more complicated functionality like phase kickback 

yet. This occurs mostly, due to the solely demonstra-

tive nature of the target qubit, briefly realized by the 

asymmetric orientation of the laser. 

 

Fig. 3: C-NOT experiment realizing the input qubit 

states through the usage of a vertical polarizer and the 

rotation of the laser, creating an antidiagonal oval. 

 

Fig. 4: C-NOT experiment realizing the input qubit 

states through the usage of a vertical polarizer and the 

rotation of the laser, creating a diagonal oval. 

 

Fig. 5: C-NOT experiment realizing the input qubit 

states through the usage of a horizontal polarizer and 

the rotation of the laser, creating an antidiagonal oval. 
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Fig. 6: C-NOT experiment realizing the input qubit 

states through the usage of a horizontal polarizer and 

the rotation of the laser, creating a diagonal oval. 

2.2. Single Qubit Gates 

To realize single qubit gates for the qubit of polariza-

tion, we employ a variety of wave plates. Specifically, 

we use a half wave plate to realize the Hadamard gate 

specified in our chosen universal set as well as an 

NOT gate (X gate) and a Z gate. Well, known by most 

physicists is the realization of the quantum-NOT gate 

through rotating a half wave plate by 45° along the 

optical axis. This function can be experimentally 

demonstrated by using two linear (vertical) polarizers 

and placing the rotated half wave plate in between 

(see fig. 7). 

 

Fig. 7: Schematic experimental setup for the NOT 

gate demonstration: 1. laser, 2. horizontal polarizer, 

3. X gate, 4. detector 

Thus, we initialize the polarization qubit of the input 

beam with a value of |0⟩ and invert its value to |1⟩. 
Then, by employing the last polarizer as a method to 

read out the qubit’s value, we show that the intensity 

of the light beam hitting the detector is approximately 

0lx and the linear polarization has been inverted (see 

fig. 8). 

 

Fig. 8: Realization of the experimental setup in fig. 7 

with a diverging lens added before the detector. The 

point on the detector is barely visible to the naked eye. 

On the other hand, the T gate has not been realized 

due to the lack of accessible material. Nevertheless, 

we propose a method for realizing a T gate by em-

ploying a 
𝜆

8
 wave plate that has been rotated by 0° de-

grees. Luckily, the T gate is quite similar to the Z gate 

regarding their same rotation angle around the optical 

axis. Due to this similarity, one can imagine the Z gate 

as a kind of replacement for the missing T gate for 

demonstrative purposes. This works especially well, 

because the Z gate can be used to replace the T gates 

in our exemplary calculations regarding the quantum 

algorithms. 

Realizing a Z gate can be done by employing a half 

wave plate rotated by 0° around the optical axis, while 

the Hadamard gate is realized by using a half wave 

plate that is rotated by 22.5°. To demonstrate these 

gates experimentally, we employ the same method as 

we have with the X gate, although in this instance we 

realize the NOT operation through the sequence of 

gates: Hadamard gate, Z gate, Hadamard gate (Qiskit 

Textbook, 2024) (see fig. 9). 

 

Fig. 9: Schematic experimental setup for the Hada-

mard and Z gate demonstration: 1. laser, 2. horizontal 

polarizer, 3. Hadamard gate, 4. Z gate, 5. detector 

Therefore, by placing the half wave plates in the 

given order we transform the polarization qubit form 

|0⟩ to |+⟩ to |−⟩ to |1⟩ and thus, demonstrate the 

Hadamard and Z gates in the same fashion as the X 

gate (see fig. 10). 

 

Fig. 10: Realization of the experimental setup in fig. 

9 with a scattering lens added before the detector. The 

point on the detector is barely visible to the naked eye. 

2.3. Multiplexing 

During our research on the C-NOT gate, we had the 

idea to transfer the technology of multiplexing, 

known from data transfer to data processing in optical 
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computers. Specifically, we focused on wavelength-

based multiplexing. This is characterized by increas-

ing the parallelism of a light-based systems by super-

imposing photons of different wavelengths. The cru-

cial point here is that these superimposed photons do 

not interfere with each other and can be processed 

simultaneously in optical circuits. Thus, the band-

width of data that such a computer can process sim-

ultaneously can be drastically multiplied. 

To prove that the light beams do not influence each 

other during data processing through superposition, 

we utilized our existing setup of the C-NOT gate. We 

intersected the different laser beams multiple times 

within the gate (see fig. 11). 

 

Fig. 11: Intersection of the two laser beams between 

the pentaprism and the second beamsplitter. 

During this process, we observed continued complete 

and accurate data processing of the individual qubits, 

implemented through the different laser beams (see 

fig. 12). 

 

Fig 12: C-NOT experiment realizing the input qubit 

states |0⟩ and |0⟩ in the red laser as well as |1⟩ and 

|0⟩ in the green laser. The qubits implemented in the 

red laser are realized by the usage of a vertical polar-

izer and the rotation of the laser, creating an antidi-

agonal oval. The ones in the green laser are realized 

by the usage of a horizonal polarizer and a rotation 

of the laser creating an antidiagonal oval as well. 

Another possible implementation of wavelength-
based multiplexing can be achieved by cleverly su-
perimposing multiple lasers. The lasers are 

superimposed using a combination of collecting and 
scattering lenses. Subsequently, the combined beam 
is sent through an optical circuit (see fig. 13). 

 

Fig. 13: Exemplary optical setup to use wavelength-
based multiplexing for optical computation: 1. laser 
of wavelength a, 2. laser of wavelength b, 3. wave 
plate to initialize input state of the given qubit, 4. col-
lecting lens, 5. scattering lens, 6. optical operation, 7. 
polarizer for measurement, 8. optical lattice, 9. inten-
sity measurement device 

Afterwards, a measurement is performed using a po-
larizer, which changes the intensity depending on the 
polarization. Finally, the combined beam is split 
again according to the wavelength of the individual 
components, and the individual states are determined 
using intensity measurement devices. 

3. Calculations and Simulations 

To emphasize the applicability of our universal set, 

we decided to illustratively calculate two exemplary 

quantum algorithms. Therefore, we solely use the 

gates contained in our chosen universal set, except for 

the Z gate. We have decided to use the Z gate in the 

following calculations because it is a gate we have 

experimentally realized, and it can be easily trans-

ferred to our universal set by replacing it with a se-

quence of four T gates. Thus, the connection of ex-

periments and theoretic calculations becomes much 

clearer. 

3.1. Deutsch-Jozsa Algorithm 

The Deutsch-Jozsa algorithm is an algorithm to cate-

gorize a binary function into either constant or bal-

anced. Herby the algorithm only needs to run once 

and implies a constant function through returning the 

measured qubit in the state |1⟩ and a balanced func-

tion by returning it in the state |0⟩.  

To understand the Deutsch-Jozsa algorithm we focus 

on its simplest form using only two qubits. Its then 

called the Deutsch algorithm and consists of three 

Hadamard gates and one oracle arranged as follows 

(see fig. 14): 

 

Fig. 14: A diagram of the circuit representing the 

Deutsch algorithm. 

Thereby, the oracle represents the function. In our 

case we just use a C-NOT gate as an oracle because it 

is equivalent to a balanced function (see fig 15).  
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Fig. 15: A diagram of the circuit representing the 

modified Deutsch algorithm. 

To show that the Deusch algorithm works with our 

universal set we start calculating this version of the 

algorithm by initializing the two qubits: Qubit |q0⟩ as 

|0⟩ and qubit |q1⟩ as |1⟩ (see equation {1} and {2}).  

|q0⟩ = |0⟩ = (
1
0
) {1} 

|q1⟩ = |1⟩ = (
0
1
) {2} 

Now we connect the two qubits with each other 

through the usage of the Kronecker product (see 

equation {3}). 

|q0q1⟩ = |q1⟩ ⊗ |q0⟩ = |1⟩ ⊗ |0⟩ 

= (
0 ∙

1
0

1 ∙
1
0

) = (

0
0
1
0

) {3} 

Subsequently, we apply a Hadamard gate to both 

qubits (see equation {4}). 

Hq0,q01 ∙ |q0q1⟩ 

=
1

2
∙ [

1 1
1 −1

1 1
1 −1

1 1
1 −1

−1 −1
−1 1

] ∙ (

0
0
1
0

) 

=
1

2
∙ (

1
1
−1
−1

) =

(

 
 
 

1

2
1

2

−
1

2

−
1

2)

 
 
 

 {4} 

Next, we use the C-NOT gate to modify the qubits 

through the function (see equation {5}). 

CXq0,q01 ∙ |q0q1⟩ 

= [

1 0
0 0

0 0
0 1

0 0
0 1

1 0
0 0

] ∙

(

 
 
 
 
 

1

2
1

2

−
1

2

−
1

2)

 
 
 
 
 

 

=

(

 
 
 

1

2

−
1

2

−
1

2
1

2 )

 
 
 

 {5} 

Afterwards we apply another Hadamard gate to the 

first qubit so that it can be measured in the next step 

(see equation {6}). 

Hq0 ∙ |q0q1⟩ 

=
1

√2
∙ [

1 1
1 −1

0 0
0 0

0 0
0 0

1 1
1 −1

] ∙

(

 
 
 
 
 

1

2

−
1

2

−
1

2
1

2 )

 
 
 
 
 

 

=
1

√2
∙ (

0
1
0
−1

) 

=

(

 
 
 

0
1

√2
0

−
1

√2)

 
 
 

 

= |1 −⟩ {6} 

Finally, we notice that the measured first qubit 

changed. This is due to the phase kickback inside the 

C-NOT gate (Lee and Selby, 2016). Thereby, it being 

|1⟩ verifies the used C-NOT gate as a balanced func-

tion. A simulation we programmed using qiskit librar-

ies in python verifies this result (see fig. 16 and 17). 

 

Fig. 16: Verification of our calculation of the Deutsch 

algorithm using qiskit libraries for python with jupy-

ter notebook. 
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Fig. 17: Verification of our calculation of the Deutsch 

algorithm using qiskit libraries for python with jupy-

ter notebook. 

3.2. Grover’s algorithm 

The Grover algorithm is a quantum search algorithm 

that can be interpreted as searching for specific items 

from a given list. It consists of an initialization in a 

uniform superposition, an oracle representing the 

function selecting the search result and the diffusion 

operator amplifying the search result for effective 

measurement. 

In its simplest form with two qubits, while still fea-

turing our chosen universal set, the algorithm can be 

written as follows (see fig. 18). 

 

Fig. 18: Schematic quantum circuit for our exemplary 

version of the Grover algorithm for two qubits.  

In this instance, the oracle is selecting the |11⟩ state 

and is derived from a simple realization by the quiskit 

textbook (Qiskit Textbook, 2024). Gates like the CZ 

gate have been replaced with the sequence: Hadamard 

gate, cx gate, Hadamard gate to feature our universal 

set. Moreover, we algebraically calculate the algo-

rithm step by step and verify the outcome with a qiskit 

simulation. 

Firstly, we initialize both qubits in the |0⟩ state and 

connect them via Kronecker product (see equation 7). 

|q0q1⟩ = |q1⟩ ⊗ |q0⟩ = |0⟩ ⊗ |0⟩ 

= (
1 ∙

1
0

0 ∙
1
0

) = (

1
0
0
0

) {7} 

Then, we apply the Hadamard operation to both 

qubits to achieve a uniform superposition of |+ +⟩ 
(see equation 8). 

Hq0,q01 ∙ |q0q1⟩ =
1

2
∙ [

1 1
1 −1

1 1
1 −1

1 1
1 −1

−1 −1
−1 1

] ∙ (

1
0
0
0

) 

=
1

2
∙ (

1
1
1
1

) =

(

 
 
 

1

2
1

2
1

2
1

2)

 
 
 

 {8} 

Thirdly, we require the oracle consisting of a CZ gate. 

Therefore, we replace it with a sequence of our cho-

sen gates and apply those to calculate the operation 

(see equation 9-12). 

Hq1CXq0,q01Hq1 

=
1

√2
∙ [

1 0
0 1

1 0
0 1

1 0
0 1

−1 0
0 −1

] ∙ [

1 0
0 0

0 0
0 1

0 0
0 1

1 0
0 0

] ∙
1

√2

∙ [

1 0
0 1

1 0
0 1

1 0
0 1

−1 0
0 −1

] 

=
1

2
[

1 0
0 1

1 0
0 1

1 0
0 −1

−1 0
0 1

] ∙ [

1 0
0 1

1 0
0 1

1 0
0 1

−1 0
0 −1

] 

= [

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 −1

] = CZq0q01 {9} 

Hq1 ∙ |q0q1⟩ =
1

√2
∙ [

1 0
0 1

1 0
0 1

1 0
0 1

−1 0
0 −1

] ∙

(

 
 
 
 
 

1

2
1

2
1

2
1

2)

 
 
 
 
 

 

=
1

√2
∙ (

1
1
0
0

) =

(

 
 

1

√2
1

√2

0
0)

 
 

 {10} 

CXq0,q01 ∙ |q0q1⟩ = [

1 0
0 0

0 0
0 1

0 0
0 1

1 0
0 0

] ∙

(

 
 
 

1

√2
1

√2
0
0 )
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=

(

 
 

1

√2

0
0
1

√2)

 
 

 {11} 

Hq1 ∙ |q0q1⟩ =
1

√2
∙ [

1 0
0 1

1 0
0 1

1 0
0 1

−1 0
0 −1

] ∙

(

 
 
 

1

√2
0
0
1

√2)

 
 
 

 

=
1

√2
∙

(

 
 
 
 

1

√2
1

√2
1

√2

−
1

√2)

 
 
 
 

=

(

 
 
 

1

2
1

2
1

2

−
1

2)

 
 
 

 {12} 

Next, we want to apply the general diffusion operator 

for the two qubit Grover’s algorithm. To achieve this, 

we start by applying two Hadamard operations (see 

equation 13). 

Hq0,q01 ∙ |q0q1⟩ 

=
1

2
∙ [

1 1
1 −1

1 1
1 −1

1 1
1 −1

−1 −1
−1 1

] ∙

(

 
 
 
 
 

1

2
1

2
1

2

−
1

2)

 
 
 
 
 

 

=

(

 
 
 

1

2
1

2
1

2

−
1

2)

 
 
 

 {13} 

Now, we replace the following necessary matrix with 

a sequence of our chosen gates and apply those to the 

exemplary calculation (see equation 14-17). 

[

1 0
0 −1

0 0
0 0

0 0
0 0

−1 0
0 −1

] 

= Zq0,q01CZq0,q01 = Zq0,q01Hq1CXq0,q01Hq1 

= [

1 0
0 −1

0 0
0 0

0 0
0 0

−1 0
0 1

] ∙
1

√2
∙ [

1 0
0 1

1 0
0 1

1 0
0 1

−1 0
0 −1

] ∙

[

1 0
0 0

0 0
0 1

0 0
0 1

1 0
0 0

] ∙
1

√2
∙ [

1 0
0 1

1 0
0 1

1 0
0 1

−1 0
0 −1

] {14} 

Zq0,q01 ∙ |q0q1⟩ = [

1 0
0 −1

0 0
0 0

0 0
0 0

−1 0
0 1

] ∙

(

 
 
 
 
 

1

2
1

2
1

2

−
1

2)

 
 
 
 
 

 

=

(

 
 
 

1

2

−
1

2

−
1

2

−
1

2)

 
 
 

 {15} 

Hq1 ∙ |q0q1⟩ =
1

√2
∙ [

1 0
0 1

1 0
0 1

1 0
0 1

−1 0
0 −1

] ∙

(

 
 
 
 
 

1

2

−
1

2

−
1

2

−
1

2)

 
 
 
 
 

 

=
1

√2
∙ (

0
−1
1
0

) =

(

 
 

0

−
1

√2
1

√2

0 )

 
 

 {16} 

CXq0,q01 ∙ |q0q1⟩ 

= [

1 0
0 0

0 0
0 1

0 0
0 1

1 0
0 0

] ∙

(

 
 

0

−
1

√2
1

√2

0 )

 
 
=

(

 
 

0
0
1

√2

−
1

√2)

 
 

 {17} 

Lastly, we need to again apply two Hadamard opera-

tions. However, since we would now apply two Hada-

mard operations to the first qubit, we can ignore 

those, because the Hadamard operation is a self-in-

verse matrix. Thus, we only apply a Hadamard oper-

ation to the second qubit to finish our calculations 

(see equation 17). 

Hq1 ∙ |q0q1⟩ 

=
1

√2
∙ [

1 0
0 1

1 0
0 1

1 0
0 1

−1 0
0 −1

] ∙

(

 
 
 

0
0
1

√2

−
1

√2)

 
 
 

 

= (

0
0
0
1

) = |11⟩ {18} 

Finally, we verify our solution with the following 

qiskit simulation (see fig. 19 and 20). 
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Fig. 19: Verification of our calculation of the Grover 

algorithm using qiskit libraries for python with jupy-

ter notebook. 

 

Fig. 20: Verification of our calculation of the Grover 

algorithm using qiskit libraries for python with jupy-

ter notebook. 

4. Results 

In our experiments we have realized the C-NOT and 

Hadamard gate of our universal set. Additionally, we 

were able to demonstrate the X- and Z gate. Thereby, 

the Z gate could also be used within the calculation of 

the algorithms as a replacement of the T gate. Further-

more, we discovered a great possibility to increase the 

processing speed of light-based computers through 

the usage of multiplexing. Moreover, we were able to 

show the functionality of the Deutsch-Jozsa as well 

as Grover algorithm mathematically and through sim-

ulations, while working in the confines of our univer-

sal set. Hence, we gained a detailed understanding of 

the functionality of quantum computers and their 

hardware as well as software. 

5. Discussion 

Obviously, our experimental demonstrations do not 

quite work as a complete and functioning implemen-

tation of a quantum computer yet, especially due to 

the solely demonstrative nature of our CX gate and 

the missing implementation of a T gate. 

Nevertheless, using the orbital angular momentum of 

light as a second qubit, we are currently trying to re-

alize the complete universal set of gates. Firstly, we 

are employing the C-NOT-realization from Lopez 

(Lopez, et al., 2018) in combination with an oam-

Hadamard gate (Xinbing Song, et al., 2020) to even-

tually implement a swap gate (Qiskit Textbook, 

2024). Combining this with our proposed solution for 

a T gate and the given Hadamard gate-realization, the 

entire universal set can be physically realized. 

Moreover, we are currently working on a physical re-

alization of the Deutsch algorithm solely using this 

universal set and the materials mentioned above. 

In a nutshell, our experiments and calculations have 

helped us to greatly improve our understanding of 

quantum computers in all areas and even let us apply 

the gained knowledge in a practical way. It especially 

helps us to connect abstract mathematics and theory 

with their physical implementation and thus provides 

a more thorough picture of the field. The experiments 

are simple and visually appealing, while still convey-

ing the essential concepts of quantum computing. 

Additionally, while the costs for the C-NOT gate re-

alization might be a lot for most schools and some 

universities, the demonstration experiments for the 

single qubit gates solely require polarizer and half 

wave plate foil. Thus, the costs come out to be in the 

low double-digit area making the experiments easily 

and cheaply replicable. 
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