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Abstract 

In everyday life, digital cameras and photovoltaic systems are ubiquitous. Thereby, quanta of the 

electromagnetic field are absorbed in order to gain visual information or electric energy. Our under-

standing of such quanta is rooted on the quantum field theory of electrodynamics, quantum electro-

dynamics, QED, in present-day physics. However, that QED predicts an energy density of the vac-

uum of 𝑢Λ,QED = 3.6 ⋅ 10112 𝐽/𝑚3. In general, the energy density of space 𝑢Λ is related to the cos-

mological constant Λ proposed by Einstein (1917). In contrast to 𝑢Λ,QED, the energy density of space, 

the dark energy, has been observed at the intergalactic space: 𝑢Λ,obs = 5.1 ⋅ 10−10 𝐽/𝑚3. That huge 

discrepancy presents a severe problem of QED, it is called the cosmological constant problem. How 

is that problem resolved? 

This question is answered with help of the dynamics of volume in nature, the volume dynamics, VD, 

see Carmesin (2023a). The VD bridge general relativity and quantum physics. For these results, we 

provide a learning process, so that you can directly use the concept in your courses. The learning 

process has been tested in various learning groups, and experiences are reported. 

 

1.  Introduction 

In order to understand the meaning of the energy den-

sity associated with space or volume, we analyse Ein-

stein’s (1917) idea of a cosmological constant Λ.    

1.1. On Einstein’s idea of 𝚲  

The expansion of space can be derived from general 

relativity, see Einstein (1917), Friedmann (1922) and 

Lemaître (1927). Thereby, a uniform scaling of space 

is derived. In general, such a uniform scaling can be 

described by the time evolution of a scale radius 𝑟(𝑡), 

see Fig. (1): If space expands by a factor 𝑞, then 𝑟 is 

multiplied by 𝑞. That time evolution can be described 

by this differential equation, DEQ: 

�̇�2

𝑟2 =
8𝜋𝐺

3
⋅ (𝜌𝑟 + 𝜌𝑚 + 𝜌𝐾 + 𝜌Λ)  {1} 

Hereby, 𝐺 is the universal constant of gravity. More-

over, four densities are distinguished, so that each 

density has a characteristic scaling behaviour as a 

function of the scale radius 𝑟: 

𝜌𝑟 is the density of radiation, 

𝜌𝑚 is the density of matter, 

𝜌𝐾  is the density of a curvature parameter, it is zero 

according to observation, see Planck collaboration 

(2020), and as a result of a proof, see Carmesin 

(2023c), 

𝜌Λ is the density of the cosmological constant, it does 

not change as a function of the scale radius 𝑟. 

A present-day value of a quantity is marked by the 

subscript zero. Next, the densities in Eq. {1} are ex-

pressed as functions of the scale radius:  

�̇�2

𝑟2 =
8𝜋𝐺

3
⋅ (𝜌𝑟,0

𝑟0
4

𝑟4  + 𝜌𝑚,0
𝑟0

3

𝑟3 + 𝜌Λ)  {2} 

 

Fig. 1: A prototypical ball of the universe with a scale ra-

dius 𝑟 and an energy density 𝑢. The energy density can be 

expressed in terms of a density or dynamic density 𝜌 =
𝑢

𝑐2. 

When 𝜌Λ becomes essential, 𝑟 is very large, so that  

𝜌𝑟 becomes very small, so we neglect it in section 

(1.1). We multiply by 𝑟2 and apply the time deriva-

tive: 

𝜕

𝜕𝑡
�̇�2 =

8𝜋𝐺

3
⋅

𝜕

𝜕𝑡
(𝜌𝑚,0

𝑟0
3

𝑟1 + 𝜌Λ𝑟2)  {3} 

2�̇� �̈� =
8𝜋𝐺

3
(−𝜌𝑚,0

𝑟0
3

𝑟2 + 2𝜌Λ𝑟) �̇�  {4} 
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In order to obtain a relative acceleration 
�̈�

𝑟
, we divide 

by 2𝑟�̇�: 

�̈�

𝑟
=

8𝜋𝐺

3
(−

1

2
𝜌𝑚 + 𝜌Λ)   {5} 

Einstein (1917) had the idea of a static universe: If  

the 𝜌Λ compensates 
1

2
𝜌𝑚 in the above DEQ, then 𝑟 is 

not accelerated. Thus, if �̇� is zero initially, then �̇� re-

mains zero and the universe is static. 

For this purpose of a possibly static universe, Einstein 

(1917) proposed the cosmological constant Λ, corre-

sponding to the density 𝜌Λ =
Λ𝑐2

8𝜋𝐺
 and energy density 

𝑢Λ =
Λc4

8𝜋𝐺
, see e. g. Hobson (2006, section 15.1). 

1.2. Epistemology 

Kircher, Girwidz und Häußler (2001, section 4.1.2) 

describe the hypothetic deductive method. In the epis-

temological literature, this method is also called hy-

pothetico-deductive testing (Niiniluoto, Sintonen, 

Wolenski 2004, S. 214). The method consists of three 

steps: In the hypothetic step, a thesis or hypothesis is 

suggested for testing. In the deductive step, implica-

tions are derived. In the third step, the implications 

are compared with observation. Hereby, in principle, 

a falsification should be possible. This method is used 

here as well as in Carmesin (2024a-g, 2017, 2018a-b, 

2019a-b, 2020a-c, 2021a-d, 2022a-c, 2023a-f). 

1.3. On the observed value 𝚲𝐨𝐛𝐬  

As a consequence of Eq. {5}, it was clear how 𝜌Λ 

could be measured: If an observer would measure an 

accelerated expansion of space, then this could be ex-

plained by the dynamic density 𝜌Λ, see e. g. Carmesin 

(2019a, 2020a). Indeed, Perlmutter et al. (1998) dis-

covered the accelerated expansion of the universe. 

Meanwhile, many observers confirmed the acceler-

ated expansion of the universe. An especially precise 

measurement of 𝜌Λ has been achieved with help of 

the cosmic microwave background, CMB, see Planck 

collaboration (2020). That group applied several eval-

uation procedures, whereby the so-called tempera-

ture-temperature correlation is especially robust and 

used here: 

The Hubble constant 𝐻0 is the present-day value of 

the Hubble parameter 𝐻 =
�̇�

𝑟
, the observed value is: 

𝐻0,𝑜𝑏𝑠 = 66.88 (±0.92) 
km

s⋅Mpc
    with 

1𝑀𝑝𝑐 = 3.086 ⋅ 1019 km,        thus,              

 𝐻0,𝑜𝑏𝑠 = 2.167 (±0.03) ⋅ 10−18  
1

s
      {6} 

With it, the so-called critical density is as follows: 

𝜌𝑐𝑟. =
3𝐻0

2

8𝜋𝐺
= 8.4 ⋅ 10−27 kg

m3    {7} 

The density divided by the critical density is the den-

sity parameter, ΩΛ =
𝜌Λ

𝜌𝑐𝑟
. Its observed value is: 

ΩΛ,𝑜𝑏𝑠 = 0.679 (±0.013)    {8} 

Note that this density parameter means that 67.9 % of 

all energy and matter in the universe is the energy of 

ρΛ, the so-called dark energy, see Huterer (1999), 

Planck collaboration (2020), Workman et al. (2022).  

Thus, the observed value of 𝜌Λ is: 

ρΛ,𝑜𝑏𝑠 = ΩΛ,𝑜𝑏𝑠 ⋅ 𝜌𝑐𝑟. = 5.704 (±0.27) ⋅ 10−27 kg

m3
  {9} 

 uΛ,𝑜𝑏𝑠 = 5.133 (±0.243) ⋅ 10−10 J

m3  {10} 

1.4. On photon states 

How are the photons described that the camera chip 

of a digital camera absorbs: In QED, photons with a 

circular frequency 𝜔𝜇 are described by orthonormal 

photon states |𝑛𝜇,𝑝⟩, with 𝑛 ∈ {0, 1, 2, 3, … }:  

⟨𝑛𝜇,𝑝|𝑛𝜇′,𝑝⟩ = 𝛿𝜇,𝜇′     {11} 

Hereby, the subscript 𝑝 marks photons. These states 

|𝑛𝜇,𝑝⟩ are eigenfunctions of the number operator �̂�𝜇,𝑝: 

�̂�𝜇,𝑝|𝑛𝜇,𝑝⟩ = 𝑛𝜇,𝑝|𝑛𝜇,𝑝⟩    {12} 

The energy operator is as follows: 

�̂� = ∑ (�̂�𝜇,𝑝 +
1

2
)𝜇 ⋅ ℏ𝜔𝜇      {13} 

The matrix elements of �̂� are as follows: 

𝐻𝜇,𝜇′ = |𝑛𝜇,𝑝⟩ (𝑛𝜇 +
1

2
) ℏ𝜔𝜇𝛿𝜇,𝜇′𝛿𝑝,𝑝′ ⟨𝑛𝜇′,𝑝|  {14} 

The Kronecker delta 𝛿𝜇,𝜇′ indicates that only the di-

agonal matrix elements are nonzero. The Kronecker 

delta 𝛿𝑝,𝑝′ indicates that quantum states ⟨𝑛𝜇′,𝑝′| with 

𝑝 ≠ 𝑝′ of other quanta than photons provide a factor 

zero. 

Consequently, zero photon state |0𝜇,𝑝⟩ of the circular 

frequency 𝜔𝜇 has the following eigenvalue equation 

for the energy: 

�̂�|0𝜇,𝑝⟩ = (�̂�𝜇,𝑝 +
1

2
) ℏ𝜔𝜇|0𝜇,𝑝⟩ =

1

2
ℏ𝜔𝜇|0𝜇,𝑝⟩  {15} 

Thus, the eigenvalue of the energy is nonzero. It is 

called the zero-point energy: 

𝑍𝑃𝐸𝜇,𝑝 =
1

2
ℏ𝜔𝜇      {16} 

Correspondingly, the zero photon state |0𝜇,𝑝⟩ is the 

zero-point oscillation, ZPO, of the electromagnetic 

field at the circular frequency 𝜔𝜇. 

If there is a state |𝑛𝜇,𝑝⟩, and if an additional photon is  

emitted, for instance by an LED, then the number 
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state is increased by one, so that the state |𝑛𝜇,𝑝 + 1⟩ 
occurs. This process is described with help of a rais-

ing operator �̂�𝜇,𝑝
+  as follows: 

1

√𝑛𝜇,𝑝+1
⋅  �̂�𝜇,𝑝

+ |𝑛𝜇,𝑝⟩ = |𝑛𝜇,𝑝 + 1⟩   {17} 

The process of emission is expressed in the form of 

an reaction equation as follows: 

ℏ𝜔𝜇 + |𝑛𝜇,𝑝⟩ = |𝑛𝜇,𝑝 + 1⟩    {18} 

Hereby, the energy ℏ𝜔𝜇 must be provided by the 

emitting device in the form of a photon. Similarly, if 

the camera chip absorbs a photon at a state |𝑛𝜇,𝑝⟩, the 

prosses can be described by the lowering operator 𝑎𝜇𝑝 

as follows: 

1

√𝑛𝜇,𝑝
⋅ �̂�𝜇,𝑝|𝑛𝜇,𝑝⟩ = |𝑛𝜇,𝑝 − 1⟩   {19} 

The process of absorption is expressed in the form of 

an reaction equation as follows: 

|𝑛𝜇,𝑝⟩ = |𝑛𝜇,𝑝 − 1⟩ + ℏ𝜔𝜇    {20} 

Hereby, the energy ℏ𝜔𝜇 of one photon must be taken 

up by the absorbing device. 

In this manner, an LED can increase the number of 

photons in the state = |𝑛𝜇,𝑝⟩, whereby the circular fre-

quency 𝜔𝜇 corresponds to the colour of the LED. 

Analogously, a colour – pixel corresponding to 𝜔𝜇 

can decrease the number of photons in the state |𝑛𝜇,𝑝⟩.  

So far, QED describes the emission and absorption of 

photons in a very intuitive manner that is also in pre-

cise accordance with observation, see e. g. Ballentine 

(1998), see also Carmesin (2021a, 2023a, 2024a-d) 

for a derivation of the above algebra. 

However, the zero-point energy corresponds to an en-

ergy density of the vacuum of 𝑢Λ,QED = 5.9 ⋅
10111 𝐽/𝑚3, see e. g. Ballentine (1998). This is in 

clear contrast to the energy density of intergalactic 

space of 𝑢Λ,obs = 5.1 ⋅ 10−10 𝐽/𝑚3. This huge dis-

crepancy is called cosmological constant problem, 

CCP.   

1.5. Aim of the paper  

The aim of the paper is to show how students or in-

terested people can derive a solution to the CCP. 

1.6. Organization of the paper  

A didactic analysis including a professional analysis 

is provided in section 2. The learning process includ-

ing experiences with learning groups are shown in 

part 3. We discuss our findings in section 4. Many 

useful and insightful related results are presented in 

my parallel papers in the report about the DPG con-

ference in March 2024 in Greifswald, see Carmesin 

(2024a-g).  

 

2. Didactic analysis 

In a first didactic step in section (1.1), Einstein’s 

(1907) introduction of the cosmological constant is 

presented. Thereby, the expansion of space according 

to Eq. {1} has been treated before. On that basis, this 

step has no special learning barrier. This step is es-

sential, in order to have a clear concept of the cosmo-

logical constant and its density. 

In a second didactic step in section (1.3), the observed 

values are presented. This step has no special learning 

barrier. The step is essential in order to understand the 

cosmological constant problem, CCP. 

In a third didactic step in section (1.4), the ladder op-

erators and number states are introduced for the case 

of electromagnetic radiation. This step is intuitive. 

Spectra are well-known from atoms, for instance, see 

e. g. Carmesin (2020c). It is similar to the states Thus, 

this step has no special learning barrier. The step is 

essential in order to explain why the volume does 

contribute to 𝜌Λ, but the electromagnetic radiation 

does not.  

2.1. Derivation of the observed 𝐮𝚲,𝒐𝒃𝒔  

2.1.1. Physical analysis  

Carmesin (2023a, 2024a-f) analysed the dynamics of 

the volume in nature, the volume-dynamics, VD. It 

includes the local formation of volume, LFV. With it, 

Carmesin (2021a, 2023a, 2024c) derived the energy 

density of volume as follows: 

Theorem: Law of the derived energy density of vol-

ume in an empty universe. 

In a universe consisting of volume only, the process 

of GFV from LFV causes the following energy den-

sity of volume: 

𝑢Λ,theo =
𝑐2𝐻0

2

4𝜋𝐺
= 𝑢vol,    thus,  {21} 

𝜌Λ,theo =
𝐻0

2

4𝜋𝐺
=  5.600 (±0.155) ⋅ 10−27 kg

m3  {22} 

The density is a consequence of the process of for-

mation of volume since the Big Bang until the pre-

sent-day time 𝑡0.  

If that process ranges from the Big Bang to another 

time 𝑡1 ≠ 𝑡0, then that process provides the same den-

sity of volume.  

This result is in precise accordance with observation. 

Proofs are presented in Carmesin (2021a, 2023a, 

2024c-d). This result provides a solution to the CCP.  

Next, we analyse, why the energy density 𝑢Λ,QED does 

not contribute to the energy density uΛ,𝑜𝑏𝑠 observed 

at the intergalactic space, see Perlmutter (1998).  

2.1.2. Didactic analysis  

In a first didactic step, the derived energy density of 

volume is presented and discussed. That derivation 

and the corresponding didactic steps are analysed in 

Carmesin (2024c). 
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2.2. 𝒖𝚲,𝐐𝐄𝐃 does not contribute to the density 𝝆𝒓  

2.2.1. Physical analysis  

The density 𝜌𝑟 in Eq. {1} represents the classical den-

sity of the electromagnetic radiation and of possible 

other components that propagate at the velocity of 

light, see e. g. Planck collaboration (2020) or Work-

man (2022). 

The density 𝑢Λ,QED represents a density of a zero-

point energy, ZPE, see e. g. Ballentine (1998).  

For the case of the VD, it is shown that the zero-point 

energy 𝑍𝑃𝐸𝜔 with a circular frequency 𝜔 is minimal 

energy that an object can have according to the Hei-

senberg uncertainty relation, see Carmesin (2024b, 

section 2.5). That derivation does not use the VD. 

Consequently, that result holds for all quantum ob-

jects. In particular, that fact holds for the zero-point 

energies 𝑍𝑃𝐸𝜔 that provide the energy density 

𝑢Λ,QED. 

However, the classical expectation value of the zero-

point energies 𝑍𝑃𝐸𝜔 and, consequently, of the energy 

density 𝑢Λ,QED are zero: 

⟨𝑢Λ,QED⟩
classical

= 0   {23} 

As a consequence, that energy density does not con-

tribute to the density 𝜌𝑟 in Eq. {1}. 

The above Eq. {23} can also be derived as follows: 

The VPs can form mass in the process of a phase tran-

sition, see Higgs (1964), Carmesin (2021a-b). Simi-

larly, the VPs cause the elementary charge as well as 

the electromagnetic field that are generated by an el-

ementary charge, for instance, see Carmesin (2021c, 

2022b). Moreover, a VP exhibits an energy density of 

its gravitational field and a generalized kinetic energy 

density, whereby the sum of both, the complete en-

ergy density, is zero, see (Carmesin 2021a, 2023a, 

2024a-d). This property is not changed during the 

above phase transitions, so that Eq. {23} holds in the 

following form: 

𝑢Λ,QED,complete = 0   {24} 

2.2.2. Didactic analysis  

In a first didactic step, it is explained with help of top-

ics derived in advance, why the classical energy of a 

ZPE is zero, and why the complete energy of a ZPE 

of electromagnetic radiation is zero. As no derivation 

is required, there is no special learning barrier in this 

step.  

2.2.3. 𝒖𝚲,𝐐𝐄𝐃 does not provide LFV or GFV  

The complete energy density 𝑢Λ,QED,complete of the 

zero – point oscillations of the electromagnetic field 

is zero, see Eq. {24}, and 𝑢Λ,QED,complete includes no 

available energy (nμ′ ≥ 1), that would be available 

for a transformation. Consequently, 𝑢Λ,QED,complete 

does not provide any LFV or GFV. For comparison, 

the dynamic density 𝜌𝑟,0 includes available energy 

(nμ′ ≥ 1) and contributes to the (homogeneous, see 

Carmesin (2023a,2024d,g)) dynamic density of the 

universe, and it provides GFV. For comparison, the 

VD provides the energy density of volume 𝑢𝑣𝑜𝑙 in ac-

cordance with observation, see Carmesin (2024c,g). 

2.2.4. Physical analysis  

(1) Dynamic density of volume in Eq. {1}: 

In Eq. {1}, the density 𝜌Λ contributes to the squared 

Hubble rate 𝐻2, and Einstein defined 𝜌Λ by that meas-

urable contribution. Carmesin (2023a, 2024c-d) 

showed that the main part of the observed value 𝜌Λ,obs 

is the dynamic density of the volume in nature, 𝜌𝑣𝑜𝑙 .  

(2) 𝜌𝑣𝑜𝑙  causes local formation of volume: 

The density 𝜌𝑣𝑜𝑙  provides the local formation of vol-

ume, LFV, see the law of locally formed volume, 

LFV in Carmesin (2023a, 2024a-d). The squared rate 

of the LFV in a direction 𝒋 is proportional to the field 

as follows, see Carmesin (2024a):   

𝜀�̇�,𝑗𝑗
2 𝑐2 = 𝐺𝑔𝑒𝑛,𝑗

2    {25} 

Hereby, 𝐺𝑔𝑒𝑛,𝑗 is the component 𝑗 of the generalized 

field. 

(3) How 𝜌𝑣𝑜𝑙  causes the squared field: 

Firstly, we provide a semiclassical description: A VP 

of minimal energy causes field �⃗�𝑔𝑒𝑛 in its vicinity, 

corresponding to a gradient of relative additional vol-

ume. In this manner, that VP generates LFV.  

Secondly, we provide a description of the process of 

LFV at the level of ladder operators:  

A zero-point energy 𝑍𝑃𝐸𝜔 of a volume-portion, VP, 

causes a nonzero squared field according to the law 

of the nonzero squared field in Carmesin (2024d):  

The squared field exhibits the following nonzero ex-

pectation value: 

⟨𝑛𝜇,|�⃗�𝑔𝑒𝑛
2 |𝑛𝜇′⟩ = 𝐺∫ 𝑑𝜇ℏ𝜔𝜇 (𝑛𝜇 +

1

2
) 𝛿𝜇𝜇′ {26} 

The matrix element ⟨𝑛𝜇|�⃗�𝑔𝑒𝑛
2 |𝑛𝜇′⟩ in the above Eq. 

can be expressed by the ladder operators, see Carme-

sin (2024d): 

⟨nμ|G⃗⃗⃗gen
2 |nμ′⟩ =

ℏc2G

2ωμ
 ∫ dμ∫ dμ′k⃗⃗μk⃗⃗μ′fμfμ′

ccMμμ′{27} 

Mμμ′ ≔ ⟨nμ |(aμ
+ + aμ) (aμ′

+ + aμ′)| nμ′⟩ {28} 

In this manner, the VPs of minimal energy, cause 

other VPs of minimal energy. 

(4) States of the 𝑍𝑃𝐸𝜔 that provide 𝑢Λ,QED: 

The ladder operators in Eq. {28} act upon states of 

volume-portions, see Carmesin (2024b). Conse-

quently, the application of such a ladder operator 

upon a state of the electromagnetic field provides zero 

as a result: 

𝑎𝜇|0𝜇,𝑝⟩ = 0  &  𝑎𝜇
+|0𝜇,𝑝⟩ = 0  {29} 

Consequently, the states |0𝜇,𝑝⟩ do not cause LFV. 

As a consequence of sections (2.2) and (2.3), the zero-

point energy of the electromagnetic field does not 
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provide the formation of additional volume in Eq. 

{1}. Thus, the zero-point energy of the electromag-

netic field does not contribute to the squared Hubble 

parameter in Eq. {1}. Consequently, the zero-point 

energy of the electromagnetic field does not contrib-

ute to the measured value ρΛ,𝑜𝑏𝑠, as Einstein (1917) 

defined ρΛ,𝑜𝑏𝑠 by its effect upon the Hubble rate in 

Eq. {1}. 

However, the zero-point energy of the electromag-

netic field has no effect upon the Hubble parameter, 

so that ZPE is not part of ρΛ,𝑜𝑏𝑠. Thus, that ZPE is no 

part of ρΛ, as that density relies on the observed value 

ρΛ,𝑜𝑏𝑠. 

We summarize our result: 

Theorem: The electromagnetic ZPE forms no vol-

ume.  

(1) As the electromagnetic ZPE has no classical en-

ergy, it is not part of 𝜌𝑟 in Eq. {1}. So that ZPE does 

not form volume via 𝜌𝑟.  

(2) As the ladder operators of the VD applied to a 

state of electromagnetic ZPE |0𝜇,𝑝⟩ provides zero, 

that state |0𝜇,𝑝⟩ does not cause LFV. Thus, that state 

does not contribute to 𝜌Λ by the process of LFV. 

(3) Consequently, the electromagnetic ZPE does not 

contribute to the Hubble rate in Eq. {1}. Accordingly, 

the electromagnetic ZPE is presumably compensated 

by a corresponding negative energy. Similarly, the ki-

netic energy of the ZPE of volume is compensated by 

a negative energy. 

(4) This explains why the energy density 𝑢𝑣𝑜𝑙 is part 

of 𝑢Λ, but the energy density 𝑢Λ,QED is not part of 𝑢Λ. 

 

Fig. 2: A cube with length L of the edges is used in order 

to derive the energy density 𝑢Λ,QED. 

2.3. Energy density of electromagnetic ZPOs 

2.3.1. Physical analysis  

The energy density 𝑢Λ,QED corresponds to a vanishing 

complete energy density, see Eq. {24}. Consequently, 

all possible modes can form, up to a maximal wave 

vector 𝑘𝑚𝑎𝑥. The integral of these modes in a cube of 

length L, see Fig. (2), provides the energy density, see 

e. g. Ballentine (1998), Carmesin (2020a): 

𝑢Λ,QED =
ℏ𝑐⋅𝑘𝑚𝑎𝑥

4

8𝜋2    {30} 

The largest possible value of 𝑘𝑚𝑎𝑥 is provided with 

help of the Planck length 𝐿𝑃 = 1.616 ⋅ 10−35𝑚. If a 

ball with the radius of one 𝐿𝑃 is at each corner of the 

cube in Fig. (2), then 𝐿 = 2𝐿𝑃 , and 𝑘𝑚𝑎𝑥 =
𝜋

𝐿
. In that 

case, the energy density is as follows: 

𝑢Λ,QED =
ℏ𝑐⋅𝑘𝑚𝑎𝑥

4

8𝜋2 = 3.6 ⋅ 10112 𝐽

𝑚3 {31} 

2.3.2. Didactic analysis  

In a first didactic step, the maximal possibly energy 

density is calculated. This step has no special learning 

barrier, as the equation is taken from the literature. 

This step is valuable, as the students become compe-

tent in analysing essential lengths and energy densi-

ties on their own. 

 

Fig. 3: A cube with length L of the edges, and with a plate 

at R and parallel to the faces of the cube. Two parallel 

conducting plates at 𝑥 = 0 and 𝑥 = 𝑅, each with area 𝐿2 

attract each with the Casimir force 𝐹𝐶𝑎𝑠𝑖𝑚𝑖𝑟 =
ℏ𝑐𝜋2𝐿2

240𝑅4  . 

2.4. Observed Casimir force 

2.4.1. Physical analysis  

The zero-point oscillations of the electromagnetic 

field are reflected at two parallel electrically conduct-

ing plates, see Fig. (3). Thereby, a momentum trans-

fer takes place, and a force is exerted upon the plates, 

see Casimir (1948), Ballentine (1998). Schmidt et al. 

(2022) observed such forces at plates with a distance 

of ℎ = 100 𝑛𝑚. The corresponding value of 𝑘𝑚𝑎𝑥 is 

as follows: 

𝑘𝑚𝑎𝑥 =
𝜋

100 𝑛𝑚
= 3.14 ⋅ 107 1

𝑚
  {32} 

With it, the corresponding energy density is as fol-

lows: 

𝑢Λ,QED =
ℏ𝑐⋅𝑘𝑚𝑎𝑥

4

8𝜋2 =  390.3
𝐽

𝑚3  {33} 

Thus, the observed value of 𝑢Λ,QED is clearly larger 

that the observed value of the energy density of the 

cosmological constant: 

uΛ,𝑜𝑏𝑠 = 5.133 (±0.243) ⋅ 10−10 J

m3   {34} 
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2.4.2. Didactic analysis  

In a didactic step, the energy densities in Eqs. {30-

34} are derived. Thereby, the comparison of Eqs. 

{3,33} and {34} provides a cognitive conflict, the 

cosmological constant problem. 

This step is insightful, as it shows that values of 

𝑢Λ,QED, that are based on observation, are far beyond 

the value of the energy density that has been observed 

at intergalactic space, uΛ,𝑜𝑏𝑠. 

2.5. Explanation of the Casimir force 

2.5.1. Physical analysis  

(1) The Casimir force in Fig. (3) is explained by the 

transfer of momentum. Thereby, the momentum cor-

responds to the kinetic energy: 𝐸𝑘𝑖𝑛 = 𝑝 ⋅ 𝑐. Conse-

quently, this momentum transfer takes place, irre-

spective of the value of the complete energy density: 

ℏ𝑐𝜋2𝐿2

240𝑅4 = 𝐹𝐶𝑎𝑠𝑖𝑠𝑚𝑖𝑟 = 𝐹𝑟𝑒𝑓𝑙𝑐𝑡𝑖𝑜𝑛 =
Δ𝑝

Δ𝑡
 {35} 

That force is derived from Eq. {30}, see Carmesin 

(2024g). 

2.5.2. Didactic analysis  

In a first didactic step, the Casimir force is derived 

and confirmed by observations, see Ballentine 

(1998), in order to show that zero – point oscillations 

of the electromagnetic field are measurable. 

In a second didactic step, the complete energy density 

𝑢Λ,QED,complete = 0 in Eq. {24} is derived. Thus, the 

VD clarifies, why the electromagnetic  zero – point 

oscillations have zero complete energy density. 

In a third didactic step, the students realize that the 

derived energy density of volume 𝑢𝑣𝑜𝑙 is in accord-

ance with observation. Thus, the VD clarifies, how 

the observed energy density of volume and outer 

space is formed. As these results can be derived, there 

is no special learning barrier in principle, in this step.   

3.  Experience: learning process and learners 

The experiences with learning groups have been doc-

umented in terms of photographs of the blackboard 

and with help of additional reports. These are summa-

rized as follows. 

The topic has been presented in general studies 

courses at the university. The learning process was 

enriched by a permanent discussion of the achieved 

results and by exercises about the derived relations. 

In particular, the learning process took place as fol-

lows: 

In first unit, the concepts of Einstein’s (1917) cosmo-

logical constant and of the corresponding dynamics 

density and energy density are treated. That  unit re-

quires 30 minutes, if the dynamics in Eq. {1} have 

already been introduced. The students like this topic, 

as the source of the accelerated expansion is very in-

spiring and insightful. 

In a second unit, the observed data are presented and 

discussed. With it, the CCP becomes evident. The 

students like this step, as it makes transparent a deep 

problem of present-day physics. The unit requires 15 

minutes. 

In a third unit, the ladder operators are introduced in 

a descriptive manner. Some students know already a 

fundamental derivation for the case of volume in na-

ture, see Carmesin (2024a-d). The students like that 

method, as it is very intuitive, and since it clarifies the 

spectrum. The unit requires 45 to 90 minutes, with 

variations depending on the depth of explanations or 

derivations.  

In a fourth unit, the results derived for the energy den-

sity of volume are summarized. The students like this 

unit, as the mentioned process of the formation of vol-

ume is very insightful, see e. g. Carmesin (2024c-d). 

This unit requires 30 minutes.  

In unit five, the energy density of 𝑢Λ,QED is summa-

rized and explained. The students like this unit, as it 

is very insightful to realize that it is not obvious to 

derive a complete energy density. The unit requires 

20 to 45 minutes. 

In unit six, it is clarified, why the VPs cause LFV, but 

the ZPE of the electromagnetic field does not. At a 

first semiclassical level, the point is quite evident. At 

the level of ladder operators, the point is derived in a 

more formal manner. The students discuss the essen-

tial differences. This makes sense, as the differences 

are fundamental. Indeed, an even more fundamental 

derivation can be achieved on the basis of a derivation 

of the elementary charge from VPs, see Carmesin 

(2021c, 2022b). The unit requires 45 to 90 minutes. 

In unit seven, values of 𝑢Λ,QED are analysed. The stu-

dents like such calculations, as they are quite simple 

and insightful. The unit requires 20 minutes. 

In unit eight, values of 𝑢Λ,QED are analysed with help 

of observed Casimir forces. The students like such 

calculations, as they are very simple and insightful. 

The unit requires 20 minutes. 

In unit nine, the principle underlying the Casimir 

force is derived. The students like that derivation, as 

it is very clear, and as the Casimir force provides clear 

empirical evidence. The unit requires 15 minutes. 

A quantum gravity group of a research club meets 90 

minutes each week. Thereby topics such as quantum 

computers, cosmology, astrophysics or quantum 

gravity are treated. In that group, essentially the same 

learning process has been treated in 2023. Also in this 

case, all questions have been discussed directly, and 

exercises have been performed. 

Altogether, in all learning groups, the learners asked 

questions. These have been discussed directly in a 

fully sufficient manner. Moreover, exercises have 

been used in order to achieve sufficient training, met-

acognitive activity and familiarity with the new con-

cepts. In some of the exercises, the students were in-

structed so that they were able to achieve parts of the 

derivations on their own. This is an efficient test of 
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the ability of the students, and it provides self-esteem 

to the students in a convincing manner. 

4. Discussion 

Photovoltaics are ubiquitous. More generally, quan-

tum technologies are essential for our everyday life. 

Casimir forces, for instance, are essential in nanotech-

nologies, see e. g. Gong et al. (2021) Accordingly, a 

fundamental problem of physics, the cosmological 

constant problem CCP, related to such a relevant 

topic, is interesting and inspiring.   

Indeed, we can solve the CCP on the basis of the dy-

namics of volume in nature. This result is very inspir-

ing, as we solved also other fundamental problems on 

the basis of that volume dynamics, see e. g. Carmesin 

(2023a, 2024a-g).   

The learning process is based on the hypothetic de-

ductive method, see the section about the epistemol-

ogy. Such a testing of a hypothesis and such a deduc-

tion from prior knowledge have a high learning effi-

ciency, see Hattie (2006). Moreover, the learning pro-

cess uses everyday life contexts, so that the learning 

is meaningful, see Muckenfuß (1995) and achieves an 

additional high learning efficiency, see Hattie (2006). 

In the particular case, applications to quantum cryp-

tography and quantum computing are very motivat-

ing. For more interesting examples, see Carmesin 

(2020c). 

The learning process has been tested in several learn-

ing groups. The learning process includes nine units, 

some of which are quite short. This indicates that 

many fields of physics are combined or unified. Such 

use of prior knowledge provides an especially high 

learning efficiency, see Hattie (2006). This learning 

process has been tested at university courses as well 

as in research club courses. In all these learning 

groups, the students were able to perform exercises 

and to use instructions in order to derive parts of the 

theory. Thus, the topic provides a large amount of 

self-esteem to the learners.  
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