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Abstract 

In everyday life, in smartphones, we use electromagnetic waves for telecommunication. These 

waves propagate at the velocity of light. Is telecommunication at superluminal velocity (at 𝑣 > 𝑐) 

possible? Einstein (1907) wrote that no action can travel faster than light, as such action would imply 

a causality violation. 

However, quantum physics includes actions that travel faster than light, see e. g. Einstein, Podolski 

and Rosen (1935). Accordingly, Einstein (1948) named such actions (at 𝑣 > 𝑐) ‘spukhafte Fernwir-

kung’ or ‘spooky action at a distance’. But Aspect, Grangier and Roger (1982) provided such action 

at 𝑣 > 𝑐 in experiments with pairs of entangled photons. While this experiment demonstrates the 

seeming transfer of information at 𝑣 > 𝑐, delayed-choice experiments do additionally demonstrate 

the seeming transport of energy and matter at 𝑣 > 𝑐, see Jaques (2008) and Manning et al. (2015). 

Do these actions at 𝑣 > 𝑐 violate the principle of causality? Does quantum gravity escape causality 

violation, as Hobson, Efstathiou and Lasenby hope (2006, p. 346)? Can such action at 𝑣 > 𝑐 be used 

in telecommunications and quantum computers? 

These questions are answered with help of the dynamics of volume in nature, the volume dynamics, 

VD, see Carmesin (2023a). The VD bridge general relativity and quantum physics. For these results, 

we provide a learning process, so that you can directly use the concept in your courses. The learning 

process has been tested in various learning groups, and experiences are reported. 

 

1.  Introduction 

1.1. On Einstein’s causality violation at 𝒗 > 𝒄  

Einstein (1905) proposed that the velocity of light is 

an invariant and universal constant, irrespective of the 

velocity of the object that emits the electromagnetic 

radiation. Indeed, this invariance can even be derived 

from the principle of superposition, see Carmesin 

(2022 a, section 7.8). 

Moreover, Einstein (1907, p. 381) analysed how a ve-

locity 𝑤 > 𝑐 could imply causality violation, see Fig. 

(1): 

Relative to a first system in Fig (1), there moves a 

second system with a velocity 𝑣. In that system, there 

moves an object or signal with a velocity 𝑤. As a con-

sequence, the object moves with a velocity 𝑢 relative 

to the first system. Thereby, 𝑢 is the following func-

tion of 𝑣 and 𝑤, see e. g. Einstein (1905, p. 906) or 

Burisch et al. (2022, p. 482): 

𝑢 =
𝑣+𝑤

1+
𝑣⋅𝑤

𝑐2

       {1} 

As a consequence, in order to travel a distance 𝑑𝐿 

from a point A to a point B relative to the first system, 

the object requires the following time 𝑑𝑡: 

𝑑𝑡 =
𝑑𝐿

𝑢
= 𝑑𝐿 ⋅

1+
𝑣⋅𝑤

𝑐2

𝑣+𝑤 
     {2} 

If the velocity 𝑤 is positive, and if the velocity 𝑣 is 

negative with an absolute value �̅� = |𝑣|, then the re-

quired time is as follows: 

𝑑𝑡 = 𝑑𝐿 ⋅
1−

�̅�⋅𝑤

𝑐2

𝑤−�̅� 
      {3} 

 

Fig. 1: Einstein (1907, p. 381) proposed the following sit-

uation: In a system 1, a system 2 moves at a velocity �̅� to 

the left. In system 2, an object or signal moves at a veloc-

ity 𝑤 to the right. Thus, in system 1, the object moves at a 

velocity 𝑢. The time 𝑑𝑡 is analysed, that the object re-

quires for a motion from a Point A at 𝑥 = 0 to a point B at 

𝑥 = 𝑑𝐿. 

Einstein (1907, p. 381) argues, that the time 𝑑𝑡 can 

become negative at appropriate values of the velocity 

𝑣, and that negative times indicate causality violation. 

We analyse the velocity 𝑢 and the required time 𝑑𝑡 as 

a function of the absolute velocity �̅�, see Fig. (2): 
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As an example, we use 𝑤 = 2𝑐 and 𝑑𝐿 = 10 m, with-

out loss of generality in principle. There occur three 

qualitatively different cases, see Fig. (2): 

 

Fig. 2: Required time 𝑑𝑡 ⋅ 𝑐 (dashed) and velocity 
𝑢

𝑐
 (dot-

ted) as a function of the velocity 
�̅�

𝑐
 in the example pro-

posed by Einstein (1907, p. 381). Hereby, for instance, 

𝑤 = 2𝑐 and 𝑑𝐿 = 10 m have been chosen. At 
�̅�

𝑐
=

1

2
, the 

velocity 
𝑢

𝑐
 diverges, and the time 𝑑𝑡 becomes zero. At 

�̅�

𝑐
>

1

2
, the velocity 

𝑢

𝑐
 as well as the time 𝑑𝑡 become negative: 

We interpret that case as follows: The object moves to the 

left and might have been at the point B in the past, accord-

ingly, 𝑑𝑡 < 0. 

(1) At �̅� < 0.5 𝑐, the object has a positive velocity 𝑢. 

Thus, it reaches the point B after a positive time 

𝑑𝑡 > 0. This motion is in accordance with cau-

sality. 

(2) At �̅� = 0.5 𝑐, the velocity 𝑢 diverges and is not 

defined by Einstein’s (1907) relation in Eq. {1}. 

In spite of the undefined velocity, the time 𝑑𝑡 that 

converges to zero and is zero according to Eq. 

{3}. Thus, in the limiting case �̅� = 0.5 𝑐, the re-

quired time is zero, 𝑑𝑡 = 0. 

(3) At �̅� > 0.5 𝑐, the velocity 𝑢 is negative. A nega-

tive 𝑢 describes a motion of the object to the left, 

with respect to the system 1. In such a motion, an 

object starting at the point A does never reach the 

point B in Fig. (1). More generally, in such a mo-

tion, the object could have been at the point B in 

the past, described by 𝑑𝑡 < 0. Thus, the case 3), 

the velocity 𝑢 < 0 with the time 𝑑𝑡 < 0 describe 

a causal motion, as the product of the velocity 

and the time is positive, see Fig. (2). More gen-

erally, in all cases 1) and 3), at which 𝑢 is defined 

by Eq. {1}, the product of the velocity and the 

time is positive, see Fig. (2), so that a causal mo-

tion is described. 

(4) In spite of that fact, Einstein stated that the nega-

tive time 𝑑𝑡 would imply causality violation 

(1907, p. 381-382): ‘Dies Resultat besagt, dass 

wir einen Übertragunsmechanismus für möglich 

halten müssten, bei dessen Benutzung die er-

zielte Wirkung der Ursache vorangeht.‘ In 

English: ‚ This result states, that we must accept 

a mechanism of transmission, that provides an ef-

fect before the cause has taken place.’ 

(5) Additionally, Einstein (1907, p. 381-382) stated 

the impossibility of 𝑤 > 𝑐: ‘…, dass durch das-

selbe die Unmöglichkeit der Annahme 𝑤 > 𝑐 zu 

Genüge erwiesen ist.‘ In English: ‚…, that by this 

the impossibility of the assumption 𝑤 > 𝑐 is suf-

ficiently proven.’  

What can we learn from Einstein’s (1907, p. 381-382) 

example? 

(1) If an effect occurs before its cause has taken 

place, then causality is violated. 

(2) Einstein’s example can be interpreted with a 

causal motion in all cases with a defined value of 

the velocity 𝑢, see Fig. (2) and the cases (1), �̅� <
0.5 𝑐, and (2), �̅� = 0.5 𝑐. 

(3) In the addition of velocities in Einstein’s exam-

ple, an assumed velocity 𝑤 > 𝑐 can give rise to 

𝑑𝑡 < 0. This could be interpreted as a causality 

violation, if the interpretation with causal mo-

tions in 1) and 3) is not discussed. Indeed, Ein-

stein did not discuss these motions in (1), �̅� <
0.5 𝑐, and 3), �̅� > 0.5 𝑐, and he proposed the in-

terpretation of causality violation. However, as a 

consequence, his analysis is incomplete. Thus, 

his interpretation in the above item (4) of his ex-

ample as a causality violation is hardly convinc-

ing.  

(4) At this point, we apply the contraposition: A ve-

locity 𝑢 that is well-defined by Eq. {1} implies 

the impossibility of 𝑤 > 𝑐. In this sense, we 

agree with Einstein’s statement in the above item 

5) that the impossibility of 𝑤 > 𝑐 is proven (if  𝑢 

has to be well-defined by Eq. {1}).  

(5) In the sense of the above item (4), velocities 𝑤 >
𝑐 appear not realistic or ‘spooky’ in relativity. 

(6) In the case 2), the required time 𝑑𝑡 is zero, see 

Fig. (2). Thus, an object with 𝑤 > 𝑐 can reach 

each location at zero required time, with help of 

the addition of velocities. Accordingly, such a 

system can be named nonlocal. 

(7) Accordingly, the following criterion for quantum 

nonlocality can be formulated: Objects that are 

not fully separated (or consisting of stochastic 

dependent components alias entangled compo-

nents) or that propagate at superluminal velocity, 

𝑤 > 𝑐, have the property of quantum nonlocal-

ity. 

Can quantum nonlocality be observed, and how are 

results obtained? 

1.2. Epistemology 

Kircher, Girwidz und Häußler (2001, section 4.1.2) 

describe the hypothetic deductive method. In the 
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epistemological literature, this method is also called 

hypothetico-deductive testing (Niiniluoto, Sintonen, 

Wolenski 2004, S. 214). The method consists of three 

steps: In the hypothetic step, a thesis or hypothesis is 

suggested for testing. In the deductive step, implica-

tions are derived. In the third step, the implications 

are compared with observation. Hereby, in principle, 

a falsification should be possible. This method is used 

here as well as in Carmesin (2024a-g, 2017, 2018a-b, 

2019a-b, 2020a-c, 2021a-d, 2022a-c, 2023a-f). 

 

Fig. 3: Pairs of entangled photons are generated in a bar-

ium borate crystal. These photons are directed to two ob-

servers with polarizers 𝑃1 and 𝑃2 and detectors 𝐷1 and 𝐷2. 

1.3. A pair of photons shows action at 𝒗 > 𝒄  

A pair of entangled photons are generated, see Fig. 

(3). Hereby, the polarization of one of the two pho-

tons at detector 𝐷1 is correlated with the polarization 

of the other photon at 𝐷2. Thereby, the two polariza-

tions are different, for instance vertical and horizon-

tal. Hereby, the measurement includes the polarizer 

and the detector. For instance, observer 1 polarizes 

the photon with 𝑃1 and then measures with 𝐷1. 

However, if the photon at 𝑃1 is polarized with 𝑃1, then 

the state of the entangled pair is changed at the same 

time. Consequently, the state of the other photon is 

changed without loss of time. These instant changes 

of the polarization state of the other photon at a dis-

tance have been checked in many experiments, see e. 

g. Aspect, Grangier and Roger (1982). For a detailed 

analysis, see Carmesin (2023a). These changes take 

place at a velocity above the velocity of light. Conse-

quently, this experiment shows nonlocality. 

1.4. A delayed-choice experiment 

Jaques et al. (2008) performed the delayed-choice ex-

periment in Fig. (4). It is based on a Mach-Zehnder 

Interferometer, MZI. Single photons enter the MZI. 

The second beam splitter operates in one of two 

modes: 

Mode 1: If the second beam splitter has the reflectiv-

ity 0.5, then the photon exhibits interference:  

In detector 𝐷1, the wave at the solid line accumulates 

the phase shift 𝜋 at the right mirror. Moreover, the 

wave at the dashed line accumulates the phase shift 𝜋 

at the left mirror plus two phase shifts of 𝜋/2 at each 

beam splitter. Altogether, the phases of the two paths 

differ by 𝜋. Thus, there occurs destructive interfer-

ence at 𝐷1. 

In detector 𝐷2, the wave at the solid line accumulates 

the phase shift 𝜋 at the mirror plus the phase shift 𝜋/2 

at the second beam splitter. Moreover, the wave at the 

dashed line accumulates the phase shift 𝜋 at the mir-

ror plus the phase shift of 𝜋/2 at the first beam split-

ter. Altogether, the phases of each path is 3𝜋/2.  

Thus, there occurs constructive interference at 𝐷2. 

Hence, the photon occurs at 𝐷2. In the experiment, the 

interference showed a visibility of 94 %. 

 

Fig. 4: Mach-Zehnder Interferometer: The second beam 

splitter is switched at random from reflectivity 0 to 0.5 and 

vice versa. 

Mode 2: If the second beam splitter has the reflectiv-

ity 0., then the photon is transmitted, and there occurs 

no interference: 

The wave function Ψ splits at the first beam splitter 

into Ψ/√2 in the solid path and Ψ/√2 in the dashed 

path. Thus, there occurs the probability 0.5Ψ2 = 0.5 

at each detector. As the photon is quantized, it occurs 

in one detector, and it does not occur in the other de-

tector. Consequently, the detection of the photons is 

anticorrelated. In the experiment, the anticorrelation 

parameter 𝛼 = 0.12 is observed. 

Altogether, the second beam splitter operates in the 

delayed-choice mode, as a new choice is generated at 

random every 40 ns. Thereby, the light-travel time of 

a photon from the first beam splitter to the second one 

is 160 ns. Consequently, the wave function passed the 

first beam splitter, when the choice is generated.  

Interpretation:  

Particle interpretation: In a classical particle interpre-

tation, one might assume that the photon uses one of 

the two paths after the first beam splitter.  

That interpretation describes the experiment in the 

mode (2) with reflectivity 0. 

However, that interpretation does not describe the ex-

periment in the mode 1 with reflectivity 0.5. In this 
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mode, interference is observed. This falsifies the par-

ticle interpretation.   

Wave interpretation: In a classical wave interpreta-

tion, one might assume that the wave functions Ψ/√2 

propagate in each path. 

That interpretation describes the experiment in the 

mode (1) with reflectivity 0.5, as interference is ob-

served. 

However, that interpretation does not describe the ex-

periment in the mode 2 with reflectivity 0. In the wave 

interpretation, in each detector, there should occur 50 

% of all photons, without any anticorrelation. This in-

terpretation is falsified by the observed anticorrela-

tion. 

Moreover, in each detector, there would be insuffi-

cient energy for the detection of a complete photon. 

However, in the wave interpretation, only one half of 

the squared wave function arrives at each detector. 

Is it possible that each interpretation explains one of 

the modes? For it, the quantum object must make its 

choice at the first beam splitter in accordance with the 

choice made at the second beam splitter at a time 𝑡2. 

For it, the object must start at the first beam splitter at 

the time 𝑡2, then the object must propagate at super-

luminal velocity, in order to arrive in time at the de-

tectors. In this sense, the delayed-choice experiment 

is an example of nonlocality. Moreover, similar de-

layed-choice experiments have been performed with 

atoms, see Manning et al. (2015). 

1.5. Organization of the paper  

A didactic analysis including a professional analysis 

is provided in section 2. The learning process includ-

ing experiences with learning groups are shown in 

part 3. We discuss our findings in section 4. Many 

useful and insightful related results are presented in 

my parallel papers in the report about the DPG con-

ference in March 2024 in Greifswald, see Carmesin 

(2024a-g).  

2. Didactic analysis 

2.1. Universal nonlocal quantization 

2.1.1. Physical analysis  

(1) Derivation of a universal quantization: 

If monochromatic light with a circular frequency 

𝜔 falls down towards a mass 𝑀, then a minimal 

portion of energy 𝐸𝑚𝑖𝑛 has the momentum 𝑝𝑚𝑖𝑛 ⋅
𝑐, according to special relativity.  

Moreover, the minimal portion has the wave 

number 𝑘 = 𝜔/𝑐. As a consequence, wave the-

ory and special relativity imply the following re-

lation: 

𝐸𝑚𝑖𝑛

𝑝𝑚𝑖𝑛
= 𝑐 =

𝜔

𝑘
    {4} 

This relation is solved for 
𝐸𝑚𝑖𝑛

𝜔
: 

𝐸𝑚𝑖𝑛

𝜔
=

𝑝𝑚𝑖𝑛

𝑘
= 𝐾(𝜔)   {5} 

The above two ratios are equal, and they are 

named 𝐾(𝜔). Using gravity caused by the mass 

𝑀 and general relativity, it has been shown in 

Carmesin (2023a-b), that this ratio 𝐾(𝜔) is the 

same for each 𝜔. Thus, that ratio is a universal 

constant of quantization.  

(2) Value of the universal constant of quantization: 

Based on the wave theory of light and on special 

relativity, that universal constant of quantization 

could have the value zero, in principle. In that 

case, the minimal energy portion would have the 

energy zero. Such a quantization would not differ 

from classical physics. 𝐾 > 0 is derived in Car-

mesin (2024g). In fact, the value of the universal 

constant 𝐾 is measured. Its value is the Planck 

constant divided by 2𝜋: 

𝐾 =
ℎ

2𝜋
 & ℎ = 6.626 070 15 ⋅ 10−34 Js   {6} 

(3) Derivation of universal nonlocality: 

The nonlocal delayed-choice experiment in Fig. 

(4) can be used in the vicinity of the mass 𝑀, so 

that all derived results about the universal quan-

tization apply (of course, these results would also 

apply without 𝑀):   

a) At each circular frequency 𝜔, there occurs a 

minimal energy portion 𝐸𝑚𝑖𝑛 . 

b) Consequently, a detector can measure either 

one or zero minimal energy portions 𝐸𝑚𝑖𝑛 , 

irrespective of the value of the universal 

constant of quantization 𝐾. 

c) As a consequence, the observations in the 

delayed-choice experiment in Fig. (4) are 

fully implied by the wave property of light 

combined with special & general relativity. 

These results are summarized: 

Theorem: Law of the derived universal quantization 

and universal nonlocality: 

Special & general relativity combined with the wave 

property of light imply the following: 

(1) Light with a circular frequency 𝜔 forms minimal 

portions of energy 𝐸𝑚𝑖𝑛(𝜔) and of momentum 

𝑝𝑚𝑖𝑛(𝜔) with a quantization constant 𝐾 as fol-

lows: 

𝐸𝑚𝑖𝑛

𝜔
=

𝑝𝑚𝑖𝑛

𝑘
= 𝐾   {7} 

The quantization constant is the same for all 𝜔. 

In this sense, 𝐾 is universal. 

(2) The value of 𝐾 in SI units is measured, shown in 

Eq. {6} and named reduced Planck constant 𝐾 =
ℏ. 

(3) The implied quantization in parts (1) and (2) im-

plies quantum nonlocality in the delayed-choice 

experiment in Fig. (4), irrespective of the value 

of the quantization constant. 
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Similarly, the implied quantization in parts (1) and (2) 

implies quantum nonlocality in all experiments and 

systems in nature, in which light exhibits quantum 

nonlocality in a manner not depending on the value of 

the quantization constant. In this sense, quantum non-

locality is universal. 

Comments: 

(1) It can be shown that the constant 𝐾 of quantiza-

tion must be nonzero, see Carmesin (2024g). 

(2) It is insightful that universal quantum nonlocality 

is inherent to special & general relativity com-

bined with the wave property of light. 

(3) However, an essential question remains: How 

can objects achieve quantum nonlocality as de-

scribed in the criterion in section (1.1)? 

(4) Moreover, an important question remains: Is 

quantum nonlocality a causality violation? 

2.1.2. Didactic analysis  

In a first didactic step, the universal quantization is 

derived from the wave property of light and from spe-

cial & general relativity. Hereby, a very direct, clari-

fying and insightful way to general relativity is used, 

see Carmesin (2023a, 2024f). As a consequence, this 

step has no special learning barrier. 

In a didactic step (2), the Planck constant is measured, 

see e. g. Carmesin (2020a, c). This step has no special 

learning barrier. 

In a didactic step (3), the universal nonlocality is de-

rived from the wave property of light and from the 

derived universal quantization in step (1). Thereby, 

the intuitive and clear delayed-choice experiment in 

Fig. (4) is used. As a consequence, this step has no 

special learning barrier. 

2.2. No substantial transport 

2.2.1. Physical analysis 

In quantum physics, the propagating object is the 

wave function. In the VD, it is equal to the time de-

rivative Ψ = 𝑡𝑛 ⋅ 𝜀�̇� of the relative additional volume 

𝜀𝐿, multiplied by a normalization factor, see Carmesin 

(2022a-b, 2023a, 2024a). The wave function must be 

related to the relative additional volume, as in this 

manner, it provides the Schrödinger equation, see 

Carmesin (2022a-b, 2023a, 2024a). Moreover, the 

wave function must be proportional to the time deriv-

ative of 𝜀𝐿, as in this manner, it provides the correct 

probabilities proportional to |Ψ2|, as the generalized 

kinetic energy density is proportional to 𝜀�̇�
2, and that 

energy density is proportional to the probability, see 

Carmesin (2022a-b, 2023a, 2024a). As a conse-

quence, the propagating object, the wave function, is 

not substantial like the relative additional volume 𝜀𝐿, 

as Ψ represents the derivative only. Furthermore, the 

relative additional volume has a generalized field, 

which is an exact version of the gravitational field 

with an energy density 𝑢𝑔𝑟.𝑓., see Carmesin (2021a-b, 

2022a-b, 2023a, 2024a). Moreover, each harmonic 

solution of the DEQ of the volume-dynamics, VD, 

has a generalized kinetic energy density 𝑢𝑔𝑒𝑛,𝑘𝑖𝑛, see 

Carmesin (2021a-b, 2022a-b, 2023a, 2024a). 

Thereby, 𝑢𝑔𝑟.𝑓. and 𝑢𝑔𝑒𝑛,𝑘𝑖𝑛 compensate each other, 

𝑢 = 𝑢𝑔𝑟.𝑓. + 𝑢𝑔𝑒𝑛,𝑘𝑖𝑛. Thus, the complete energy den-

sity of a harmonic solution, corresponding to a har-

monic wave function, vanishes. According to the 

Fourier analysis, a general wave can be described as 

a linear combination of harmonic solutions, in the 

form of a Fourier integral, see e. g. Schiff (1991).  

As a consequence, a nonlocal transport by a wave 

function does not necessarily cause a transport of a 

physical entity, such as 𝜀𝐿, or of a complete energy 

density 𝑢. 

Of course, observables are represented by self-adjoint 

operators, such as the momentum operator −𝑖ℏ𝜕𝑥, or 

the energy operator 𝑖ℏ𝜕𝜏. These provide the values 

that can be measured by a corresponding measure-

ment device, the eigenvalues with corresponding 

probabilities. In principle, such a process can be pro-

vided by the VD, for instance, a stationary local quan-

tum can form at the detector, see Carmesin (2023a, 

d). 

Altogether, the above discussed facts show that in the 

VD, in general, an object does not travel at a path 

taken by the wave function.  

2.2.2. Didactic analysis  

In one didactic step, it is summarized, how the VD 

describes the correct observable eigenvalues and the 

corresponding probabilities, without describing the 

propagation of any substance. This step has an inter-

mediate mental learning barrier, as in everyday life, 

many objects appear to be transported at paths. How-

ever, also in everyday life, there are other examples. 

For instance, the optimal visual acuity can be under-

stood with help of the Heisenberg uncertainty rela-

tion, see Carmesin (2020c). Such examples are used 

in order to overcome that mental barrier. With it, there 

is no special remaining learning barrier in this step. 

2.3. Explanation of nonlocality by the dynamics of 

volume in nature 

2.3.1. Physical analysis 

(1) How objects achieve quantum nonlocality:  

a) Propagation: 

The law of propagation of relative additional 

volume shows that volume-portions, VPs 

𝜀𝐿(𝜏, �⃗� ), propagate according to the following 

DEQ, see Carmesin (2023a, 2024a): 

The relative additional volume 𝜀𝐿(𝜏, �⃗� )  ful-

fils the following differential equation, DEQ: 
𝜕

𝜕𝜏
 𝜀𝐿 = −𝑣 ⋅ 𝑒 𝑣  ⋅

𝜕

𝜕�⃗� 
 𝜀𝐿   with   𝑣 = 𝑐 {8} 
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The law of the derived Schrödinger equation, 

SEQ, in Carmesin (2024a) shows that the 

wave function is the product of the time de-

rivative 𝜀�̇� of the relative additional volume 

𝜀𝐿 and a normalization factor 𝑡𝑛, thus: Ψ =
𝑡𝑛 ⋅ 𝜀�̇�. And the normalization factor is 𝑡𝑛.  

b) Subspace: 

Thus, the solutions 𝜀𝐿 of Eq. {8} form a vector 

space. Similarly, the time derivatives 𝜀�̇� 

thereof and the wave functions Ψ form a vec-

tor space. It is the Hilbert space 𝐻 in quantum 

physics. Note that these are solutions of a gen-

eralized Schrödinger equation, GSEQ, see 

Carmesin (2024a). In a particular physical sys-

tem, the solutions of the GSEQ form a sub-

space of 𝐻1.  

c) Preparation or measurement: 

Each measurement provides a preparation of 

the state. Each such preparation switches from 

a subspace 𝐻1  of solutions of the GSEQ to 

subspace 𝐻2 of the subspace 𝐻1 of solutions of 

the GSEQ. Such a change of solutions repre-

sents a transient phenomenon in the theory of 

solutions of linear differential equations, 

whereby that transient phenomenon can be de-

scribed with help of the Laplace transform, see 

Schiff (1991).    

d) Transient phenomenon: 

Einstein’s (1907, p. 381-382) example in sec-

tion (1.1) shows that a local signal of object 

cannot move or propagate faster than the ve-

locity of light.  

However, a harmonic solution of the DEQ 

{8} of the VD does not represent such a local 

signal or object, as a harmonic solution can 

be represented by a sine function and a cosine 

function, both ranging from minus infinity to 

plus infinity, mathematically. At least these 

solutions range from one point of the light 

horizon to the opposite point of the light hori-

zon, as long as observable states are causally 

related. 

Thus, such a harmonic function could in prin-

ciple propagate at a velocity 𝑣 > 𝑐, in accord-

ance with the example proposed by Einstein 

(1907) in section (1.1). For it, the DEQ {8} is 

generalized to the case of a velocity 𝑣 that is 

not restricted to 𝑐, for the case of such har-

monic functions. This generalization is ade-

quate and possible, as the development of the 

DEQ {8} in Carmesin (2024a) can be per-

formed for any velocity 𝑣. This shows, that 

the propagation of a VP can be described by a 

generalized version of DEQ {8}, at which the 

only difference to DEQ {8} is the fact that 

the velocity 𝑣 can take any value: 
𝜕𝜀𝐿

𝜕𝜏
= −𝑣𝑒 𝑣  

𝜕𝜀𝐿

𝜕�⃗� 
, for harmonic 𝜀𝐿(𝜏, �⃗� )  {9} 

That generalized DEQ is applicable to these 

harmonic functions. 

The transient phenomenon can be achieved 

by a linear combination of such harmonic so-

lutions of the DEQ, see Schiff (1991) or Car-

mesin (2023a). 

Based on such harmonic functions, the change 

of the subspace 𝐻1 to a subspace 𝐻2 thereof, 

caused by a measurement, could take place 

without restriction by 𝑐. Of course, this in-

cludes one-dimensional subspaces of 𝐻. In 

this manner, quantum nonlocality caused by 

measurements or preparations at a quantum 

system could be explained by harmonic solu-

tions of the DEQ of the VD with 𝒗 > 𝒄, see 

Eq. {9}. The mathematical details of the La-

place transform and of the transient phenome-

non are elaborated in Carmesin (2023, chapter 

16). 

e) Applicability: 

i) In the experiment in Fig. (3), the meas-

urement at a detector causes the non-

local change of the state. It is explained 

by the rapid transient phenomenon pro-

vided by the harmonic solutions of the 

DEQ {9}. 

ii) In the experiment in Fig. (4), there are 

mode 1 and mode 2 with reflectivity 0.5 

or 0, respectively: 

In mode 1, the wave function Ψ of the 

photon propagates in both paths of the 

MZI, as shown by the interference pat-

tern. Thus Ψ is separated into two sto-

chastic dependent components. Thus, 

according to the criterion of quantum 

nonlocality in section (1.1), the photon 

is nonlocal in mode 1. 

In mode 2, the photon is detected by one 

of the detectors, for instance by 𝐷1, and 

not by 𝐷2. This is shown by the ob-

served anticorrelation, within the exper-

imental accuracy. Thus, at the moment 

of the detection by 𝐷1,  the subspace of 

𝐻 with the wave function at both detec-

tors switches to a subspace with the 

wave function at 𝐷1 and not at 𝐷2. That 

change is achieved by the superluminal 

transient phenomenon provided by the 

harmonic solutions of the DEQ {9}. 

Thence, the photon is nonlocal in mode 

2 as well. 

iii) In general, there are two possible 

sources of quantum nonlocality, see the 

criterion in section (1.1): 

Entanglement: The wave function prop-

agates in the form of  stochastic 
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dependent (alias entangled) compo-

nents of the object. 

Transient phenomenon: A measurement 

or preparation of the object causes the 

superluminal change of the subspace of 

𝐻 via the superluminal transient phe-

nomenon provided by the harmonic so-

lutions of the DEQ {9}.  

In both cases, the quantum nonlocality 

is explained by the dynamics of volume 

in nature, as described by the DEQs {8} 

and {9}. 

(2) Is quantum nonlocality a causality violation? 

a) The argument proposed by Einstein (1907, 

p. 381-382) is a good argument for the fact 

that local signals or objects cannot move at 

𝑤 > 𝑐. However, the statement that 𝑤 > 𝑐 

would imply causality violation is not fully 

convincing, see section (1.1). Nevertheless, 

we analyse the possibility of causality viola-

tion. There are two sources of quantum non-

locality, see section (1.1): 

b) Entanglement: The wave function propa-

gates in the form of  stochastic dependent 

(alias entangled) components of the object.  

That propagation takes place at velocities 𝑤 

that do not exceed the velocity of light, 𝑤 ≤
𝑐. Consequently, that source of quantum 

nonlocality does not violate causality as dis-

cussed by Einstein, as 𝑤 ≤ 𝑐. 

c) Transient phenomenon: A measurement or 

preparation of the object causes the superlu-

minal change of the subspace of 𝐻 via the 

superluminal transient phenomenon pro-

vided by the harmonic solutions of the DEQ 

{9}.  

The transient phenomenon is achieved by 

harmonic solutions propagating at 𝑤 > 𝑐. 

However, these do not provide a local mo-

tion of energy, as a harmonic solution does 

not even define a local position of energy. 

Thus, these harmonic solutions do not vio-

late causality. Correspondingly, such solu-

tions are not included in Einstein’s (1907, p. 

381-382) analysis of causality violation.  

Moreover, the effect of the transient phe-

nomenon does not enable the emission of an 

object in the form of an information or en-

ergy 𝐸 or mass 𝑚 =
𝐸

𝑐2 at a point A and the 

arrival of that object at a point B according 

to a superluminal velocity. Thus, the effect 

of the transient phenomenon does not violate 

causality violation.  

  
Fig. 5: A portion of relative additional volume 𝜀𝐿 propa-

gates in space. The relative additional volume is analysed 

as a function of 𝜏 and �⃗� . 

  
Fig. 6: A volume-portion with an initial position of the 

centre at �⃗� 𝑐,𝑖𝑛𝑖. The VP moves, e. g. during a time 𝜏, the 

centre moves to �⃗� 𝑐,𝑖𝑛𝑖 + 𝑐𝜏 𝑒 𝑣. The VP has a form (similar 

to an orbital in an atom). For instance, a part is shifted by 

a vector 𝑥  from the centre, so the part is at a coordinate �⃗� , 
in an external frame. In particular, these relations hold in 

an incremental manner. 

These results are summarized: 

Theorem: Law of the mechanisms underlying quan-

tum nonlocality: 

(1) A measurement or preparation at a quantum ob-

ject or quantum system can change the subspace 

𝐻𝑠𝑢𝑏  of Hilbert space 𝐻, that describes the state 

of the object or system. In particular, that 𝐻𝑠𝑢𝑏  

can be a one-dimensional subspace of 𝐻. Such a 

change of 𝐻𝑠𝑢𝑏  represents a transient phenome-

non in the space of solutions of the DEQ {9}. 

Such a transient phenomenon can be achieved by 

harmonic solutions, see Schiff (1991) of the re-

spective DEQ {9}. The velocity of propagation 

of harmonic solutions of DEQ {9} is not re-

stricted by the velocity of light. Thus, the transi-

ent phenomenon can cause superluminal changes 

of 𝐻𝑠𝑢𝑏 . This explains the mechanism of the ob-

served and observable superluminal changes of 

states in quantum objects, quantum systems and 

quantum nonlocality by the dynamics of volume 

in nature, the volume-dynamics, VD, see Eqs. 

{8} and {9}. Thus, the VD explain the measure-

ment based source of quantum nonlocality. 

For the case of localized VPs, the VD is repre-

sented by the DEQ {8}. For the case of harmonic 

functions, the VD is represented by the DEQ {9}. 

Both DEQs {8} and {9} describe the same pro-

cess of propagation, formation and evolving 

form of VPs, see Figs. (5) and (6), see Carmesin 

(2023a, 2024a-b). 
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(2) The DEQ {8}, describing the VD, can cause a 

separation of a wave function into stochastic de-

pendent (alias entangled) parts. Thus, the VD ex-

plains the propagation based source of quantum 

nonlocality. 

(3) There is no unequivocal empirical or theoretical 

proof of a causality violation provided by quan-

tum nonlocality. 

2.3.2. Didactic analysis  

In a first didactic step (1), the following question is 

answered: How objects achieve quantum nonlocal-

ity? 

For it, the transient phenomenon is identified and ap-

plied. This didactic step has an intermediate learning 

barrier, as several facts about the solutions of linear 

differential equations are combined. 

This learning barrier is overcome as follows: For the 

case of harmonic functions, the DEQ {8} with 𝑣 = 𝑐 

is generalized to the DEQ {9}. A measurement can 

provide an change of subspace 𝐻𝑠𝑢𝑏  of Hilbert space 

𝐻 at a superluminal rate. That change is explained by 

the DEQ {9}. Thereby, the DEQ {8} and {9} describe 

the same process of propagation, formation and evo-

lution of form of VPs. On that basis, this didactic step 

has no remaining special learning barrier. 

In a didactic step (2), the following question is an-

swered: Is quantum nonlocality a causality violation?  

For it, the criterion of quantum nonlocality in section 

(1.1) is used and the results of step (1) are applied.   

On that basis, this didactic step has no remaining spe-

cial learning barrier. 

3.  Experience: learning process and learners 

The experiences with learning groups have been doc-

umented in terms of photographs of the blackboard 

and with help of additional reports. These are summa-

rized as follows. 

Since 2023, see Carmesin (2023a), the topic has been 

presented in several general studies courses at the uni-

versity. The learning process was enriched by a per-

manent discussion of the achieved results and by ex-

ercises about the derived relations. In particular, the 

learning process took place as follows: 

In a first unit, the concepts of causality violation and 

of quantum nonlocality have been treated, see section 

(1.1). That  unit requires 90 minutes, if the mathemat-

ics of the statistical analysis in the experiment in Fig. 

(3) is elaborated, see Carmesin (2023a, chapter 16). 

Without that analysis, the unit can be treated in 45 

minutes. The students stated that the analysis in sec-

tion (1.1) is very clear.  

In a second unit, the very insightful and valuable uni-

versal quantization, see Carmesin (2023a, b, f), and 

universal nonlocality are derived in a very direct and 

clarifying manner. As this topic uses very direct and 

efficient methods only, the unit can be treated in 45 

minutes. In discussions, the students appreciate the 

clarity and efficiency of the derivation. However, stu-

dents that are already familiar with the dynamics of 

volume in nature say that they do not need this direct 

and relatively elementary derivation. 

A unit three requires 45 minutes, see section (2.2). In 

that unit, the fact is summarized that the wave func-

tion does not transport any substance, in the VD. The 

students think that this is quite intuitive. 

In a fourth unit, the DEQ {9} is used. With it, the con-

cept of the transient phenomenon is introduced and 

applied. That  unit requires 90 minutes, if the mathe-

matics of the Laplace transform is examined, see Car-

mesin (2023a, chapter 16). Without that analysis, the 

unit can be treated in 45 minutes.  

In a fifth unit, the results derived in the above units 

are used in order to discuss and exclude causality vi-

olation. That part requires 45 minutes. Depending on 

the interests of the learning group, quantum cryptog-

raphy is treated as an innovative and exciting applica-

tion of quantum nonlocality. This requires additional    

45 minutes, see e. g. Carmesin (2020c). Moreover, 

quantum computing can be treated as an innovative 

and momentous application of quantum nonlocality, 

see e. g. Carmesin (2024h). This requires at least ad-

ditional 90 minutes.  

A quantum gravity group of a research club meets 90 

minutes each week. Thereby topics such as quantum 

computers, cosmology, astrophysics or quantum 

gravity are treated. In that group, essentially the same 

learning process has been treated in several courses 

since 2022. Also in this case, all questions have been 

discussed directly, and exercises have been per-

formed. 

Altogether, in all learning groups, the learners asked 

questions. These have been discussed directly in a 

fully sufficient manner. Moreover, exercises have 

been used in order to achieve sufficient training, met-

acognitive activity and familiarity with the new con-

cepts. In some of the exercises, the students were in-

structed so that they were able to achieve parts of the 

derivations on their own. This is an efficient test of 

the ability of the students, and it provides self-esteem 

to the students in a convincing manner. 

4. Discussion 

Telecommunication is an essential tool for our every-

day life. Moreover, causality is a fundamental con-

cept for the organization of our everyday life and 

knowledge. Both concepts are challenged by the ob-

served quantum nonlocality. Moreover, quantum 

nonlocality is the basis for ground breaking future 

technologies such as quantum cryptography and 

quantum computing. Thus, the present topic is very 

exciting and interesting to students.  

In a first unit, the experiments and their challenging 

implications are analysed. As an important result, a 

very valuable and insightful criterion for quantum 

nonlocality is elaborated, see section (1).  
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On that basis, the universal nature of quantum non-

locality is derived in a second unit. 

In a third unit, the underlying mechanisms are elabo-

rated: The volume dynamics, VD, is based on one 

process of propagation, formation and evolution of 

form of volume-portions, VPs. That process is de-

scribed in the DEQs {8} and {9}, see Figs. (5) and 

(6). That VD explains the quantum nonlocality that is 

provided by a measurement or preparation. That VD 

also explains gravity and curvature of space and time. 

Moreover, that VD solves many problems in physics, 

see e. g. Carmesin (2023a, 2024a-g). 

In a fourth unit, the possibility of causality violation 

is examined. It is argued that there is no unequivocal 

empirical or theoretical proof of the idea that quantum 

nonlocality could provide causality violation. De-

pending on the learning group, the full mathematical 

depth can be achieved and innovative applications 

can be treated. Accordingly, the topic requires be-

tween 180 and 450 minutes. 

Altogether, we show how the quantum nonlocality 

and possible causality violations in nature can be 

treated, analysed and explained in a founded manner. 

Thereby, we derive the universality as well as the un-

derlying mechanisms of these phenomena. In partic-

ular, we show how clarifying criteria for quantum 

nonlocality and possible causality violation can ex-

plain the sources of quantum nonlocality and can ex-

clude that these sources can provide a causality viola-

tion.   

The learning process is based on the hypothetic de-

ductive method, see the section about the epistemol-

ogy. Such a testing of a hypothesis and such a deduc-

tion from prior knowledge have a high learning effi-

ciency, see Hattie (2006). Moreover, the learning pro-

cess uses everyday life contexts, so that the learning 

is meaningful, see Muckenfuß (1995) and achieves an 

additional high learning efficiency, see Hattie (2006). 

In the particular case, applications to quantum cryp-

tography and quantum computing are very motivat-

ing. For more interesting examples, see Carmesin 

(2020c). 

The learning process has been tested in several learn-

ing groups. The learning process includes four units 

with a minimum of 45 minutes for each unit. Addi-

tionally, there are insightful and valuable deepening 

extensions, so that the time required for the four units 

adds up to 450 minutes. This has been tested at uni-

versity courses as well as in research club courses. In 

all these learning groups, the students were able to 

perform exercises and to use instructions in order to 

derive parts of the theory. Thus, the topic provides a 

large amount of self-esteem to the learners.  
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