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Abstract 
In everyday life, we are used to space and time. Thereby, it is very effective and clear to organize 
our life and our knowledge chronologically. Hereby, the Big Bang is the starting point of our chron-
ological knowledge. Thereby, the rate of expansion of space as well as the age 𝑡0 of the universe are 
derived from an observed value 𝐻0,𝑜𝑏𝑠. It is the observed value of a fundamental key quantity: the 
Hubble constant 𝐻0. However, there are different observed values 𝐻0,𝑜𝑏𝑠. For instance, the cosmic 
microwave background CMB provides 𝑡0,𝐶𝑀𝐵 = 13.83 billion years, whereas radiation with the cos-
mological redshift 𝑧 = 0.055 provides 𝑡0,𝑧=0.055 = 12.66 billion years. Obviously, the difference is 
essential for our chronological organization of our knowledge about the world. Carmesin (2023a) 
derived the dynamics of volume in nature, the volume dynamics, VD. They bridge general relativity 
and quantum physics. In this paper, we use the VD to derive the theoretical values of 𝐻0,𝑡ℎ𝑒𝑜(𝑧) as 
a function of the cosmological redshift 𝑧, in precise accordance with observation. For that derivation, 
we provide a learning process, so that you can directly use the concept in your courses. The learning 
process has been tested in various learning groups, and experiences are reported. 

 
1.  Introduction 

1.1. On Einstein’s idea of 𝚲  

The expansion of space can be derived from general 
relativity, GR, see Einstein (1917), Friedmann (1922) 
and Lemaître (1927). Thereby, a uniform scaling of 
space is derived. In general, such a uniform scaling 
can be described by the time evolution of a scale ra-
dius 𝑟(𝑡) in Fig. (1): When space expands by a factor 
𝑞, then 𝑟 is multiplied by 𝑞. That evolution is de-
scribed by the following differential equation, DEQ: 

𝐻2 =
8𝜋𝐺

3
(𝜌𝑟 + 𝜌𝑚 + 𝜌𝐾 + 𝜌Λ) with 𝐻 =

�̇�

𝑟
  {1} 

Hereby, 𝐺 is the universal constant of gravity, and 𝐻 
is the Hubble parameter. Moreover, four densities are 
distinguished, so that each density has a characteristic 
scaling behaviour as a function of the scale radius 𝑟: 

 
Fig. 1: A prototypical ball of the universe with a scale ra-
dius 𝑟 and an energy density 𝑢. The energy density can be 
expressed in terms of a density or dynamic density 𝜌 =

𝑢

𝑐2. 

𝜌𝑟 is the density of radiation, 𝜌𝑚 is the density of mat-
ter, including cold dark matter, CDM, see Planck col-
laboration (2020), 𝜌𝐾  is the density of a curvature pa-
rameter, it is zero according to observation, see 
Planck collaboration (2020), and Carmesin (2023c) 
proved it, 𝜌Λ is the density of the cosmological con-
stant, it does not change as a function of the scale ra-
dius 𝑟. The model in Eq. {1}, including Λ and CDM, 
is called ΛCDM cosmology, Workman et al. (2022). 

1.2. On the 𝚲CDM model  

Insights about the age 𝑡0 of the universe can be 
achieved by an analysis of the present-day values of 
the ΛCDM model. A present-day value of a quantity 
is marked by the subscript zero. For instance, the pre-
sent-day value of the time is 𝑡0, see Fig. (2):  
𝑡𝑝𝑟𝑒𝑠𝑒𝑛𝑡−𝑑𝑎𝑦 =: t0  with  𝑡𝐵𝑖𝑔 𝐵𝑎𝑛𝑔: = 0 {2} 

At value 𝜌𝐾 = 0, the density is called critical density: 
𝜌𝑝𝑟𝑒𝑠𝑒𝑛𝑡−𝑑𝑎𝑦 =: 𝜌𝑐𝑟,0   {3} 
The ratios of the particular densities and the critical 
density are called density parameter: 
ΩΛ: =

𝜌Λ

𝜌𝑐𝑟,0
 & Ωm: =

𝜌m

𝜌𝑐𝑟,0
 & Ωr: =

𝜌r

𝜌𝑐𝑟,0
;  {4} 

According to the cosmological redshift, the densities 
in Eq. {1} are functions of the scale radius:  
𝐻2 =

8𝜋𝐺

3
⋅ 𝜌𝑐𝑟,0 ⋅ (Ω𝑟

𝑟0
4

𝑟4  + Ω𝑚
𝑟0
3

𝑟3 + ΩΛ) {5} 
In the ΛCDM model, the present-day value of the 
Hubble parameter 𝐻 is regarded as a constant, 
named Hubble constant:  

𝐻(𝑡0) =:𝐻0,Λ𝐶𝐷𝑀 = √
8𝜋𝐺

3
𝜌𝑐𝑟,0 =

1

𝑡𝐻0

 {6,7} 
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Its inverse is called Hubble time 𝑡𝐻0
. The present-

day time is equal to the Hubble time multiplied by 
the following integral 𝐼0:   

𝑡0 = 𝑡𝐻0
⋅ 𝐼0 & 𝐼0 = ∫

𝑥⋅𝑑𝑥

√Ω𝑟+Ω𝑚𝑥+ΩΛ𝑥4

1

0
≈ 0.95   {8} 

 
Fig. 2: The time 𝑡 after the Big Bang and the correspond-
ing cosmological redshift: Heterogeneity or structure in 
the universe has been evolving since the Big Bang. Struc-
ture is observed with help of radiation or objects emitted at 
a time of emission 𝑡𝑒𝑚. Such objects can be electromag-
netic waves, neutrinos or gravitational waves. So, a photo-
graph of the heterogeneity at 𝑡𝑒𝑚 can be taken. 

The age of the universe is a calendar date. Thus, 𝑡0 
cannot be derived from universal constants of phys-
ics. Instead, 𝑡0 is measured. Hence, the Hubble time 
𝑡𝐻0

 is measured. Thence, 𝐻0 is measured. This is an 
opportunity to check the ΛCDM model: 𝐻0 can be 
measured by using physical objects that have been 
emitted at a time 𝑡 or a corresponding cosmological 
redshift 𝑧 or a scaled time �̃�, see e. g. Hobson (2006), 
Carmesin (2019a):  

�̃�: =
𝑡

𝑡𝐻0

=
1

1+𝑧
  or  �̃�𝑒𝑚 =

1

1+𝑧𝑒𝑚
     {9} 

Thus, in general, the observed values 𝐻0,𝑜𝑏𝑠  of the 𝐻0 
form a function of the cosmological redshift: 
𝐻0,𝑜𝑏𝑠(𝑧) = function(z)   {10} 

If that function is a constant, then the ΛCDM model 
is confirmed. Otherwise, the ΛCDM model is falsified 
according to the hypothetico-deductive testing, see e. 
g. Kircher, Girwidz und Häußler (2001, section 
4.1.2), Niiniluoto, Sintonen, Wolenski (2004, S. 214). 
As the level of confidence is above 5 𝜎, that function 
is not a constant, see Riess et al. (2022). 

1.3. On the observed values of 𝑯𝟎,𝒐𝒃𝒔 and 𝒕𝟎  

Using the cosmic microwave background, CMB, 
emitted at 𝑧𝐶𝑀𝐵 = 1090.3, the Planck collaboration 
(2020) achieved the following observed value: 

𝐻0,𝑜𝑏𝑠(𝑧 = 1090.3) = 66.88 (±0.92) 
km

s⋅Mpc
 {11} 

Hereby, the unit Megaparsec is as follows, see 
Workman et al. (2022): 
1𝑀𝑝𝑐 = 3.085 677 581 49 ⋅ 1019 𝑘𝑚  
Thus, 𝐻0,𝑜𝑏𝑠 = 2.167 (±0.03) ⋅ 10−18  

1

s
 {12} 

The observed density parameters are as follows, see 
Planck collaboration (2020) or Carmesin (2019a): 
Thereby, 𝛺𝛬 = 0.679 (±0.013)  {13} 

Hence, 𝛺𝑚 = 0.321 (±0.013)  {14} 
Hereby, 𝛺𝑟 = 9.625 ⋅ 10−5  {15} 
Thus, 𝐼0  = 0.9455   {16} 
Thus, the age of the universe is as follows: 
𝑡0,𝐶𝑀𝐵 = 13.83 (±0.24) ⋅ 109 years  {17} 
The density parameters have also been derived from 
the VD, see Carmesin (2021a). Based on the obser-
vation of galaxies at an averaged cosmological red-
shift ⟨𝑧⟩ = 0.055, Riess et al. (2022) observed: 
𝐻0,𝑜𝑏𝑠 = 73.04 (±1.01) 

km
s⋅Mpc

  {18} 
With it and with Eqs. {13} to {16}, the age of the 
universe is as follows: 
𝑡0,𝑧=0,055 = 12.66 (±0.22) ⋅ 109 years {19} 

1.4. On the formation of volume in nature  

By definition of the cosmological constant, see Ein-
stein (1907), the corresponding observed energy den-
sity 𝑢Λ,obs = 𝑐2 ⋅ 𝜌Λ,obs is that energy density, that 
does not change as a function of the scale radius or of 
the cosmological redshift, see Eq. {5}. For instance, 
if a measurement 𝐴 device can measure an energy 
density 𝑢𝐴, that does not change as a function of the 
cosmological redshift 𝑧, then 𝑢𝐴 is equal to 𝑢Λ,obs or 
𝑢𝐴 is a part of 𝑢Λ,obs. The energy density of volume 
in nature, 𝑢𝑣𝑜𝑙 = 𝑐2 ⋅ 𝜌𝑣𝑜𝑙 , does not change as a func-
tion of the scale radius. Accordingly, 𝑢𝑣𝑜𝑙 is a part of 
𝑢Λ,obs. In the following, 𝑢𝑣𝑜𝑙 is analysed: 

When the space expands, then a global formation of 
volume, GFV, occurs. This is caused by a local for-
mation of volume, LFV. We will analyse how LFV 
causes GFV, and we will derive the energy density 
𝑢𝑣𝑜𝑙 from that process. For it, we will use the dynam-
ics of volume in nature, the volume dynamics, VD, 
see Carmesin (2024a) or Carmesin (2023a, 2021a). 
As a first test of that VD, the VD provides the curva-
ture of space in the vicinity of a mass, see Fig. (3). 

1.5. Epistemology 
Kircher, Girwidz und Häußler (2001, section 4.1.2) 
describe the hypothetic deductive method. In the epis-
temological literature, this method is also called hy-
pothetico-deductive testing (Niiniluoto, Sintonen, 
Wolenski 2004, S. 214). The method consists of three 
steps: In the hypothetic step, a thesis or hypothesis is 
suggested for testing. In the deductive step, implica-
tions are derived. In the third step, the implications 
are compared with observation. Hereby, in principle, 
a falsification should be possible. This method is used 
here as well as in Carmesin (2024a-g, 2017, 2018a-b, 
2019a-b, 2020a-c, 2021a-d, 2022a-c, 2023a-f). 

2. Didactic analysis 

2.1. On LFV 

2.1.1. Physical analysis  

The VD have been derived directly from evident 
properties of volume, this is presented in a parallel 
paper in this report about the DPG conference in 
March 2024 in Greifswald, see Carmesin (2024a), or 
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Carmesin (2023a, 2021a). For the present purpose, 
the locally formed volume, LFV, is essential, see Car-
mesin (2023a), Carmesin (2024a, g): For it, the nor-
malized rate �̇�𝑳 of LFV is defined: If the increment of 
additional volume 𝛿𝑉 forms during an increment of 
time 𝛿𝜏 in an increment 𝑑𝑉𝐿 of volume, then that vol-
ume forms at the following normalized rate 𝜀�̇�:  

𝜀�̇� =
𝛿𝑉

𝛿𝜏⋅𝑑𝑉𝐿
 , see Fig. (3)   {20} 

The law of LFV is: At a gravitational field |�⃗⃗� ∗|, there 
occurs, LFV, at the following normalized rate: 

𝜀�̇� =
|𝐺 ∗|

𝑐
  𝑜𝑟  𝜀�̇�,𝑖𝑖 =

|𝐺 ∗|

𝑐
  {21} 

At a 𝑑𝐺𝑃 based distance 𝑅, a mass 𝑀 causes the field: 

𝐺 ∗(R) = −
𝐺𝑀

𝑅2 ⋅  𝑒 𝐿 with direction vector  𝑒 𝐿   {22} 

  
Fig. 3: In the vicinity of a mass 𝑀 or effective mass 𝑀𝑒𝑓𝑓, 
the radial increment 𝑑𝐿 of the light travel distance 𝑑𝐿𝑇 is 
increased with respect to the original increment 𝑑𝑅 that 
would occur in the limit 𝑀 to zero. This increment 𝑑𝑅 is 
called gravitational parallax distance 𝑑𝐺𝑃, see Carmesin 
(2023a). Hereby, 𝑑𝑉𝐿 = 4𝜋𝑅2𝑑𝐿 and 𝑑𝑉𝑅 = 4𝜋𝑅2𝑑𝑅. 

2.1.2. Didactic analysis  
In a didactic step, the relations {20} to {22} are intro-
duced and exercises are performed. A derivation in 
Carmesin (2023a or 2024a) is used. Thus, this step 
has no special learning barrier. 

2.2. Introduction of the process of GFV by LFV 

2.2.1. Physical analysis 

(1) That process is analysed in an especially ideal 
case, in a universe that consists of volume only.  

(2) At a location 𝑅0, a region with the size of a probe 
volume 𝑑𝑉0 is marked, see Fig. (4). 𝑅0 and 𝑑𝑉0 can 
be chosen freely. 𝑅0 and 𝑑𝑉0 are constant or fixed 
during the whole process. 

(3) During the time 𝑡0 since the Big Bang until now, 
the present volume of the universe has been forming.  
In particular, in that region, the amount 𝑑𝑉0 of vol-
ume forms during 𝑡0. 

(4) The formation of the volume in 𝑑𝑉0 is caused by 
dynamic masses 𝑑𝑀𝑗 in the universe. 

(5) Thus, we will add all increments of LFV that are 
caused in 𝑑𝑉0 by the dynamic masses 𝑑𝑀𝑗 in the uni-
verse. Remind that these consists of volume only. 

2.2.2. Didactic analysis  
In a first didactic step, the elements (1) to (4) of the 
process are introduced with help of Fig. (4). This step 
has no special learning barrier, as the four elements 

describe a clear process of formation and propagation 
of volume according to Eqs. {20} to {22}. 
In didactic step two, the plan (5) is developed. This 
step has no special learning barrier for students famil-
iar with analysis. 

 
Fig. 4: A dynamic mass 𝑑𝑀𝑗  at a distance 𝑅 from the ana-
lysed region (dark grey) with the size 𝑑𝑉0 causes LFV. It 
propagates in all directions in terms of RGWs, see Carme-
sin (2023a, 2024a). At a distance 𝑅, the mass 𝑑𝑀𝑗 causes 
LFV at a rate 𝑑𝜀�̇�. 

2.3. Homogeneous and heterogeneous density 

2.3.1. Physical analysis 
The density of radiation 𝜌𝑟 is essential only in the 
early universe. In the early universe, heterogeneity is 
negligible, see e. g. Kravtsov and Borgani (2012) or 
Carmesin (2021a). Thus, it suffices to analyse the ho-
mogeneous density of radiation only. 

 
Fig. 5: A dynamic mass 𝑑𝑀𝑗  at a distance 𝑅 from the ana-
lysed region (dark grey) with the size 𝑑𝑉0 causes LFV. It 
propagates in all directions in terms of RGWs, see Carme-
sin (2023a, 2024a). At a distance 𝑅, the mass 𝑑𝑀𝑗 causes 
LFV at a rate 𝑑𝜀�̇�. 

Heterogeneity is analysed as indicated in Fig. (5): 
𝜌𝑚,ℎ𝑜𝑚(𝑡):= ⟨𝜌𝑚(𝑡, 𝑟 ) ⟩r⃗    {23} 

𝜌𝑚,ℎ𝑒𝑡(𝑡, 𝑟 ): = 𝜌𝑚(𝑡, 𝑟 ) − 𝜌𝑚,ℎ𝑜𝑚(𝑡) {24} 
The ratio of the density of heterogeneity and the ho-
mogenous density is called overdensity: 
𝛿(𝑡, 𝑟 ):=

𝜌𝑚,ℎ𝑒𝑡(𝑡,𝑟 )

𝜌𝑚,ℎ𝑜𝑚(𝑡)
=  overdensity {25} 

𝜎(𝑡): = √⟨𝛿2⟩𝑟  (𝑡)   {26} 
𝜎8: = 𝜎(𝑡0),   cosmological parameter {27} 

2.3.2. Didactic analysis 
The concept of the observation of heterogeneity is 
very clear and intuitive, see Fig. (5). So it is pre-
sented in one step. Thereby, there occurs one special 
learning barrier: The length of the box is scaled by 
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the Hubble parameter. This makes sense according 
to the following analysis at the level of monotonic-
ity: At large values of 𝐻, the values of the density 𝜌 
are large. Correspondingly, the values of the scale 
radius are small. Accordingly, the chosen length of 
the box is small. There is no special learning barrier, 
as the procedure of the measurement is an arbitrary 
definition. Thus, nothing has to be derived.  

2.4. Sources of fields and squared fields 

2.4.1. Physical analysis 

Fields 𝐺 ∗ can form LFV. For it, we analyse fields 
and squared fields in various states: 
Firstly, we analyse eigenstates |𝑛𝜇⟩ of the number 
operator and general states, see Carmesin (2024b,g): 
The matrix element of the generalized field in a gen-
eral state |𝑧𝜇⟩ is determined as follows: 

⟨𝑧𝜇|𝐺 
∗|𝑧𝜇⟩ = √

ℏ𝐺𝑐2

2𝜔𝜇
∫ 𝑑𝜇�⃗� 𝜇

𝑓𝜇

𝑖
⟨𝑧𝜇|𝑎𝜇

+ + 𝑎𝜇|𝑧𝜇⟩{28} 

Proposition 1: Field of an eigenstate |𝑛𝜇⟩:  
In an eigenstate |𝑛𝜇⟩, that matrix element is zero, 
⟨𝑛𝜇|𝐺 

∗|𝑛𝜇⟩ = 0. The proof is in Carmesin (2024g). 
Secondly, we analyse coherent states: 

|𝑧𝜇⟩  =  𝑒𝑥𝑝 (−
|𝑧𝜇

2|

2
) ⋅  ∑

𝑧𝜇
𝑛𝜇

√𝑛𝜇!
|𝑛𝜇⟩ 

∞
𝑛𝜇=0  {29} 

Proposition 2: Field of a coherent state |𝑧𝜇⟩:  
In a coherent state in Eq. {29}, the expectation value 
of the field is the following nonzero function: 

⟨𝑧𝜇|𝐺 
∗|𝑧𝜇⟩ = √

ℏ𝐺𝑐2

𝟐𝝎𝝁
∫ 𝑑𝜇�⃗� 𝜇

𝑓𝜇

𝑖
𝑅𝑒(𝑧𝜇)⟨𝑧𝜇|𝑧𝜇⟩{30} 

The proof is in Carmesin (2024g). 
The field of a coherent state has very small fluctua-
tions. So it can be interpreted as a classical field, see 
e. g. Ballentine (1998, section 19.4). 
Thirdly, we analyse the volume formed by a homoge-
neous density 𝜌𝑚,ℎ𝑜𝑚(𝑡) of matter, see Eq. {23}. 
Such a density consists of many small masses 𝑚𝑗. 

Each such mass causes a field and a rate 𝜀�̇�,𝑗𝑗 =
|𝐺 ∗|

𝑐
 

in its very near vicinity, see Eqs. {21} and {22}. As 
the masses are part of a homogeneous density 
𝜌𝑚,ℎ𝑜𝑚(𝑡), these fields cancel to zero, and the rates 
𝜀�̇�,𝑖𝑖 average, whereby they transform to an isotropic 
rate 𝜀�̇�,𝑖𝑠𝑜, see Carmesin (2023a): 
Theorem 1: Law of the rate of formation of isotropic 
volume by a homogeneous density: 
In a homogeneous system consisting of objects that 
cause fields with relatively small fluctuations, such as 
fields of coherent states, the VPs form as follows: 
(1) At a microscopic portion of energy or mass, there 
is a rate 𝜀�̇�𝑗 of unidirectional formation of volume. 
(2) Correspondingly, the object causes a field in its 
near vicinity. 
(3) The fields, caused at many such objects, average 
to zero. Consequently, the object of the homogeneous 

system causes no long range field. Thereby, the object 
forms unidirectional rates 𝜀�̇�𝑗 in its near vicinity. The 
unidirectional rates 𝜀�̇�𝑗 of many objects in the homo-
geneous system transform to an isotropic rate 𝜀�̇�𝑠𝑜. 
Thus, such masses of the homogeneous system do not 
contribute to the rate at the probe volume. Conse-
quently, the energy density 𝑢𝑣𝑜𝑙 in a homogeneous 
universe is the same as the energy density of volume 
𝑢𝑣𝑜𝑙 in an empty universe, see Carmesin (2023a, 
2024c). The proof is in Carmesin (2024g).  

2.4.2. Didactic analysis  
In a first didactic step, the field of a state is analysed. 
For it, the algebra of number operators is applied to 
the field or generalized field of the VD. Moreover, the 
field is exact also in curved space. Furthermore, for 
the case of quantum states including nearly classical 
coherent states, the field can be evaluated with help 
of simple algebraic relations. Thus, the field is relia-
ble and exact even for the case of quantum states. Al-
together, the field provides the intuition of the gravi-
tational field and the reliability of exact evaluations. 
Accordingly, there is no special learning barrier in 
this step, for learners familiar with the algebra of lad-
der operators in the VD.  
In step two, the field of a coherent state is used, Car-
mesin (2024g), so there is no special learning barrier. 
In a third didactic step, the energy density of volume 
is derived. For it, the cancellation of field vectors is 
discussed. That process is intuitive, without special 
learning barrier. The transformation from 𝜀�̇�𝑗 to an 
isotropic rate 𝜀�̇�𝑠𝑜 occurs as a result of the averaging 
of fields and rates 𝜀�̇�𝑗, see Carmesin (2023a). 

2.5. Volume caused by volume 
The volume caused by LFV has several sources. One 
of the sources is volume. For it, a possible averaging 
of generalized gravitational fields is analysed next: 

2.5.1. Physical analysis 
A VP with a circular frequency 𝜔 and with a minimal 
energy 𝐸𝑚𝑖𝑛  represents a quantum, and it has the fol-
lowing generalized kinetic energy, see Carmesin 
(2024b, Eq. {39}): 𝐸𝑚𝑖𝑛(𝜔) =

ℏ𝜔

2
  {31} 

Consequently, the VP is in the number state zero, see 
Carmesin (2024b, Eq. {72}): |𝑛𝜇⟩ = 0 {32} 

Proposition 3: Law of the nonzero squared field: 
The squared field has a nonzero expectation value: 

⟨𝑛𝜇|𝐺 𝑔𝑒𝑛
2 |𝑛𝜇′⟩ = 𝐺∫ 𝑑𝜇 ℏ𝜔𝜇 (𝑛𝜇 +

1

2
) 𝛿𝜇𝜇′   {33} 

The proof is in Carmesin (2024g). Next, 𝑢𝑣𝑜𝑙 is de-
rived for the ideal case of an empty universe: 
Theorem 2: Law of the derived energy density of vol-
ume in an empty universe.  
In a universe consisting of volume only, the process 
of GFV from LFV causes the following energy den-
sity of pure volume: 

𝑢Λ,theo =
𝑐2𝐻0

2

4𝜋𝐺
= 𝑢vol,pure,    thus,  {34} 
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𝜌vol,pure =
𝐻0

2

4𝜋𝐺
=  5.600 (±0.155) ⋅ 10−27 kg

m3  & 

𝛺𝑣𝑜𝑙 =
2

3
    {35} 

We name it the energy density of pure volume: 
𝑢vol,pure = 𝑢vol  &  𝜌vol,pure = 𝜌vol  

The same result holds for the homogeneous universe.  
This result is in precise accordance with observation. 
The proof is in Carmesin (2024g). 

2.5.2. Didactic analysis 
In a first didactic step, the squared field is analysed 
with help of the algebra of ladder operators. Such an 
analysis has already been analysed in section (2.4). 
This step has no special learning. In the second step, 
the energy density of volume is derived with help of 
the process of GFV by LFV. That derivation has al-
ready been analysed in Carmesin (2024c). 

 
Fig. 6: The Hubble constant as a function of the cosmo-
logical redshift. Data points show various measurements. 
The densely dotted line represents the present theory. Data 
and theory are in precise accordance. Full circle: Square: 
Blakeslee (2021). ×: Pesce et al. (2020) and Addison et al. 
(2018). Star ⋆: Riess et al. (2022). Diamond: Escamilla-
Rivera and Najera (2022). Circle: Philcox et al. (2020). 
Abbott et al. (2020). Full diamond: Cao et al. (2021). Δ: 
Birrer et al. (2020). ⊗: Cimatti and Moresco (2023). Pen-
tagon: Planck collaboration (2020). 

2.6. Volume caused by a heterogeneous density 

2.6.1. Physical analysis 
Theorem 3: Law of the derived Hubble constant as a 
function of the cosmological redshift.  
(1) In a heterogeneous universe, the process of GFV 
from LFV causes the following Hubble constant as a 
function of the cosmological redshift: 

𝐻0,ℎ𝑒𝑡 = 𝐻0,Λ𝐶𝐷𝑀√Ω�̅� + Ω𝑣𝑜𝑙 ⋅ (1 + 𝜅)𝜉  {47} 

Hereby, 𝐻0,Λ𝐶𝐷𝑀 = √
8𝜋𝐺

3
⋅ 𝜌𝑐𝑟.  is the Hubble con-

stant of the Λ𝐶𝐷𝑀 model of cosmology. The density 
parameter Ω�̅� = Ω𝑚 + Ω𝑟  is used. Ω𝑣𝑜𝑙  is the density 
parameter of the volume. It is essentially equal to the 
density parameter of the cosmological constant, ΩΛ. 

ΩΛ includes the density of volume and of the volume 
caused by the heterogeneity. That heterogeneity is the 
source of the time dependence of the Hubble constant.  

(2) Parameters: 𝜅 describes the additional rate caused 
by heterogeneity. The exponent 𝜉 describes the effect 
of that additional rate upon the Hubble constant. 
These parameters are determined as follows:  

𝜅(�̃�𝑒𝑚) =  Ω�̅̅̅�⋅𝜎8⋅𝑡𝑒𝑚
2

2Ωvol
   and  𝜉 =

𝑙𝑛(𝑤+)

𝑙𝑛(𝑦)
  &  𝑦 = 1 + 𝜅 

with 𝑤+ =
Ω𝑣𝑜𝑙⋅𝑦

2

2
⋅  (1 + √1 +

4𝛺�̅̅̅�

𝛺𝑣𝑜𝑙
2 𝑦2) {48} 

(3) Time evolution of the Hubble constant: The time 
evolution of the Hubble constant is shown in Fig. (6). 
The derived theoretical results are in precise accord-
ance with observation. Moreover, the theory predicts 
the full function 𝐻0,𝑡ℎ𝑒𝑜(𝑧). The proof is presented in 
Carmesin (2024g). 

2.6.2. Didactic analysis 
In a first didactic step, the concept of the overdensity 
is applied to a dynamic mass 𝑑𝑀𝑗. This step has no 
special learning barrier. This step is valuable, as it 
provides insight into the observation of the time evo-
lution of structure in the universe. 
In a second didactic step, the law of LFV is applied to 
the overdensity of a dynamic mass 𝑑𝑀𝑗. Thereby, 
squares and standard deviations are derived. This step 
has no special learning barrier. This step is insightful, 
as it shows how the VD and the LFV are applied to 
fluctuations. Moreover, this step is very insightful, as 
it shows that even fluctuations with a vanishing aver-
age cause additional LFV. This is the ultimate source 
of the Hubble tension.  
In a third didactic step, the linear growth theory is ap-
plied to the standard deviation derived in part (2). 
Though the derivation of linear growth theory is quite 
complex, see Carmesin (2021a), the application of 
that theory is extremely simple. Hence, this step has 
no special learning barrier. This step is very valuable, 
as it shows how a simple law of structure formation 
is achieved for the case of standard deviations. 
In a didactic step (4), the derived rate caused by het-
erogeneity is related to the rate caused without heter-
ogeneity. Thereby, an approximation in leading order 
is applied. This step has a small mental learning bar-
rier, as students might think about the reliability of the 
approximation. As a result, a simple factor 𝜅 is de-
rived. Thus, this step has a very clear structure. 
Thence, this step has no special learning barrier. This 
step is very valuable and insightful, as it shows how 
rates can be separated and related to each other. 
In a didactic step (5), the effects of the additional rate 
caused by heterogeneity upon the Hubble constant is 
derived. The effect is highly nonlinear. Moreover, the 
effect is mediated by the density 𝜌Λ. Thus, this step 
has a high metacognitive learning barrier. In fact, it is 
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impossible that the students plan a useful and effec-
tive treatment on their own. On the other hand, the 
derivation is exact. Thus, the students achieve a large 
amount of success in the treatment of this nonlinear 
and mediated effect. The metacognitive barrier is 
overcome by clear instructions of all applied steps, 
see Carmesin (2024g). Moreover, an explicit method 
of measurement is introduced, so that a clear relation 
to reality is provided. With it, there is no remaining 
special learning barrier. This step is very insightful, 
as it shows that even though the rates and the growth 
could be analysed in a linear manner, this is not so in 
the case of the Hubble constant. This is insightful, as 
the source of that nonlinearity is the fact that the Hub-
ble constant corresponds to the age of the universe, 
which integrates all growth effects from the Big Bang 
to the present-day time 𝑡0. 
In a didactic step (6), the exponent introduced in part 
(5) is derived. In principle, this can be achieved nu-
merically. However, a general equation is more use-
ful. The students are provided with the plan that a 
quadratic equation is achieved with help of appropri-
ate substitutions. With it, the students can derive the 
exponent on their own. So they can achieve self – es-
teem in an especially efficient manner. 
In didactic steps (7) and (8), the Hubble constant is 
evaluated for the case of the CMB and 𝑧 = 0.055. 
These cases are especially valuable, as they show that 
the local value of the Hubble constant has been 
achieved at a confidence level above 5 𝜎. These steps 
have no special learning barrier. 
In didactic steps (9), the derived Hubble constant as a 
function of the redshift is related to observed values. 
This step has no special learning barrier. This step is 
very insightful, as it relates observation with the de-
rived results. This step is the essential step in the hy-
pothetico-deductive testing. Students are encouraged 
to discuss this testing in a founded and critical man-
ner. 
In a didactic step (10), properties of the density of vol-
ume are summarized. For it, the properties derived 
here as well as properties derived with help of the 
Planck scale are used, see Carmesin (2017, 2018a-b, 
2019a-b, 2020a-b, 2021a-b, 2023a, 2024g). As all 
properties have already been derived, this step has no 
special learning barrier. This topic is very insightful. 
Moreover, some learners can connect new and prior 
knowledge, this has a high learning efficiency, see 
Hattie (2006). 
3.  Experience: learning process and learners 
The experiences with learning groups have been doc-
umented in terms of photographs of the blackboard 
and with help of additional reports. These are summa-
rized as follows. 
Since 2021, see Carmesin (2021a), the topic has been 
presented in several general studies courses at the uni-
versity. The learning process was enriched by a per-
manent discussion of the achieved results and by 

exercises about the derived relations. In particular, the 
learning process took place as follows: 
     The law of locally formed volume has been treated 
in advance. In first unit in section (1), the Hubble ten-
sion is presented and the age of the universe is ana-
lysed with it. This step is very exciting to the students, 
as the time evolution of the universe is reanalysed 
with significant effects. The unit requires 90 minutes, 
including exercises and discussions. 
    In a separable second unit, the derivation of 𝜌Λ,theo 
has been achieved. For it, the process of GFV by LFV 
is treated. This includes the derivation of 𝜌Λ,theo and 
the law of the derived energy density of volume in an 
empty universe, as well as  the exercises and discus-
sion. This unit provides a large amount of self-es-
teem, as the students learn how to derive on their own 
the energy density 𝑢𝑣𝑜𝑙, corresponding to 67 % of all 
energy. This unit requires 90 minutes. 
    In another separable and third unit, the cancellation 
of fields is analysed. This can be achieved in a semi-
classical manner, see Carmesin (2021a, 2023a). That 
semiclassical treatment requires 30 minutes and is in-
tuitive.  
    Here, this didactic step is achieved with help of lad-
der operators applied to the fields of the VD. This step 
requires 90 minutes. The learners achieve a lot of gen-
eralizable competence in this step. Correspondingly, 
many learners like this algebraic method.  
   The main unit is section (2.5), the derivation of the 
time evolution of the Hubble constant. This unit can 
be presented in 90 minutes in the form of a lecture. 
The students are very interested in that derivation, af-
ter they explored the age of the universe in unit (1), 
after they derived the dark energy in unit (2), and after 
they analysed the algebraic structure of fields and 
their averages in unit (3).     

A quantum gravity group of a research club meets 90 
minutes each week. Thereby topics such as quantum 
computers, cosmology, astrophysics or quantum 
gravity are treated. In that group, essentially the same 
learning process has been treated in several courses 
since 2021. Also in this case, all questions have been 
discussed directly, and exercises have been per-
formed. 

Altogether, in all learning groups, the learners asked 
questions. These have been discussed directly in a 
fully sufficient manner. Moreover, exercises have 
been used in order to achieve sufficient training, met-
acognitive activity and familiarity with the new con-
cepts. In some of the exercises, the students were in-
structed so that they were able to achieve parts of the 
derivations on their own. This is an efficient test of 
the ability of the students, and it provides self-esteem 
to the students in a convincing manner. 
4. Discussion 
Space is an ubiquitous entity of everyday life. More-
over, time is basic for the chronological organisation 
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of events and  knowledge. Accordingly, all essential 
cultures developed a useful and relatively precise cal-
endar system, see Hoskin (1999).  
In modern physics and cosmology, a surprising mys-
tery occurred: the Hubble tension and the local value 
of the Hubble constant, see Riess et al. (2022). It 
showed that the traditional ΛCDM model of cosmol-
ogy cannot explain the observed time evolution of the 
universe since the Big Bang in a sufficient manner. 
This exciting mystery is treated in this course in a 
conclusive, exact and precise manner.  
For it, the dynamics of volume in nature are analysed 
systematically. In fact, that volume-dynamics, VD, 
explain the essential present-day physical theories: 
gravity, general relativity and QP. Indeed, this broad 
and exact basis is essential in order to solve the prob-
lem of the Hubble tension. In fact, equipped with the 
VD, the students can learn how to solve the Hubble 
tension problem on their own, and how to predict fu-
ture observations of 𝐻0(𝑧). Thereby, they learn many 
valuable, insightful and generalizable tools, methods, 
concepts and theories: beyond the theories that are not 
able to solve the Hubble tension! 
In fact, the VD have been used successfully to solve 
other problems of fundamental physics. For it, see the 
other reports about my contributions to the DPG con-
ference in spring 2024 in Greifswald. 
Indeed, also the students can apply the VD in order to 
solve more fundamental problems of physics in the 
future. 
Altogether, we show how the volume of the universe 
forms in a permanent process. Moreover, we show 
that the heterogeneity is an additional source for such 
formation of volume. Indeed, we show in a precise 
manner, that this heterogeneity is the source of the 
Hubble tension. Moreover, we derive an advanced 
value for the age of the universe. This is a gradual im-
pact of the Hubble tension on the world view. More-
over, the Hubble tension indicates that volume in na-
ture forms permanently and locally at masses, ener-
gies, volume portions and even at fluctuations – and 
that volume in nature flows at the velocity of light, 
whereas we and other masses move slowly. 

The learning process is based on the hypothetic de-
ductive method, see the section about the epistemol-
ogy. Such a testing of a hypothesis and such a deduc-
tion from prior knowledge have a high learning effi-
ciency, see Hattie (2006). Moreover, the learning pro-
cess uses everyday life contexts, so that the learning 
is meaningful, see Muckenfuß (1995) and achieves an 
additional high learning efficiency, see Hattie (2006). 
In the particular case, applications to quantum cryp-
tography and quantum computing are very motivat-
ing. For more interesting examples, see Carmesin 
(2020c). 
The learning process of the process of GFV by LFV  
has been tested in several learning groups. The learn-
ing process includes four units with 90 minutes each. 

This has been tested at university courses as well as 
in research club courses. In all these learning groups, 
the students were able to perform exercises and to use 
instructions in order to derive parts of the theory. 
Thus, the topic provides a large amount of self-esteem 
to the learners.  
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