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Abstract 

In everyday life, we are used to the space in which we live. However, physicists need to know or 

assume properties about that space: Newton (1668) preferred a flat and constant space. Maxwell 

(1865) proposed that space should be an electromagnetic aether. Einstein (1917) suggested that 

space would be characterized by a cosmological constant Λ, corresponding to an energy density 𝑢𝑣𝑜𝑙 

of space or of volume. Moreover, he provided an equation that determines how 𝑢𝑣𝑜𝑙 is related to the 

expansion of space since the Big Bang. Based on that relation, Perlmutter et al. (1998) discovered a 

nonzero observed value 𝑢𝑣𝑜𝑙,𝑜𝑏𝑠 of 𝑢𝑣𝑜𝑙. The derivation of 𝑢𝑣𝑜𝑙 represents an essential and exciting 

problem about nature and physics. Carmesin (2023a) derived the dynamics of volume in nature, the 

volume dynamics, VD. They bridge general relativity and quantum physics. In this paper, we use 

the VD to derive 𝑢𝑣𝑜𝑙. For that derivation, we provide a learning process, so that you can directly 

use the concept in your courses. The learning process has been tested in various learning groups, 

and experiences are reported. 

 

1.  Introduction 

1.1. On Einstein’s idea of 𝚲  

The expansion of space can be derived from general 

relativity, see Einstein (1917), Friedmann (1922) and 

Lemaître (1927). Thereby, a uniform scaling of space 

is derived. In general, such a uniform scaling can be 

described by the time evolution of a scale radius 𝑟(𝑡), 

see Fig. (1): If space expands by a factor 𝑞, then 𝑟 is 

multiplied by 𝑞. That time evolution can be described 

by this differential equation, DEQ: 

�̇�2

𝑟2 =
8𝜋𝐺

3
⋅ (𝜌𝑟 + 𝜌𝑚 + 𝜌𝐾 + 𝜌Λ)  {1} 

Hereby, 𝐺 is the universal constant of gravity. More-

over, four densities are distinguished, so that each 

density has a characteristic scaling behaviour as a 

function of the scale radius 𝑟: 

𝜌𝑟 is the density of radiation, 

𝜌𝑚 is the density of matter, 

𝜌𝐾  is the density of a curvature parameter, it is zero 

according to observation, see Planck collaboration 

(2020), and as a result of a proof, see Carmesin 

(2023c), 

𝜌Λ is the density of the cosmological constant, it does 

not change as a function of the scale radius 𝑟. 

A present-day value of a quantity is marked by the 

subscript zero. Next, the densities in Eq. {1} are ex-

pressed as functions of the scale radius:  

�̇�2

𝑟2 =
8𝜋𝐺

3
⋅ (𝜌𝑟,0

𝑟0
4

𝑟4  + 𝜌𝑚,0
𝑟0

3

𝑟3 + 𝜌Λ)  {2} 

 

Fig. 1: A prototypical ball of the universe with a scale ra-

dius 𝑟 and an energy density 𝑢. The energy density can be 

expressed in terms of a density or dynamic density 𝜌 =
𝑢

𝑐2. 

When 𝜌Λ becomes essential, 𝑟 is very large, so that  

𝜌𝑟 becomes very small, so we neglect it in section 

(1.1). We multiply by 𝑟2 and apply the time deriva-

tive: 

𝜕

𝜕𝑡
�̇�2 =

8𝜋𝐺

3
⋅

𝜕

𝜕𝑡
(𝜌𝑚,0

𝑟0
3

𝑟1 + 𝜌Λ𝑟2)  {3} 

2�̇� �̈� =
8𝜋𝐺

3
(−𝜌𝑚,0

𝑟0
3

𝑟2 + 2𝜌Λ𝑟) �̇�  {4} 

In order to obtain a relative acceleration 
�̈�

𝑟
, we divide 

by 2𝑟�̇�: 

�̈�

𝑟
=

8𝜋𝐺

3
(−

1

2
𝜌𝑚 + 𝜌Λ)   {5} 
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Einstein (1917) had the idea of a static universe: If  

the 𝜌Λ compensates 
1

2
𝜌𝑚 in the above DEQ, then 𝑟 is 

not accelerated. Thus, if �̇� is zero initially, then �̇� re-

mains zero and the universe is static. 

For this purpose of a possibly static universe, Einstein 

(1917) proposed the cosmological constant Λ, corre-

sponding to the density 𝜌Λ =
Λ𝑐2

8𝜋𝐺
 and energy density 

𝑢Λ =
Λc4

8𝜋𝐺
, see e. g. Hobson (2006, section 15.1). 

1.2. Epistemology 

Kircher, Girwidz und Häußler (2001, section 4.1.2) 

describe the hypothetic deductive method. In the epis-

temological literature, this method is also called hy-

pothetico-deductive testing (Niiniluoto, Sintonen, 

Wolenski 2004, S. 214). The method consists of three 

steps: In the hypothetic step, a thesis or hypothesis is 

suggested for testing. In the deductive step, implica-

tions are derived. In the third step, the implications 

are compared with observation. Hereby, in principle, 

a falsification should be possible. This method is used 

here as well as in Carmesin (2024a-g, 2017, 2018a-b, 

2019a-b, 2020a-c, 2021a-d, 2022a-c, 2023a-f). 

1.3. On the observed value 𝚲𝐨𝐛𝐬  

As a consequence of Eq. {5}, it was clear how 𝜌Λ 

could be measured: If an observer would measure an 

accelerated expansion of space, then this could be ex-

plained by the dynamic density 𝜌Λ. In fact, Perlmutter 

et al. (1998) discovered the accelerated expansion of 

the universe. 

Meanwhile, many observers confirmed the acceler-

ated expansion of the universe. An especially precise 

measurement of 𝜌Λ has been achieved with help of 

the cosmic microwave background, CMB, see Planck 

collaboration (2020). That group applied several eval-

uation procedures, whereby the so-called tempera-

ture-temperature correlation is especially robust and 

used here: 

The Hubble constant 𝐻0 is the present-day value of 

the Hubble parameter 𝐻 =
�̇�

𝑟
, the observed value is: 

𝐻0,𝑜𝑏𝑠 = 66.88 (±0.92) 
km

s⋅Mpc
     with     

1𝑀𝑝𝑐 = 3.086 ⋅ 1019 𝑘𝑚,        thus,       

𝐻0,𝑜𝑏𝑠 = 2.167 (±0.03) ⋅ 10−18  
1

s
      {6} 

With it, the so-called critical density is as follows: 

𝜌𝑐𝑟. =
3𝐻0

2

8𝜋𝐺
= 8.4 ⋅ 10−27 kg

m3    {7} 

The density divided by the critical density is the den-

sity parameter, ΩΛ =
𝜌Λ

𝜌𝑐𝑟
. Its observed value is: 

𝛺𝛬,𝑜𝑏𝑠 = 0.679 (±0.013)    {8} 

Note that this density parameter means that 67.9 % of 

all energy and matter in the universe is the energy of 

ρΛ, the so-called dark energy, see Huterer (1999), 

Planck collaboration (2020), Workman et al. (2022).  

Thus, the observed value of 𝜌Λ is: 

ρΛ,𝑜𝑏𝑠 = ΩΛ,𝑜𝑏𝑠 ⋅ 𝜌𝑐𝑟. = 5.704 (±0.27) ⋅ 10−27 kg

m3   {9} 

1.4. On the formation of volume in nature  

The energy density 𝑢Λ = 𝑐2 ⋅ 𝜌Λ includes all physical 

energy densities that do not change as a function of 

the scale radius or of the cosmological redshift, see 

Eq. {2}. The energy density of volume in nature, 

𝑢𝑣𝑜𝑙 = 𝑐2 ⋅ 𝜌𝑣𝑜𝑙 , does not change as a function of the 

scale radius. Accordingly, 𝑢𝑣𝑜𝑙 is analysed next: 

When the space expands, then a global formation of 

volume, GFV, takes place. 

This is caused by a local formation of volume, LFV. 

We will analyse this process of LFV causing GFV, 

and we will derive the energy density 𝒖𝒗𝒐𝒍 from that 

process.  

For it, we will use the dynamics of volume in nature, 

the volume dynamics, VD, see Carmesin (2024a, 

2023a, 2021a).  

As a first test of that VD, the VD provides the curva-

ture of space in the vicinity of a mass, see Fig. (2). 

  

Fig. 2: In the vicinity of a mass 𝑀 or effective mass 𝑀𝑒𝑓𝑓, 

the radial increment 𝑑𝐿 of the light travel distance 𝑑𝐿𝑇 is 

increased with respect to the original increment 𝑑𝑅 that 

would occur in the limit 𝑀 to zero. This increment 𝑑𝑅 is 

called gravitational parallax distance 𝑑𝐺𝑃, see Carmesin 

(2023a). 

1.5. Organization of the paper 

A didactic analysis including a professional analysis 

is provided in section 2. The learning process includ-

ing experiences with learning groups are shown in 

part 3. We discuss our findings in section 4. Of 

course, there are additional questions about 𝑢Λ that 

are not treated in this paper. Many of these additional  

questions are clarified in my parallel papers in the re-

port about the DPG conference in March 2024 in 

Greifswald, see Carmesin (2024a-g).  

2. Didactic analysis 

2.1. On LFV 
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2.1.1. Physical analysis  

The dynamics of volume in nature have been derived 

directly from evident properties of volume, this is pre-

sented in a parallel paper in this report about the DPG 

conference in March 2024 in Greifswald, see Carme-

sin (2024a). Moreover, it has been derived with help 

of selected results of general relativity, see Carmesin 

(2023a, 2021a). 

For the present purpose, the local formation of vol-

ume is essential, see Carmesin (2023a) or Carmesin 

(2024a, f):  

For it, the normalized rate 𝜀�̇� of locally formed vol-

ume is defined:  

If the increment of additional volume 𝛿𝑉 forms dur-

ing an increment of time 𝛿𝜏 in an increment 𝑑𝑉𝐿 of 

volume, then that volume forms at the following nor-

malized rate 𝜀�̇�: 

𝜀�̇� =
𝛿𝑉

𝛿𝜏⋅𝑑𝑉𝐿
     {10} 

With it, the law of locally formed volume is pre-

sented: 

At a gravitational field |�⃗�∗|, there occurs locally 

formed volume, LFV, at the following normalized 

rate: 

𝜀�̇� =
|�⃗�∗|

𝑐
     {11} 

Thereby, a mass 𝑀 causes the following gravitational 

field at a 𝑑𝐺𝑃 based distance 𝑅: 

�⃗�∗(𝑅) = −
𝐺𝑀

𝑅2 ⋅  𝑒𝐿    {12} 

Hereby, 𝑒𝐿 is the direction vector in the radial direc-

tion.  

In the present investigation, the space is globally flat, 

so that the above Eqs. {11} and {12} hold in an exact 

manner. For approximate and exact relations in 

curved space, see Carmesin (2023a, 2024a). 

2.1.2. Didactic analysis  

In a first didactic step, the relations {10} to {12} are 

introduced and exercises are performed. A possible 

derivation is presented in Carmesin (2024a). This step 

has no special learning barrier, as only the application 

of the relations is required. 

2.2. Introduction of the process of GFV by LFV 

2.2.1. Physical analysis 

(1) That process is analysed in an especially ideal 

case, in a universe that consists of volume only.  

(2) At a location 𝑅0, a region with the size of a probe 

volume 𝑑𝑉0 is marked, see Fig. (3). Thereby, the lo-

cation 𝑅0 and the size 𝑑𝑉0 of the region can be chosen 

arbitrarily. Hereby, the location 𝑅0 and the region are 

constant or fixed during the whole process. 

(3) During the time 𝑡0 since the Big Bang until now, 

the present volume of the universe forms. In particu-

lar, in that region, the amount 𝑑𝑉0 of volume forms 

during 𝑡0. 

(4) The formation of the volume in that region is 

caused by all dynamic masses 𝑑𝑀𝑗  of the volume in 

the universe. 

(5) As a consequence, we will add or integrate all in-

crements of LFV that are caused in the marked region 

by all dynamic masses 𝑑𝑀𝑗 in the universe. Remind 

that these consist of volume only. 

 

Fig. 3: A dynamic mass 𝑑𝑀𝑗  at a distance 𝑅 from the ana-

lysed region (dark grey) with the size 𝑑𝑉0 causes LFV. It 

propagates in all directions in terms of RGWs, see Carme-

sin (2023a, 2024a). At a distance 𝑅, the mass 𝑑𝑀𝑗 causes 

LFV at a rate 𝑑𝜀�̇�. 

2.2.2. Didactic analysis  

In a first didactic step, the elements (1) to (4) of the 

process of GFV by LFV are introduced with help of 

Fig. (3). This step has no special learning barrier, as 

the four elements describe a clear process of for-

mation and propagation of volume according to Eqs. 

{10} to {12}. 

In a second didactic step, the plan (5) is developed. 

This step has no special learning barrier for students 

familiar with analysis. The reason is that the adding 

or integrating is planned for all increments of volume 

that form in the marked region. That is a clear analytic 

and arithmetic procedure. 

2.3. Integrating the increments of the process of 

GFV by LFV 

2.3.1. Physical analysis 

(1) The dynamic masses 𝑑𝑀𝑗 in a shell with centre at 

𝑅0, radius 𝑅 and thickness 𝑑𝑅 are analysed, see Fig. 

(3). For each infinitesimal increment 𝑑𝑅, the volume 

of that shell is the product of the surface 4𝜋𝑅2 and 

the thickness 𝑑𝑅: 

𝑑𝑉 = 4𝜋𝑅2 ⋅ 𝑑𝑅    {13} 

The dynamic mass 𝑑𝑀 in that shell is equal to the 

product of the volume and the density: 

𝑑𝑀 = 𝑑𝑉 ⋅ 𝜌Λ = 4𝜋𝑅2 ⋅ 𝜌Λ ⋅ 𝑑𝑅  {14} 

That mass causes the following rate in the marked re-

gion, see Eqs. {11} and {12}: 

𝑑𝜀�̇� =
𝐺⋅𝑑𝑀

𝑅2𝑐
=

𝐺⋅4𝜋𝑅2⋅𝜌Λ⋅𝑑𝑅

𝑅2𝑐
=

𝐺⋅4𝜋⋅𝜌Λ⋅𝑑𝑅

𝑐
 {15} 
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(2) We realize that the normalized rate 𝑑𝜀�̇� does not 

depend on the value of the radius of the shell. Thus, 

the integration is not complicated. 

(3) As the process is introduced by the time from the 

Big Bang until the present-day, we substitute 𝑑𝑅 =
𝑐 ⋅ 𝑑𝑡, since the RGWs propagate with the velocity 𝑐:   

𝑑𝜀�̇� = 4𝜋𝐺𝜌Λ𝑑𝑡    {16} 

(4) The integration ranges from 𝑡 = 0 to 𝑡 = 𝑡0. Thus, 

the integration yields the following normalized rate 

𝜀�̇� arriving at the marked region during the time inter-

val [0, 𝑡0]: 

𝜀�̇�([0, 𝑡0]) = 4𝜋𝐺𝜌Λ ∫ 𝑑𝑡
𝑡0

0
= 4𝜋𝐺𝜌Λ𝑡0 {17} 

(5) The present-day time 𝑡0 is essentially the same as 

the Hubble time 𝑡𝐻0
=

1

𝐻0
, see e. g. Hobson (2006), 

Carmesin (2019a): 

𝜀�̇�([0, 𝑡0]) = 4𝜋𝐺𝜌Λ
1

𝐻0
   {18} 

2.3.2. Didactic analysis 

In a first didactic step (1), the shell is analysed in Eqs. 

{13} to {15}. This step has no special learning bar-

rier. 

In a second didactic step, the integral is introduced 

and evaluated in Eqs. {16} to {18}. This step has no 

special mathematical learning barrier for learners fa-

miliar with analysis. However, that step has a mental 

learning barrier for learners that think the universe 

was small at the Big Bang. This mental barrier is clar-

ified by the fact that the universe has already been in-

finite at the Big Bang, as the universe is globally flat, 

see Planck collaboration (2020) or Carmesin (2023c). 

2.4. Integrating the increments of the process of 

GFV by LFV 

2.4.1. Physical analysis 

(1) The definition of the normalized rate (see Eq. 

{10}) is applied to the integrated rate in Eq. {18}: 

𝜀�̇�([0, 𝑡0]) =
𝛿𝑉

𝛿𝜏⋅𝑑𝑉𝐿
= 4𝜋𝐺𝜌Λ

1

𝐻0
  {19} 

According to the process in section (2.2), we analyse 

the formation of volume in the marked region with 

the size 𝑑𝑉0. Consequently, the volume 𝑑𝑉𝐿 in the 

above Eq. is equal to 𝑑𝑉0.  

Moreover, in that process, the formed volume 𝛿𝑉 in 

the above Eq. is equal to the size 𝑑𝑉0 of the marked 

region. 

Furthermore, the process takes place during the time 

from the Big Bang until the present-day time 𝑡0 or 

𝑡𝐻0
=

1

𝐻0
. 

These three relations are inserted in the above Eq. 

{19}: 

  𝜀�̇�([0, 𝑡0]) =
𝐻0⋅𝑑𝑉0

𝑑𝑉0
= 𝐻0 = 4𝜋𝐺𝜌Λ

1

𝐻0
 {20} 

The above Eq. is solved for 𝜌Λ. The derived value is 

the theoretical value and marked by the subscript 

theo: 

𝜌Λ,theo =
𝐻0

2

4𝜋𝐺
    and    𝑢Λ,theo =

𝑐2𝐻0
2

4𝜋𝐺
 {21} 

This density describes the value of 𝜌Λ that is derived 

by the process of GFV by LFV. It is tested by com-

parison with observed values next: 

(2) The observed value 𝐻0,𝑜𝑏𝑠 in Eq. {6} is inserted: 

𝜌Λ,theo =
𝐻0

2

4𝜋𝐺
=  5.600 (±0.155) ⋅ 10−27  

kg

m3  {22} 

Consequently, the above derived result is in precise 

accordance with the observed value ρΛ,𝑜𝑏𝑠 =

5.704 (±0.27) ⋅ 10−27  
kg

m3 in Eq. {9}, within the er-

ror of measurement.  

2.4.2. Didactic analysis 

In a first didactic step (1), the conditions of the pro-

cess of GFV by LFV is applied to the rate in Eq. {18}. 

The resulting Eq. is solved for the density 𝜌Λ in Eq. 

{21}. This step has no special learning barrier. 

2.5. Interpretation of the process of GFV by 

LFV in a universe consisting of volume only 

2.5.1. Physical analysis 

(1) The analysed universe consists of volume only. 

Moreover, it is globally flat, see Planck collaboration 

(2020) or Carmesin (2023c). Thus, that universe is in-

finite all time, and the density is the same all time. As 

a consequence, the derived density of volume 𝜌Λ,theo 

is the same all time: 

𝜌Λ,theo = constant    {23} 

(2) Einstein (1917) defined the density 𝜌Λ of the cos-

mological constant Λ indirectly by the rate of the ex-

pansion of the universe, see Eq. {1}. In that defini-

tion, 𝜌Λ subsumes all physical densities that do not 

change as a function of the scale radius, see Eq. {2}. 

The theoretical value derived here consists of volume 

only, by construction of the process of GFV by LFV 

in section (2.2). Accordingly, the derived density is 

definitely the density of volume, without any con-

ceivable additional component that is independent of 

the scale radius: 

𝜌Λ,theo = 𝜌𝑣𝑜𝑙,𝑡ℎ𝑒𝑜    {24} 

(3) If the process of GFV by LFV is used at any time 

𝑡1 of the universe, different from the present-day time 

𝑡0, than Eq. {17} changes to the following Eq.:  

𝜀�̇�([0, 𝑡1]) = 4𝜋𝐺 ⋅ 𝜌𝑣𝑜𝑙,𝑡ℎ𝑒𝑜 ∫ 𝑑𝑡
𝑡1

0
= 4𝜋𝐺 ⋅

𝜌𝑣𝑜𝑙,𝑡ℎ𝑒𝑜 ⋅ 𝑡1    {25} 

In particular, the ratio of the rate and the time is a con-

stant, as 𝜌Λ is constant in the process of GFV by LFV: 

�̇�𝐿([0,𝑡1])

𝑡1
=

�̇�𝐿([0,𝑡0])

𝑡0
= 4𝜋𝐺𝜌𝑣𝑜𝑙,𝑡ℎ𝑒𝑜 = constant {26} 

The results are summarized: 

Theorem: Law of the derived energy density of vol-

ume in an empty universe.  

In a universe consisting of volume only, the process 

of GFV from LFV causes the following energy den-

sity of volume: 

𝑢Λ,theo =
𝑐2𝐻0

2

4𝜋𝐺
= 𝑢vol,    thus,  {26} 
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𝜌Λ,theo =
𝐻0

2

4𝜋𝐺
=  5.600 (±0.155) ⋅ 10−27 kg

m3  {27} 

The density is a consequence of the process of for-

mation of volume since the Big Bang until the pre-

sent-day time 𝑡0.  

If that process ranges from the Big Bang to another 

time 𝑡1 ≠ 𝑡0, then that process provides the same den-

sity of volume.  

This result is in precise accordance with observation. 

2.5.2. Didactic analysis 

In a first didactic step (1), it is realized that the derived 

density 𝜌Λ,theo is constant, as there is no change of the 

physical conditions in the process of GFV by LFV in 

a universe consisting of volume only. This step has 

no special learning barrier. 

In a second didactic step (2), it is realized that the de-

rived density 𝜌Λ,theo describes the density of volume, 

as there is no other component in a universe consist-

ing of volume only. This step has no special learning 

barrier. 

In a third didactic step (3), it is realized that the de-

rived density 𝜌Λ,theo is the same for all times 𝑡1 in 

which the process of GFV by LFV is analysed. This 

step has no special learning barrier, as Eq. {26} is de-

rived in a straight forward manner. Of course, nobody 

can directly measure the rate 𝐻1 at another time 𝑡1 af-

ter the Big Bang. 

2.5.3.  Experience: learning process and learners 

The experiences with learning groups have been doc-

umented in terms of photographs of the blackboard 

and with help of additional reports. These are summa-

rized as follows. 

Since 2021, see Carmesin (2021a), the topic has been 

presented in five general studies courses at the uni-

versity. The learning process was enriched by a per-

manent discussion of the achieved results and by ex-

ercises about the derived relations. In particular, the 

learning process took place as follows: 

     The law of locally formed volume has been treated 

in advance. The learning process of the process of 

GFV by LFV takes 90 minutes. This includes the der-

ivation of 𝜌Λ,theo and Eqs. {21} to {25}, the exercises 

and discussion.  

A quantum gravity group of a research club meets 90 

minutes each week. Thereby topics such as quantum 

computers, cosmology, astrophysics or quantum 

gravity are treated. In that group, essentially the same 

learning process has been treated in four courses since 

2021. Also in this case, all questions have been dis-

cussed directly, and exercises have been performed. 

Altogether, in all nine learning groups, the learners 

asked questions. These have been discussed directly 

in a fully sufficient manner. Moreover, exercises have 

been used in order to achieve sufficient training, met-

acognitive activity and familiarity with the new con-

cepts. In some of the exercises, the students were 

instructed so that they were able to achieve parts of 

the derivations on their own. This is an efficient test 

of the ability of the students, and it provides self-es-

teem to the students in a convincing manner. 

3. Discussion 

Space is an ubiquitous entity of everyday life. More-

over, it is essential in physics, see e. g. Newton (1668) 

or Maxwell (1865). Einstein (1917) proposed that 

space has a cosmological constant Λ. It corresponds 

to an energy density 𝑢Λ of space. The corresponding 

energy is called dark energy, see e. g. Workman et al. 

(2022). Observation shows that the dark energy 

amounts to more than 67 % of the whole energy of 

the universe, including matter, see Planck collabora-

tion (2020). Thus, the question arises what properties 

this enormous amount of energy has. 

For it, we analyse the process of global formation of 

volume, GFV, by local formation of volume, LFV. In 

particular, we analyse the ideal case of a universe 

consisting of volume only. As a result, we derive a 

formula 𝑢Λ,theo =
𝑐2𝐻0

2

4𝜋𝐺
. It is in precise accordance 

with observation. This fact provides convincing addi-

tional evidence for the used law of local formation of 

volume, which is derived from evident properties of 

volume, see Carmesin (2024a, f).  

Moreover, the formation of volume in a universe with 

volume, radiation and matter has been investigated 

additionally, and it provides the solution of the Hub-

ble tension, see Carmesin (2021a-b, 2023a, e, 2024d).  

Altogether, we show how the volume of the universe 

forms in a permanent process. That process is an ex-

ample of the more general dynamics of volume in na-

ture, the volume dynamics, VD. That VD provide 

quantum physics and general relativity as special 

cases and solve many problems of physics beyond 

quantum physics and general relativity, see Carmesin 

(2021a, 2023a, e, 2024a-g).  

The learning process is based on the hypothetic de-

ductive method, see the section about the epistemol-

ogy. Such a testing of a hypothesis and such a deduc-

tion from prior knowledge have a high learning effi-

ciency, see Hattie (2006). Moreover, the learning pro-

cess uses everyday life contexts, so that the learning 

is meaningful, see Muckenfuß (1995) and achieves an 

additional high learning efficiency, see Hattie (2006). 

In the particular case, applications to quantum cryp-

tography and quantum computing are very motivat-

ing. For more interesting examples, see Carmesin 

(2020c). 

The learning process of the process of GFV by LFV  

has been tested in nine learning groups. The learning 

process takes 90 minutes at university courses as well 

as in research club courses. In all these learning 

groups, the students were able to perform exercises 

and to use instructions in order to derive parts of the 

theory. Thus, the topic provides a large amount of 

self-esteem to the learners.  
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