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Abstract 

The gravitational force is a fact of everyday life. But how does it propagate from a field generating 

mass 𝑀 to a probe mass 𝑚? For instance, on its way from Earth to Moon, Apollo 11 had to overcome 

the gravitational force that Earth exerts upon Apollo 11. How does this force come from Earth to 

Apollo 11? Newton (1668) realized that that gravitational force is fundamental, without explaining 

its mechanism. Einstein (1915) proposed that a field generating mass M curves space in its vicinity, 

so that a probe mass m moves according to that curved space. But how does the curvature propagate? 

For it Blokhintsev and Galperin (1934) proposed a graviton. Carmesin (2023a) derived the dynamics 

of volume in nature, the volume dynamics, VD. It bridges general relativity, GR, and quantum phys-

ics, QP. This additionally serves the ambitious aim to bridge gaps or differences, see Niedersäch-

sisches Kultusministerium (2021). In this paper, we use the VD to derive insightful and useful uni-

versal properties of the proposed graviton. For that derivation, we provide a learning process, so that 

you can directly use the concept in your courses. The learning process has been tested in various 

learning groups, and experiences are reported. 

 

1.  Introduction 

1.1. On the propagation of gravity 

On its way from Earth to Moon, Apollo 11 had to 

overcome the gravitational force that Earth exerts 

upon Apollo 11, Fig. (1). This is an example, in which 

gravity propagated from Earth to Apollo 11. In the 

standard model of elementary particles, that propaga-

tion of gravity should be instantiated by an elemen-

tary particle, the graviton, see Workman et al. (2022). 

Carmesin (2023a, 2024a) derived the VD by using ev-

ident and reliable properties of volume in nature. This 

is insight- & useful. Here, the epistemology is based 

on the established hypothetic deductive method. It is 

described in the didactic literature, see e. g. Kircher, 

Girwidz und Häußler (2001, section 4.1.2) and in the 

epistemological literature, see e. g. Niiniluoto, Sin-

tonen, Wolenski (2004, S. 214). This method is used 

here as well as in Carmesin (2024a-g, 2017, 2018a-b, 

2019a-b, 2020a-c, 2021a-d, 2022a-c, 2023a-f). 

Derived universal properties include the wave prop-

erty, the tensor property, the minimal dimension of 

space, the zero-point energy, the energy spectrum and 

the spin. These properties correspond to the graviton 

proposed by Blokhintsev and Galperin (1934).  

Derived results have been used to solve problems of 

fundamental physics in gravity,  GR, & QP. 

1.2. On the dynamics of volume in nature 

In this section, we summarize results of the VD, see 

e. g. Carmesin (2021a, 2023a, e, 2024a-g). 

1.2.1. Existence of volume-portions  

The evident fact that volume has no rest mass, 

𝑚𝑣𝑜𝑙,0 = 0, implies that the volume in nature propa-

gates at 𝑐. Moreover, volume consists of many vol-

ume-portions, VPs. A proof is presented in a parallel 

paper in this report about the DPG conference 2024 

in Greifswald, see Carmesin (2024a). 

 

Fig. 1: Apollo 11 on its way to the Moon: The separation 

of the first stage is observed with a telescope. In this per-

spective, the length appears reduced. 

1.2.2. Measurable additional volume  

In the vicinity of a mass 𝑀 or an effective mass 𝑀𝑒𝑓𝑓 , 

the light-travel distance 𝑑𝐿𝑇 can be measured, for in-

stance with light signals, see Fig. (2). Moreover, at 

the same place, the gravitational parallax distance 

𝑑𝐺𝑃 can be measured. It describes lengths for the case 

of zero mass or effective mass. The 𝑑𝐺𝑃 can be meas-

ured with help of a pair of hand leads. Proof: Carme-

sin (2023a, 2024a). An increment of volume 𝑑𝑉𝐿 of a 

cuboid is the product of 𝑑𝐿𝑇 based lengths of the 

edges. Similarly, the product of the corresponding 
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𝑑𝐺𝑃 based lengths is the volume 𝑑𝑉𝑅 of the cuboid 

that would occur at zero 𝑀 or 𝑀𝑒𝑓𝑓 . The difference 

𝛿𝑉 = 𝑑𝑉𝐿 − 𝑑𝑉𝑅 is the additional volume caused by 

𝑀 or 𝑀𝑒𝑓𝑓 . The relative additional volume is 𝜀𝐿 =
𝛿𝑉

𝑑𝑉𝐿
, see Carmesin (2023a, 2024a). 

  

Fig. 2: In the vicinity of 𝑀 or 𝑀𝑒𝑓𝑓, the radial increment 

𝑑𝐿 of 𝑑𝐿𝑇 is increased with respect to the original incre-

ment 𝑑𝑅 that would occur in the limit 𝑀 to zero. 

1.2.3. Propagation of volume  

(1) Localizable portions of relative additional volume 

𝜀𝐿 and of volume in general propagate, see Fig. (3). 

This is described by the law of propagation of local-

izable relative additional volume. E. g., the parts (2) 

and (3) in that law state the following: 

(2) If the relative additional volume 𝜀𝐿 is analysed as 

a function of 𝜏 and  𝐿⃗ , see Fig. (3), then it fulfils the 

following differential equation, DEQ: 

𝜕

𝜕𝜏
 𝜀𝐿 = −𝑐 ⋅ 𝑒 𝑣  ⋅

𝜕

𝜕𝐿⃗ 
 𝜀𝐿   {1} 

Hereby, 𝑒 𝑣 is the radial direction vector, it is also 

marked by 𝑒 𝐿.That Eq. implies the Schrödinger equa-

tion, SEQ. Proof: Carmesin (2024a). 

(3) In principle, there is no difference between a por-

tion 𝛿𝑉 and a localizable VP. Thus, Eq. {1} holds for 

each localizable VP. A proof is in Carmesin (2024a). 

1.2.4. Curvature caused by volume-portions  

In the vicinity of 𝑀 or 𝑀𝑒𝑓𝑓 , space is curved, Fig. (2). 

This is implied by Eq. {1}. Proof: Carmesin (2024a). 

  
Fig. 3: A localizable portion of relative additional vol-

ume 𝜀𝐿 propagates in space. The relative additional vol-

ume is analysed as a function of 𝜏 and 𝐿⃗ . 

1.2.5. Gravitational potential and field 

The dynamics in Eq. {1} can be written as follows: 

𝑐
𝜕

𝜕𝜏
 𝜀𝐿 = 𝑒 𝑣  ⋅

𝜕

𝜕𝐿⃗ 
⋅ (−𝑐2 ⋅ 𝜀𝐿) = 𝑒 𝑣  ⋅

𝜕

𝜕𝐿⃗ 
Φ𝑔𝑒𝑛 {2} 

The bracket in the above DEQ has the form of a gen-

eralized potential Φ𝑔𝑒𝑛: Φ𝑔𝑒𝑛 : =  −𝑐2 ⋅ 𝜀𝐿 {3} 

The negative gradient of that generalized potential is 

the generalized field 𝐺 𝑔𝑒𝑛: 

𝐺 𝑔𝑒𝑛: = −
𝜕

𝜕𝐿⃗ 
 (−𝑐2 ⋅ 𝜀𝐿) =  −

𝜕

𝜕𝐿⃗ 
 Φ𝑔𝑒𝑛 {4} 

These results are useful, as they provide the curvature 

in section (1.2.4) and as the field 𝑮⃗⃗ 𝒈𝒆𝒏 in Eq. {4} de-

scribes gravity exactly. Proof: Carmesin (2024a). 

2. Didactic analysis 

2.1. Rate gravity waves 

DEQ {1} has harmonic solutions: 

2.1.1. Physical analysis 

Harmonic waves are solutions of DEQ {2}: 

𝜀𝐿 = 𝜀𝐿̂,𝜔 ⋅ exp(−𝑖𝜔𝑡 + 𝑖 𝑘⃗ ⋅ 𝐿⃗ )  {5} 

Φ𝑔𝑒𝑛 = Φ̂𝑔𝑒𝑛,𝜔 ⋅ exp(−𝑖𝜔𝑡 + 𝑖 𝑘⃗ ⋅ 𝐿⃗ ) {6} 

Inserting in Eq. {2} yields: −𝑖𝜔𝑐𝜀𝐿̂,𝜔 ⋅ exp(−𝑖𝜔𝑡 +
𝑖 𝑘⃗ ⋅ 𝐿⃗ ) = 𝑖𝑘⃗  𝑒 𝐿 Φ̂𝑔𝑒𝑛,𝜔 ⋅ exp(−𝑖𝜔𝑡 + 𝑖 𝑘⃗ ⋅ 𝐿⃗ )  

In the above Eq., the relations 𝑘⃗  𝑒 𝐿 = 𝑘 and 𝑐 =
𝜔

𝑘
 are 

used. Thus: − 𝑐2𝜀𝐿̂,𝜔 = Φ̂𝑔𝑒𝑛,𝜔  {7} 

As a consequence, the solution in Eq. {6} can be ex-

pressed as follows: Φ𝑔𝑒𝑛 = −𝑐2 ⋅ 𝜀𝐿 {8} 

This relation confirms the potential in Eq. {3}.  

In order to provide a more physical interpretation, the 

derivatives in the DEQ {2} are evaluated as follows: 

𝑐 𝜀𝐿̇ = − 𝑒 𝑣  ⋅ 𝐺 𝑔𝑒𝑛    {9} 

In the above Eq., 𝜀𝐿̇ describes a ‘rate of the change’ 

of relative additional volume, and 𝐺 𝑔𝑒𝑛  describes 

gravity. Accordingly, the solution in Eqs. {5} and {6} 

is called rate gravity wave, RGW, Carmesin (2021a). 

Based on polar representation of complex numbers, 

exp(iα) = cos(α) + i ⋅ sin (α),   {10} 

the waves in Eqs. {5} and {6} can be expressed in 

terms of sine and cosine functions, if desired. 

  

Fig. 4: VPs can be represented with cubes and cuboids. 

2.1.2. Didactic analysis  

In a first didactic step, a harmonic wave in Eqs. {5} 

and {6} is used as a solution of DEQ {2} of VD. It 

can be visualized with help of sine and cosine func-

tions. This step has no special learning barrier. 

In a 2𝑛𝑑 didactic step, a harmonic wave in Eqs. {5} 

& {6} is verified. Moreover, it is interpreted as a rate 

gravity wave. The step has no special learning barrier. 

Both steps are very insightful and valuable as the rate 

gravity waves indicate how the exact gravitational 

field 𝐺 𝑔𝑒𝑛  propagates in combination with the ‘rate of 

change’ 𝜀𝐿̇ of relative additional volume. 

414



Students Learn to Derive Universal Properties of Gravitons  

2.2. Tensor property of volume in nature 

2.2.1. Physical analysis  

Theorem: Law of measurable changes of VPs: In the 

vicinity of each 𝑀 or 𝑀𝑒𝑓𝑓 , the following changes of 

VPs can be measured: (1) additional volume, (2) 

shear, (3) rotation, (4) translation and (5) linear com-

binations thereof: 

(1) The diagonal tensor elements of change represent 

the change of a volumetric property, Fig. (4): 

𝜀𝐿,𝑗𝑗 =
𝛿𝑥𝑗

𝑑𝑥𝐿,𝑗
 =

√|𝑔𝑗𝑗|−1

√|𝑔𝑗𝑗|
= 1 −

1

√|𝑔𝑗𝑗|
 {11} 

𝜀𝐿,𝑗𝑗 is a unidirectional change in direction 𝑗. 

  
Fig. 5: The left VP is a cube, and it is changed by the op-

eration of shear. 

(2) The non-diagonal symmetric tensor elements of 

change represent shear: 

𝜀𝐿,𝑖𝑗 =
1

2
(

𝛿𝑥𝑖

𝑑𝑥𝐿,𝑗
+

𝛿𝑥𝑗

𝑑𝑥𝐿,𝑖
)    𝑓𝑜𝑟  𝑖 ≠  𝑗  {12} 

These tensor elements constitute the non-diagonal 

symmetric tensor of change, see Fig. (5). 

(3) The non-diagonal antisymmetric tensor elements 

of change represent rotation: 

𝜀𝐿,𝑖𝑗 =
1

2
(

𝛿𝑥𝑖

𝑑𝑥𝐿,𝑗
−

𝛿𝑥𝑗

𝑑𝑥𝐿,𝑖
)    𝑓𝑜𝑟  𝑖 ≠  𝑗  {13} 

These tensor elements constitute the non-diagonal 

antisymmetric tensor of change. 

(4) A translation of a VP at a position 𝐿⃗  is repre-

sented as follows, see Fig. (3): 𝛿𝐿⃗ =
𝜕𝐿⃗ 

𝜕𝜏
⋅ 𝛿𝜏 {14} 

The corresponding coordinates of translation are as 

follows: 𝛿𝐿𝑗  =
𝜕𝐿𝑗

𝜕𝜏
⋅ 𝛿𝜏  {15} 

Changes of relative additional volume are described 

by its law of propagation. 

  
Fig. 6: Unidirectional local formation of volume, LFV, at 

masses or dynamic masses can summarize to isotropic 

global formation of volume, GFV. 

 

(5) Linear combinations of the changes in (1) to (4) 

can be measured. In particular, the isotropic change 

can be measured, see Fig. (6): 

𝜀𝐿,𝑖𝑠𝑜 = ∑ 𝜀𝐿,𝑗𝑗
𝐷
𝑗      𝑤𝑖𝑡ℎ   𝜀𝐿,𝑖𝑖 = 𝜀𝐿,𝑗𝑗 {16} 

Proof: Part (1): 𝑑𝐺𝑃 distances 𝑑𝑥𝑗 and 𝑑𝐿𝑇 distances 

𝑑𝑥𝐿,𝑗 can be measured.  Thus, changes of VPs in 

parts (1) to (5) can be measured. Q. e. d. 

2.2.2. Didactic analysis  

In step (1), unidirectional change is analysed. This 

step has no special learning barrier. It is insightful that 

additional volume is not necessarily isotropic. 

In step (2), shear is analysed. This step has no special 

learning barrier. It is insightful that volume can 

change without forming any additional volume. 

In step (3), rotation of a VP is analysed. This step has 

no special learning barrier. Note that VPs can rotate. 

  
Fig. 7: A gravitational wave propagates in a direction 𝑘⃗ . 

In the plane orthogonal to 𝑘⃗ , the wave exhibits positive 

and negative additional volume in a periodic manner. 

In step (4), the translation is analysed. It has no spe-

cial learning barrier. It is insightful to realize that the 

propagation corresponds to the isometry of transla-

tion. In principle, a reflection could also be possible. 

In step (5), linear combinations are analysed. In par-

ticular, isotropic formation of additional volume is 

presented. It has been essential in the isotropic expan-

sion of space since the Big Bang. It represents global 

formation of volume, GFV, and it can be derived from 

local formation of volume, LFV, see e. g. Carmesin 

(2023a). This step has no special learning barrier. 

2.3. Dimension of volume in nature 

In order to analyse possible dimensions of volume or 

space in nature, we study gravitational waves:      

2.3.1. Physical analysis  

(1) A gravitational wave propagates in a direction 𝑘⃗ , 
and it exhibits changes in the direction orthogonal to 

𝑘⃗ . These can be described by the following tensor of 

relative additional volume in the plane orthogonal to 

𝑘⃗ , and there are two linear polarisations, see e. g. Ab-

bot et al. (2016) or Carmesin (2017b) and Fig. (7).: 

𝜀𝑖𝑗 = 𝜀̂ ⋅ (
1 0
0 −1

)     &    𝜀𝑖𝑗 = 𝜀̂ ⋅ (
0 1
1 0

) {17} 

As a consequence, gravitational waves require a 

space that has at least three dimensions. Moreover, 

gravitational waves are waves of periodic variation of 

additional volume in nature, see Eq. {17}. 

(2) Binary stars can lose kinetic energy with help of 

gravitational waves in an efficient manner. Conse-

quently, gravitational waves are important for mer-

gers of binary stars or black holes. Such mergers are 

essential for the formation of structure in the universe.     
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(3) An additional information may be considered: The 

time evolution of space since the Big Bang has been 

analysed with help of additional volume that propa-

gates in the form of gravitational waves. As a test, the 

energy density 𝜌Λ of the cosmological constant Λ has 

been derived. It is in precise accordance with obser-

vation, see Carmesin (2018a-b, 2019a-b,  2021a-d). 

Thus, space needs to have at least three dimensions. 

(4) In physics, subsystems of three-dimensional space 

are often analysed. For instance, graphene is often 

modelled as a two-dimensional system. The investi-

gation of such subsystems does not change the fact 

that present – day space has at least three dimensions. 

2.3.2. Didactic analysis  

In a first step, the physics of gravitational waves are 

summarized. This step has no special learning barrier.  

In a second didactic step, binary stars are analysed. 

This step has no special learning barrier. 

Step (3) provides information. It is no didactic step. 

Step (4) provides a clarification of three-dimensional 

space and the analysis of a lower-dimensional subsys-

tem. This step has no special learning barrier. 

2.4. Gaussian wave packets 

2.4.1. Physical analysis  

(1) The following Gaussian wave packets are solu-

tions of DEQ {1} for 𝜀𝐿(𝜏, 𝐿⃗ ). The time derivative of 

that DEQ provides the following DEQ for 𝜕𝜏𝜀𝐿 = 𝜀𝐿̇: 

𝜕

𝜕𝜏
 𝜀𝐿̇ = −𝑐 ⋅ 𝑒 𝑣  ⋅

𝜕

𝜕𝐿⃗ 
 𝜀𝐿̇   {18} 

This is the generalized Schrödinger equation, 

whereby Ψ = 𝑡𝑛 ⋅ 𝜀𝐿̇ is the wave function and 𝑡𝑛 is a 

normalization factor, see e. g. Carmesin (2024a, 

2023a, 2022a-b). Thus, the above DEQ holds for Ψ 

as well. As the above DEQ for Ψ is the same as DEQ 

{1} for 𝜀𝐿, the analysis of the respective solutions is 

equivalent.   

In a one-dimensional subspace with a coordinate 𝑥𝑗, 

a Gaussian wave packet with a characteristic wave 

vector 𝑘0,𝑗, can be described as follows, see Landau 

and Lifschitz (1965) or Greiner (1979, chapter 3): 

Ψj = 𝜈𝑗 ⋅ exp (𝑖 ⋅ 𝑘0,𝑗 ⋅ 𝑥𝑗 −
𝑥𝑗

2

4𝜎𝑗
2) 

Hereby, 𝜈𝑗 =
1

(2𝜋)
1
4√𝜎𝑗

 is the normalization factor. 

  
Fig. 8: VP with an initial position of the centre at 𝐿⃗ 𝑐,𝑖𝑛𝑖. 

The VP moves, during a time 𝜏, the centre moves to 

𝐿⃗ 𝑐,𝑖𝑛𝑖 + 𝑐𝜏 𝑒 𝑣. The VP has a form (similar to an orbital in 

an atom). A part is shifted by a vector 𝑥  from the centre, 

so the part is at a coordinate 𝐿⃗ , in an external frame.  

In an external frame, see Fig. (8), the object propa-

gates at the velocity 𝑐. The corresponding wave 

function is achieved by substituting  𝑥𝑗 by 𝐿𝑗 − 𝐿𝑐,𝑗. 

Hereby, 𝐿𝑐,𝑗 is the coordinate of the local maximum 

of Ψ. This is similar to the local maximum of 𝜀𝐿 in 

Fig. (3). Moreover, the local maximum propagates 

from an initial value 𝐿𝑖𝑛𝑖,𝑗 to the following values: 

𝐿𝑐,𝑗 = 𝐿𝑐,𝑖𝑛𝑖,𝑗 + 𝑐 ⋅ 𝜏  &  𝑥𝑗 = 𝐿𝑗 − 𝐿𝑐,𝑖𝑛𝑖,𝑗 − 𝑐 ⋅ 𝜏 

Consequently, the wave function is as follows: 

Ψj = 𝜈𝑗 ⋅ exp (𝑖𝑘0,𝑗(𝐿𝑗 − 𝐿𝑐,𝑗) −
(𝐿𝑗 − 𝐿𝑐,𝑗)

2

4𝜎𝑗
2 ) 

We check that the wave function solves DEQ {18}: 

𝑖ℏ𝜕𝜏Ψj = −𝑖ℏ𝑐𝜕𝐿𝑗
Ψ𝑗   , with 

𝜕𝐿𝑗
Ψ𝑗 = 𝑖𝑘0,𝑗Ψ𝑗 −

𝐿𝑗 − 𝐿𝑐,𝑗

2𝜎𝑗
2 Ψ𝑗    and 

𝜕𝜏Ψ𝑗 = −𝑖𝑘0,𝑗𝑐Ψ𝑗 + 𝑐
𝐿𝑗 − 𝐿𝑐,𝑗

2𝜎𝑗
2 Ψ𝑗 , thus  

ℏ𝑐𝑘0,𝑗Ψj + 𝑖ℏ𝑐
𝐿𝑗 − 𝐿𝑐,𝑗

2𝜎𝑗
2 Ψj

= ℏ𝑐𝑘0,𝑗Ψ𝑗 + 𝑖ℏ𝑐
𝐿𝑗 − 𝐿𝑐,𝑗

2𝜎𝑗
2 Ψj 

This shows that the above Gaussian wave packet 

obeys the DEQ {18}. In contrast, in the non-relativ-

istic SEQ, a Gaussian wave packet broadens in its 

time evolution. It is a consequence of 𝜔 ∝ 𝑘2 in the 

non-relativistic SEQ, see Greiner (1979, chapter 3). 

In fact, it is a very valuable property of the DEQ {18} 

and of the volume in nature, that Gaussian wave pack-

ets are stable. The reason for it is that 𝑚0,𝑣𝑜𝑙 = 0. 

In 3D space, the wave function is, see Fig. (8): 

Ψ = 𝜈 ⋅ exp (𝑖 𝑘⃗ 0𝑥 −
𝑥 2

4𝜎𝑗
2)  & 𝑥 =  𝐿⃗ − 𝐿⃗ 𝑐,𝑖𝑛𝑖 −  𝑐𝜏𝑒 𝑣 

This Ψ solves DEQ {1}, see Carmesin (2024g), and 

Ψ does not broaden during the time evolution.  

2.4.2. Didactic analysis  

In step(1), a Gaussian wave packet of a VP is pre-

sented in a one-dimensional subsystem. For it, an ex-

ternal frame is introduced. Moreover, the wave func-

tion is verified as a solution of the DEQ {18}. This 

step has no special learning barrier. The step is very 

valuable, as the wave packets do not broaden as a 

function of time. This is an important insight, as it 

shows that wave functions that do not broaden are 

fundamental, they have 𝑚0,𝑣𝑜𝑙 = 0, and they solve 

the fundamental VD in DEQ {18}. In contrast, the 

broadening of wave functions is a particular phenom-

enon that occurs in wave packets of masses, since 

masses change the relation between 𝜔 and 𝑘, as a con-

sequence of the energy mass relation 𝐸2 = 𝑝2𝑐2 +
𝑚0

2𝑐4.   

In step (2), the Gaussian wave packet in a one-dimen-

sional subsystem is transferred to three-dimensional 

space. This step has no special learning barrier. The 

416



Students Learn to Derive Universal Properties of Gravitons  

step is valuable, as Gaussian wave packets do not 

broaden in 3D space.  

2.5. Minimal energy of volume-portions 

2.5.1. Physical analysis  

(1) The SEQ exhibits the Heisenberg uncertainty re-

lation, Carmesin (2024g): Δ𝑥𝑗 ⋅ Δ𝑝𝑗 ≥
ℏ

2
 {19} 

Gaussian wave packets exhibit, Carmesin (2024g):    

Δ𝑥𝑗 ⋅ Δ𝑝𝑗 =
ℏ

2
, in Gaussian wave packets  {20} 

In 𝐷 dimensional space, see Olofsson and Andersson 

(2012, proposition 2.5.1): Δ|x⃗ | = Δ𝑥𝑗 ⋅ √𝐷  {21} 

Similarly: Δ|𝑝 | = Δ𝑝𝑗 ⋅ √𝐷   {22} 

Thus: Δ|x⃗ | ⋅ Δ|p⃗ | =
𝐷⋅ℏ

2
   {23} 

(2) As a consequence, the fluctuations of the vector 

occur at a ball with the radius Δ|x⃗ |. The fluctuation 

with the minimal energy 𝐸𝑚𝑖𝑛  is the fluctuation with 

the largest wavelength: 𝜆𝑚𝑎𝑥 = 2𝜋 ⋅ Δ|x⃗ | {24} 

The circular frequency is: 𝜔 =
2𝜋𝑐

𝜆𝑚𝑎𝑥
 {25}  

Eqs. {24-25} yield: 𝜔 =
𝑐

Δ|𝑥 |
  {26}  

The minimal energy 𝐸𝑚𝑖𝑛  is equal to 𝑐 ⋅ Δ|p⃗ |. Thus, 

Eqs. {23} & {26} yield: Emin =
𝐷⋅ℏ⋅𝑐

2Δ|x⃗ |
 {27} 

Emin = D ⋅
ℏ⋅𝜔

2
,  in 𝐷 − dimensional space {28} 

(3) If a one-dimensional subsystem is analysed, then  

the minimal energy of a VP is equal to the above en-

ergy divided by 𝐷: 

Emin =
ℏ⋅𝜔

2
,  in a 1-dimensional subsystem {29} 

(4) The above energy of the fluctuations includes no 

potential or field. Consequently, it is a completely ki-

netic energy. This fact is also confirmed in parallel 

papers in this report about the DPG conference 2024 

in Greifswald. 

  
Fig. 9: A localizable and stationary portion of relative ad-

ditional volume 𝜀𝐿 in its own system. 

2.5.2. Didactic analysis  

In step (1), the uncertainty relation is applied to a VP 

in its own frame and in an external frame in various 

dimensions. This step has no special learning barrier. 

The step is insightful, as it shows how fluctuations 

combine in several dimensions. 

In a second didactic step, the VP with minimal energy 

is analysed. This step has no special learning barrier. 

The step is insightful and very valuable, as it provides 

the energy of the minimal uncertainty at the VP. 

In a third didactic step, the result is transferred to a 

one-dimensional subsystem. This step has no special 

learning barrier. The step is useful, as the complexity 

of a three-dimensional system can often be reduced 

with help of one-dimensional subsystems. 

In step (4), fluctuation energy is identified with ki-

netic energy. For it, other forms of energy have been 

excluded. This step has no special learning barrier. 

2.6. Wave packet with minimal energy 

In this section, a derived, modified, corrected, gener-

alized version of quantum field theory is presented. 

The proofs are in Carmesin (2024g).  

2.6.1. Physical analysis 

Theorem: Transformation of a wave packet:  

(1) A Gaussian wave packet 𝜀𝐿,𝑝(𝜏, 𝐿⃗ ), with a polari-

zation 𝑝 can be transformed with Fourier integrals, 

see e. g. Landau and Lifschitz (1965, § 5 and § 15): 

𝑏𝜇(𝜏) = 𝜈𝑏 ⋅ exp(−𝑖𝜔𝜇𝜏)  {30} 

⟨𝑏𝜇|𝑏𝜇′⟩
𝑡
= ∫ 𝑏𝜇(𝜏)𝑏𝜇′

𝑐𝑐(𝜏)𝑑𝜏
∞

−∞
= 𝛿(𝜇 − 𝜇′) {31} 

Hereby, cc marks the conjugate complex. In general, 

the index 𝜇 includes possible polarization directions 

or indices marking tensors. Moreover, ⟨𝑏𝜇|𝑏𝜇′⟩ is a 

scalar product in the Hilbert space of the solutions of 

the DEQ {1}, and 𝛿(𝜇 − 𝜇′)  is the Dirac delta func-

tion (or delta distribution), see Kumar (2018). 𝜈𝑏 , 𝜈𝑓 

are normalisation factors.  

𝑓𝜇(𝑘⃗ 𝜇, 𝐿⃗ ) = 𝜈𝑓  ⋅ exp(𝑖 𝑘⃗ 𝜇 ⋅ 𝐿⃗ )  {32} 

⟨𝑓𝜇|𝑓𝜇′⟩ = ∫ ∫ ∫ 𝑓𝜇𝑓𝜇′
𝑐𝑐𝑑3𝐿

∞

−∞
 ∝ 𝛿(𝑘⃗ 𝜇 − 𝑘⃗ 𝜇′) {33} 

⟨𝑓𝜇|𝑓𝜇′⟩ = 4𝜋 ∫ 𝑓𝜇(𝑘𝜇 , 𝐿)𝑓𝜇′
𝑐𝑐(𝑘𝜇′ , 𝐿)𝐿2𝑑𝐿

∞

0
 {34} 

⟨𝑓𝜇|𝑓𝜇′⟩ = 4𝜋 ⋅ 𝛿(𝑘𝜇 − 𝑘𝜇′)  {35} 

(2) The transformed wave packet is described by 

𝜀𝐿(𝜏, 𝐿⃗ ), a potential Φ𝑔𝑒𝑛(𝜏, 𝐿⃗ ), and amplitudes 𝜀𝜇̂: 

𝜀𝐿(𝜏, 𝐿⃗ ) = ∫ 𝑑𝜇 𝜀𝜇̂ ⋅ 𝑏𝜇(𝜏) ⋅ 𝑓𝜇(𝑘⃗ 𝜇, 𝐿⃗ ), {36} 

Φ𝑔𝑒𝑛(𝜏, 𝐿⃗ ) = ∫ 𝑑𝜇 Φ̂𝑔𝑒𝑛,𝜇 ⋅ 𝑏𝜇(𝜏) ⋅ 𝑓𝜇(𝑘⃗ 𝜇, 𝐿⃗ ), {37} 

The transformed energy is: 

𝐸𝜇 =
𝑐2

2𝐺
𝜀𝜇̂𝜀𝜇̂

𝑐𝑐𝑏𝜇𝑏𝜇
𝑐𝑐(𝜔𝜇

2 − 𝑐2𝑘𝜇
2) & 𝐸 = ∫ 𝑑𝜇𝐸𝜇{38} 

Theorem: Eigenvalue generating operator: 

(3) 𝐸𝜇 is expressed with: 𝑞𝜇 =
𝑐

√𝐺
⋅ 𝜀𝜇̂𝑏𝜇 {39} 

𝑝𝜇 ≔
𝜕

𝜕𝜏
𝑞𝜇 = 𝑖 ⋅ 𝜔𝜇𝑞𝜇 =

𝑖𝑐2𝜀̂𝜇𝑏𝜇𝑘𝜇

√𝐺
  {40} 

𝐸𝜇 =
1

2
(𝑞𝜇𝑞𝜇

𝑐𝑐𝜔𝜇
2 − 𝑝𝜇𝑝𝜇

𝑐𝑐)   {41} 

The derivative 
𝜕

𝜕𝜏
 is irreversible. The generalized ki-

netic energy is: 𝐸𝑔𝑒𝑛,𝑘𝑖𝑛,𝜇 =
𝑞𝜇𝑞𝜇

𝑐𝑐𝜔𝜇
2

2
 {42} 

The squared wave vector is: 𝑘𝜇
2 = ∑ 𝑘𝜇,𝑗

23
𝑗  {43} 

(4) Eigenvalue generating operators are introduced: 

𝑘̂𝜇 =
𝑖

𝑐
⋅

𝜕

𝜕𝜏
  or  𝑝̂𝜇 = 𝑖 ⋅

𝜕

𝜕𝜏
 𝑞𝜇, thus  {44} 
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𝐸̂𝜇 =
1

2
(𝑞𝜇𝑞𝜇

𝑐𝑐𝜔𝜇
2 − 𝑝̂𝜇𝑝̂𝜇

𝑐𝑐)   {45} 

The time averaged commutator is: 

⟨[𝑞𝜇  , 𝑝𝜇′
𝑐𝑐]⟩

𝑡
= 𝑖𝜔𝜇 ⋅ 𝑞𝜇𝑞𝜇

𝑐𝑐 ⋅ 𝛿(𝜇′ − 𝜇) {46} 

Theorem: Excitation generating operator: 

(5)Ladder operators: 𝑞𝜇 =
𝛼

𝜔𝜇
⋅ (𝑎𝜇

+ + 𝑎𝜇) {47} 

𝑝𝜇 = 𝑖 ⋅ 𝛼 ⋅ (𝑎𝜇
+ − 𝑎𝜇)   {48} 

𝛼 is chosen so that:[𝑎𝜇  , 𝑎𝜇′
+ ] = 𝛿(𝜇′ − 𝜇) {49} 

Thus: 𝛼2 =
𝜔𝜇

2𝑞𝜇𝑞𝜇
𝑐𝑐

2
    {50} 

𝐸̂𝜇,1𝐷 = 2 𝛼2 ⋅ (𝑎𝜇
+𝑎𝜇 +

1

2
)   {51} 

Theorem: number- and energy spectrum: 

(6) Eigenvalues 𝑛𝜇 and eigenvectors |𝑛𝜇⟩ of the num-

ber operator in 𝐸̂𝜇,1𝐷: 𝑁𝜇: = 𝑎𝜇
+𝑎𝜇  {52} 

𝑁𝜇  |𝑛𝜇⟩ = 𝑛𝜇|𝑛𝜇⟩;  𝑎𝜇|𝑛𝜇⟩ = √𝑛𝜇|𝑛𝜇 − 1⟩ {53} 

𝑎𝜇
+|𝑛𝜇⟩ = √𝑛𝜇 + 1|𝑛𝜇 + 1⟩   {54} 

⟨𝑛′
𝜇|𝑎𝜇|𝑛𝜇⟩ = √𝑛𝜇𝛿𝑛′

𝜇,𝑛𝜇−1  𝑓𝑜𝑟  𝑛𝜇 > 0 {55} 

𝑎𝜇
+: raising operator, 𝑎𝜇: lowering operator with, 

𝑎𝜇|0⟩ = 0;  𝑎𝜇|1⟩ = |0⟩. The number spectrum is as 

follows: 𝑛𝜇 ∈ { 0, 1, 2, 3, … }  {56} 

Thus, the lowest energy is the zero-point energy, 

ZPE: 𝐸𝜇,1𝐷 =
1

2
⋅ ℏ𝜔𝜇 = 𝑍𝑃𝐸𝜇  {57} 

(7) Interpretation: Firstly, the 𝑍𝑃𝐸𝜇 in Eq. {57} is 

equal to the kinetic energy.  

Secondly, we derived that the complete energy of the 

analysed VP is zero, see Eq. {38} and 𝑐 =
𝜔𝜇

𝑘𝜇
. 

Thirdly, the question of the origin of the nonzero 

𝑍𝑃𝐸𝜇 arises. This origin is traceable: That 𝑍𝑃𝐸𝜇 orig-

inates from the commutator. That nonzero commuta-

tor arises from the derivative. That derivative is not 

reversible. Thus, the theory based on that derivative 

can only predict differences and correlations, but not 

absolute values. These absolute values are predicted 

by the present theory of VD: The VD provides  the 

complete ZPE, it is zero:  

𝐸𝜇 =
𝑐2

2𝐺
𝜀𝜇̂𝜀𝜇̂

𝑐𝑐𝑏𝜇𝑏𝜇
𝑐𝑐(𝜔𝜇

2 − 𝑐2𝑘𝜇
2) = 0 {58} 

Hereby, we used 𝑐 =
𝜔𝜇

𝑘𝜇
. Moreover, the above Eq. 

shows that the potential energy compensates the gen-

eralized kinetic energy of the ZPE. In contrast, the 

ZPE in 𝐸𝜇,1𝐷 provides the information about the gen-

eralized kinetic energy only, so it is incomplete. 

The full energy spectrum is obtained from the ZPE 

state |0⟩ by application of the ladder operator 𝑎𝜇
+.  

The incomplete ZPE in 3D space consists of three 

one-dimensional projections of the ZPE: 

𝐸𝜇,3𝐷 =
3

2
⋅ ℏ𝜔𝜇 = 𝑍𝑃𝐸𝜇,3𝐷  {59} 

2.6.2. Didactic analysis  

In step (1), we summarize the Fourier transformation. 

It is explained with the analogues of optical and 

acoustic spectral analysis. Thus, it can be understood 

in principle, moreover, the algebra can be confirmed.  

This step has a medium sized learning barrier, as two 

frames are considered in the Gaussian wave packet: 

In an external frame, the Gaussian wave packets prop-

agate. In the own frame, there is a Gaussian function.  

In step (2), the transformed energy is derived algebra-

ically. So, there is no special learning barrier.  

In step (3), abbreviations 𝑞𝜇 and 𝑝𝜇 are introduced. 

This step has no special learning barrier. 

In step (4), eigenvalue generating operators are intro-

duced and used. Algebraically, this step has no spe-

cial learning barrier. Moreover, it is clear that the de-

rivative cannot be inverted. This provides a medium-

sized mental barrier. This barrier is overcome by a 

discussion of the consequences. 

In step (5), ladder operators are introduced by a linear 

transformation. There is no special learning barrier. 

In step (6), the number operators and their spectrum 

are derived. This step has no special learning barrier. 

Moreover, the energy is interpreted. This step has a 

medium-sized mental learning barrier, as it must be 

realized, that the derived algebra provides differences 

only. Thus, the absolute value of the energy is derived 

with help of the VD. Altogether, the algebra of QFT 

is derived. In contrast, before, QFT has been regarded 

as a set of ideas and tools, see Peskin and Schroeder 

(1995). As a consequence, the present derived version 

has the correct and non-diverging energy, in contrast 

to diverging energy in present – day QFT. Thus, the 

present derived version of QFT is modified and cor-

rected and generalized.  

2.7. Spin 

2.7.1. Physical analysis 

(1) The spins and tensors can be characterized by their 

behaviour with respect to a rotation in three-dimen-

sional space, see Landau and Lifschitz (1965, § 58).  

(2) Rank two tensors describe the VPs. Moreover, 

rank two tensors have periodicity 𝜑𝑝𝑒𝑟 = 𝜋, see Car-

mesin (2024g).  

(3) According to the VD, wave functions are de-

scribed by the Schrödinger Eq., SEQ, or by the gen-

eralized Schrödinger Eq., GSEQ, see Carmesin 

(2024a,g). In a magnetic field 𝐵⃗ , the energy of a 
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particle with spin 𝑆  is as follows, see Sakurai (1994, 

section 3.2, we use SI units): 

𝐻 = −
𝑒

𝑚𝑒
𝐵⃗ ⋅ 𝑆 = 𝜔𝑆𝑧;  𝜔 =

|𝑒|𝐵

𝑚𝑒
;  𝑆𝑧 =

ℏ

2
  {60} 

Hereby, 𝑚𝑒 is the mass of the electron, 𝑆𝑧 is the ei-

genvalue of the spin in the z-direction, and 𝜔 is the 

circular frequency of the precession. As a conse-

quence of the SEQ or GSEQ, the periodicity is, see e. 

g. Carmesin (2024g):  𝜑𝑝𝑒𝑟 =
2𝜋ℏ

𝑆𝑧
  {61} 

In particular, φper = 𝜋   for S = 2ℏ {62} 

(4) As a consequence of items (1-3), VPs have spin 2. 

This result is in accordance with the usually assumed 

value, see Workman et al. (2022).  

2.7.2. Didactic analysis 

In a first didactic step, the criterion of equal periodic-

ity is introduced. This provides no special difficulty. 

In step two, the periodicity of tensors is derived. This 

is achieved by algebraic transformations, so it pro-

vides no special learning barrier. 

In step (3), the energy & periodicity of a spin in a field 

are analysed. This step requires to confirm the solu-

tion of the SEQ or GSEQ, see Carmesin (2024g). 

Thus, the step has no special learning barrier.  

In step four, the criterion in item (1) is applied to the 

results in (2-3). There is no special learning barrier.  

The result represents an important universal property. 

3. Experience: learning process and learners 

Experiences with learning groups have been docu-

mented via photographs of the blackboard and via ad-

ditional reports. These are summarized as follows. 

VPs and DEQ {1} have been derived before. 

(I) In a main block, the solutions of DEQ {1}, the 

transformations of these solutions, the operators 𝑞𝜇, 

𝑝𝜇, 𝑎𝜇
+, 𝑎𝜇 and 𝑁𝜇 have been derived as follows:  

During the first 90 minutes, in a general studies 

course at the university, the harmonic solutions of 

DEQ {1} have been derived. For it, an Ansatz has 

been proposed, and the students verified that this An-

satz solves DEQ {1}. The learning process took place 

similarly in a research club. Moreover, these solutions 

have been derived in several general studies courses 

and research club courses since 2021. Hereby, the stu-

dents achieve competence in solving DEQs.  

During the second 90 minutes, in a university general 

studies course, the Gaussian wave packets have been 

derived as solutions of DEQ {1}. For it, an Ansatz has 

been proposed, and the students verified that the An-

satz solves DEQ {1}. The learning process took place 

similarly in a research club. Hereby, the students 

achieve competence in realizing and discussing the 

usefulness of wave packets in fundamental physics, 

see e. g. Fig. (8). Additionally, the students improve 

their competence in solving DEQs on their own.  

During the next 45 minutes, in a general studies 

course, the standard deviations Δ𝑥𝑗, Δ𝑝𝑗 , Δ|x⃗ | and 

Δ|p⃗ | have been derived. And the corresponding un-

certainty relations Δ𝑥𝑗 ⋅ Δ𝑝𝑗 =
ℏ

2
 and Δ|x⃗ | ⋅ Δ|p⃗ | =

Dℏ

2
 

have been derived, for the case of Gaussian wave 

packets. Hereby, students achieve competence in an-

alysing fluctuations mathematically and physically.  

During the next 45 minutes, in the general studies 

course, the scalar products in Hilbert space and the 

energy 𝐸𝜇 have been derived. Hereby, the high activ-

ity of the students in the derivation of the solutions 

during the first 180 minutes of the learning process 

provided an effective basis for the understanding. 

Hereby, students achieve competence in analysing 

scalar products and functions in Hilbert space. 

During the following 90 minutes, in the general stud-

ies course at the university, the summarizing varia-

bles 𝑞𝜇 and 𝑝𝜇 have been introduced. Moreover, the 

students derived the corresponding commutators.  

The ladder operators have been introduced, and the 

students derived the respective commutators. During 

these derivations, the students achieve competence in 

analysing algebraic structures in Hilbert space. 

During the following 45 minutes, in the general stud-

ies course, the number operator and the matrix ele-

ments of the ladder operators have been derived. 

Moreover, the spectrum has been derived. Further-

more, the students realized that the derivative causes 

a loss of information, so that only difference and cor-

relations are reliable in the algebra of the ladder oper-

ators and number operators. In contrast, absolute val-

ues, such as the zero-point energy, are obtained from 

the original and more general VD. As the students had 

already experience in deriving commutators and other 

algebraic results from the preceding blocks, it was not 

necessary that the students derive all algebraic results 

on their own. Instead, the activity of the students was 

focused to the discourse and discussion. This turned 

out to be very appropriate, as the students achieved an 

overview in this manner. During these derivations, 

the students achieve competence in using ladder op-

erators and number operators in Hilbert space.  

(II) The remaining results have been derived: 

During 90 minutes, in several general studies courses 

at the university since 2021, the tensor properties of 

the relative additional volume has been derived, see 

section (2.2). With it, several further results have been 

derived, see e. g. Carmesin (2023a). The learning pro-

cess took place similarly in various research club 

courses since 2021. During these derivations, the stu-

dents achieve competence in analysing tensors. 

Since 2019, during a block of 45 minutes, and in sev-

eral general studies courses at the university as well 

as in several research club courses, the smallest pos-

sible dimension of space has been derived, see section 

(2.3). During these derivations, the students achieve 

competence in deriving implications, and in discuss-

ing the corresponding conditions. 
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Since 2021, during a block of 45 minutes, and in sev-

eral general studies courses at the university as well 

as in several research club courses, the spin of the 

graviton has been derived. During these derivations, 

the students achieve competence in deriving implica-

tions, and in discussing the corresponding conditions. 

Since 2021, during a block of 30 minutes, and in sev-

eral general studies courses as well as in several re-

search club courses, the universal properties of the 

graviton have been discussed. During these discus-

sions, the students achieve competence in discussing  

conditions, generality or universality of results.   

In all these learning groups, students were able to per-

form exercises and to use instructions in order to de-

rive parts of the theory. Moreover, the students dis-

cussed achieved results and analysed the correspond-

ing conditions. Thus, the topic provides a large 

amount of self-esteem to the learners.  

4. Discussion 

The gravitational force is present in everyday life. 

However, the question remains: How does gravity 

propagate from a field generating mass to a probe 

mass? In present-day physics, there are two different 

concepts: GR proposes that curvature of space & time 

describe gravity, see e. g. Einstein (1915) or Hobson 

(2006). In contrast, in the framework of the other 

three fundamental interactions, a force propagates in 

the form of a boson of interaction, see  Blokhintsev & 

Galperin (1934); Workman et al. (2022). 

Here, the more general and fundamental dynamics of 

volume in nature is used: Thereby, the curvature of 

space is derived and treated in a parallel paper, see 

Carmesin (2024a) or Carmesin (2023a). In this paper, 

the insightful properties of the boson of interaction 

are derived. As a consequence, the graviton is funda-

mentally derived. Thus, for the first time, the graviton 

is fundamentally founded from a general theory, 

which implies gravity and GR and QP, and which 

solves the fundamental problems of these theories, 

see Carmesin (2024g). In particular, both above men-

tioned views are represented as special cases of the 

VD. In particular, the key DEQ {1} of VD is a basis. 

In general, that DEQ holds for tensors, correspond-

ingly, the tensor property of the graviton is elaborated 

in a clarifying manner. In fact, this is confirmed by an 

analysis starting at the Planck scale and providing the 

correct energy density of volume, see e. g. Carmesin 

(2018a-b, 2019a-b, 2020a-b, 2021a-b, 2023a, 2024d). 

With it, the insightful minimal dimension of volume 

in nature is derived: 𝐷 = 3. 

For the basic DEQ {1}, the valuable harmonic solu-

tions and Gaussian wave packets are derived as solu-

tions. Moreover, the key result of universal quantiza-

tion is used in order to derive the very useful wave 

packets with minimal energy of the fluctuations, a ki-

netic energy. The result is the kinetic zero-point en-

ergy.  Moreover, the insightful complete energy and 

the kinetic energy of a wave packet are derived. 

For the case of the important kinetic energy, the min-

imal value as well as the excitation states, the spec-

trum, the ladder operators and the algebraic structure 

are derived. In this manner, a derived, founded valu-

able and enlightening modified, corrected and gener-

alized QFT is derived. 

Altogether, the analysis of the graviton provides 

many deep insights and useful tools, such as a 

founded and derived modified QFT. 

The learning process is based on the hypothetic de-

ductive method, see the section about the epistemol-

ogy. Such a testing of a hypothesis and such a deduc-

tion from prior knowledge have a high learning effi-

ciency, see Hattie (2006). Moreover, the learning pro-

cess uses everyday life contexts, so that the learning 

is meaningful, see Muckenfuß (1995) and achieves an 

additional high learning efficiency, see Hattie (2006). 

In the particular case, applications to quantum cryp-

tography and quantum computing are very motivat-

ing. For more examples, see Carmesin (2020c). 

The learning process has been tested in several learn-

ing groups. The complete learning process takes 615 

minutes at university courses as well as in research 

club courses. Thereby, the main part of the exact field 

theory, QP and derived modified QFT is most valua-

ble and requires 360 minutes, including exercises, 

discussions and instructed derivations. In all these 

learning groups, the students were able to take part in 

instructed derivations and founded discussions. Thus, 

the topic provides a large amount of self-esteem to the 

learners. 
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