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Abstract  

Near Earth Orbit asteroids require a precise orbit determination. For it, in principle, essential theories 

are quantum physics, QP, and general relativity, GR. However, these are not fully compatible. How 

can this be overcome? For it, the volume dynamics, VD, of intergalactic space and of volume in 

nature in general are derived. The VD provide QP and GR as well as gravity. Moreover, the VD are 

tested at fundamental problems: The VD provide the dark energy. The VD solve the Hubble tension 

and predict 𝐻0-values ranging from redshift 𝑧 = 1090 to 𝑧 = 0. The VD solve the cosmological 

constant problem. Thus, the VD bridge cosmology, QP and GR and provide a deep insight. In a 

didactic analysis, all results are derived according to the hypothetic deductive method, and all di-

dactic steps are elaborated. So you can directly use the concept for your courses. The learning pro-

cess has been tested in various learning groups, and experiences are reported. 

 

1.  Introduction 

1.1. Comets: Beautiful and possibly dangerous  

In July 2020, the comet Neowise had a distance to 

Earth of only 103 ⋅ 106 kilometers (Fig. 1). At April 

13th in 2029, the asteroid Apophis will pass Earth at a 

distance of 35 500 km, see Bancelin et al. 2012. So, a 

defence of Earth is analysed. For it, a precise obser-

vation of the time and position of asteroids is essen-

tial: Atomic clocks and curvature of space and time 

are relevant. These are described by two essential 

physical theories: quantum physics, QP, and general 

relativity, GR. So, a fundamental theory providing 

QP and GR is essential. Such a theory is proposed. As 

a test, it solved the Hubble tension and the cosmolog-

ical constant problem, Carmesin (2024g). 

 

Fig. 1: Comet Neowise near Hamburg at August 2020.   

 

Fig. 2: Wavelengths of light can be measured. This photo 

of a hydrogen lamp is taken by a smartphone camera with 

a cross-grating in front of the lens.   

1.2. Experiments showing quanta and redshift 

At a measurable wavelength 𝜆 of light, a smallest por-

tion of energy can be measured with help of 𝜆, the 

velocity of light 𝑐 and the Planck constant ℎ. as fol-

lows (Fig. 3): 𝐸 = ℎ ⋅
𝑐

𝜆
    {1} 

 

 

Fig. 3: A LED is illuminated and provides the voltage 

𝑈 = 2.137 V and electrons with the energy 𝐸 = 2.137 eV.  

The experiments in Figs. (2,3) represent an example 

of the quantization of energy. At a distance 𝑟 from a 

mass 𝑀, light has a gravitational redshift: Light starts 

with a wavelength 𝜆∞ at a very large distance 𝑟∞. At  

𝑟∞, the gravitational field is negligible. When the light 

arrives at a distance 𝑟 from 𝑀, it has the  wavelength 

𝜆(𝑟): 𝜆(𝑟) =
𝜆∞

√1−𝑅𝑠/𝑟
    with    𝑅𝑆 =

2⋅𝐺⋅𝑀

𝑐2       {2} 

𝐺 is Newton’s gravitational constant, 𝑅𝑆 is the 

Schwarzschild radius. So, the periodic time of such 

light is the following function: 𝑇(𝑟) =
𝑇∞

√1−𝑅𝑠/𝑟
   {3} 

Such periodic time is used in optical atomic clocks 

(Gill et al. (2008) and Fig. 4). In traditional physics, 

light is used as a measure of space. Thus, the gravita-

tional redshift is an example for the curvature of 

space, see Einstein (1915). 

  

Fig. 4: In an optical atomic clock, an atom emits a photon, 

with 𝑇, with 
Δ𝑇

𝑇
= 10−18, see Huntemann et al. (2016). 
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1.3. Traditional concept of physics 

In present – day physics, the experiments in section 

(1.1) are interpreted as follows: Objects such as light 

or atoms move and interact in a metric space, de-

scribed by general relativity, see e. g. Einstein (1915), 

Delva (2018). Thereby, many objects are quantized at 

the microscopic level., see e. g. Planck (1900), Ein-

stein (1905), Heisenberg (1925), Schrödinger (1926), 

Ballentine (1998). However, QP and GR appear to be 

hardly compatible, see Einstein et al. (1935), Einstein 

(1948), Ballentine (1998), Nobbenius (2006). So, the 

foundations of QP and GR show problems: the cos-

mological constant problem (Nobbenius 2006), the 

Hubble tension (Riess 2022), nonlocality (Einstein et 

al. 1935). As we live in one world, a unification of 

GR, QP is important. For it, epistemology is essential: 

1.4. Epistemology 

Kircher, Girwidz und Häußler (2001, section 4.1.2) 

describe the hypothetic deductive method. In the epis-

temological literature, this method is also called hy-

pothetico-deductive testing (Niiniluoto, Sintonen, 

Wolenski 2004, S. 214). The method consists of three 

steps: In the hypothetic step, a thesis or hypothesis is 

suggested for testing. In the deductive step, implica-

tions are derived. In the third step, the implications 

are compared with observation. Hereby, in principle, 

a falsification should be possible. This method is used 

here as well as in Carmesin (2024a-g, 2019, 2020, 

2021 a-d, 2022 a-c, 2023 a-c). 

1.5. Volume in nature is a fundamental concept 

Volume in nature is fundamental, as objects exist, 

move and interact in the volume in nature. The hy-

pothesis in section (1.4) consists of properties of the 

volume in nature. These properties are evident part of 

present-day knowledge. In the deductive step, the dy-

namics of volume in nature are derived, the volume 

dynamics, VD.  

2. Didactic and physical analysis  

In this section, the evident properties of volume in na-

ture are presented (section 2.1) and essential implica-

tions are derived (section (2.2) in a self-contained 

manner. Moreover, didactic steps are developed. Fur-

thermore essential achieved insights are reflected. 

2.1. Volume in nature: evident properties 

2.1.1. Volume of intergalactic space  

2.1.1.1. Physical analysis 

Volume in nature occurs in a relatively pure form in 

the intergalactic space. Volume 𝑉𝑖𝑛𝑡𝑒𝑟𝑔𝑎𝑙𝑎𝑐𝑡𝑖𝑐 𝑠𝑝𝑎𝑐𝑒 of 

intergalactic space, see Karttunen (2007): 

𝑉𝑖𝑛𝑡𝑒𝑟𝑔𝑎𝑙𝑎𝑐𝑡𝑖𝑐 𝑠𝑝𝑎𝑐𝑒 ≈ 𝑉   {4} 

2.1.1.2. Didactic analysis 

In a first didactic step, we realize that traditional 

physics (section 1.2) uses different concepts of 

vacuum (Einstein 1917, Casimir 1948, Ballentine 

1998, Hobson 2006, Nobbenius 2006). 

In didactic step two, we realize that traditional phys-

ics applies the concept of a metric space. Volume-

portions, propagating in different directions, are not 

considered (Einstein 1915, Hobson 2006).  

In a 3𝑟𝑑 step, the meaning of volume in nature is clar-

ified with help of the example of intergalactic space 

in a direct and general manner, that is not restricted to 

a particular theory. This example and the above two 

didactic steps have no essential learning barrier.  

2.1.2. Evident properties 

2.1.2.1. Physical analysis 

In traditional physics and in metric space, the volu-

metric property of volume is characterized: 

Increments of volume that are used in differential 

geometry and general relativity are analysed as fol-

lows, see Lee e. g. (1997), Hobson (2006) or Carme-

sin (2020): 𝑑𝑉𝐿 = ∏ √|𝑔𝑗𝑗|𝐷
𝑗 ⋅ dξj  {5} 

Hereby, 𝐷 is the dimension of the analysed space or 

spacetime, the 𝑑𝜉𝑗 are increments of locally orthog-

onal coordinates, and 𝑔𝑗𝑗 are the elements of the 

metric tensor. The subscript 𝐿 specifies that the light 

– travel distance 𝑑𝐿𝑇 is used as a distance measure, 

see e. g. Einstein (1905), Hobson (2006), Condon 

(2018). Thereby, volume has basic properties that 

are provided by evident present-day knowledge 

about volume and electromagnetic waves: Firstly, 

volume and time are fundamental. Secondly, volume 

in nature has the volumetric property, see Eq. {5}. 

Thirdly, volume in nature has zero rest mass: 

𝑚𝑣𝑜𝑙,0 = 0    {6} 

Fourthly, at a global level, volume is isotropic. This 

is at least a good approximation, see Carmesin 

(2023a). Fifthly, a basic property of electromagnetic 

waves is used: Electromagnetic waves exhibit the 

property of linear superposition. With it, special rel-

ativity, SR, has been derived, see e. g. Carmesin 

(2019, 2020, 2022a section 7.8). 

2.1.2.2. Didactic analysis 

In step one, the volumetric property is described by 

the metric theory via the metric tensor. This theory is 

based on differential geometry, see e. g. (Lee (1997), 

so it has a robust mathematical basis. And the metric 

theory of space is also used by traditional physics, so 

there is a maximum of continuity with the traditional 

physics (section 1.2). This traditional theory has no 

essential learning barrier. In  step two, properties {1} 

to {5} are introduced. These are evident.  

2.2. Implications of the evident properties 

The evident properties of volume in nature (section 

2.1) imply essential results. These are derived in the 

deductive step of the epistemological method:  

 

 

322



Students Learn the Fundamental Exact Unification of Gravity, Relativity, Quanta and Elementary Charge 

2.2.1. Portions of volume 

2.2.1.1. Physical analysis 

Theorem: Law of the existence of volume-portions in 

nature. Firstly, volume in nature propagates at the ve-

locity of light. Secondly, volume in nature consists of 

volume-portions, VPs. Proof: see Carmesin(2024g). 

2.2.1.2. Didactic analysis 

In a first didactic step, the following is shown: 

𝑚𝑣𝑜𝑙,0 = 0 implies that volume-portions propagate at 

the velocity of light. This step has no mathematical 

learning barrier. However, this step provides a mental 

learning barrier: It is shown that volume-portions 

move at 𝑣 = 𝑐, this differs from usual metric space. 

In a second step, it is shown that the average velocity 

of VPs is zero, as VPs are isotropic. This step has no 

special learning barrier. In a third step, it is shown that 

the average zero requires several VPs. This step has 

no special learning barrier. 

  

Fig. 5: In the vicinity of a mass 𝑀 or effective mass 𝑀𝑒𝑓𝑓, 

the radial increment 𝑑𝐿 of the light travel distance 𝑑𝐿𝑇 is 

increased with respect to the original increment 𝑑𝑅 that 

would occur in the limit 𝑀 to zero. This increment 𝑑𝑅 is 

called gravitational parallax distance 𝑑𝐺𝑃. 

2.2.2. Measurable gravitational parallax distance 

  
Fig. 6: Measurement of gravitational parallax distance 

𝑑𝐺𝑃 via the angle of gravitational parallax 𝑝𝑔𝑟𝑎𝑣: 

𝐷1, 𝐷2 and 𝑆 form an isosceles triangle 𝐷1𝐷2𝑆. The base-

line 𝐷1𝐷2 has the centre A. An effective mass 𝑀𝑒𝑓𝑓 is 

measured at constant measured acceleration �⃗�𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 .  

2.2.2.1. Physical analysis 

It is fundamental that the distance 𝑑𝐿𝑇 in curved 

space and the corresponding distance 𝑑𝐺𝑃 in flat 

space can be measured simultaneously in the same 

curved space (Fig. 5). Firstly, it is well-known how 

the light travel distance can be measured, see e. g. 

Hobson (2006), Condon and Matthews (2018). Sec-

ondly, the gravitational parallax distance 𝑑𝐺𝑃 is 

founded by defining corresponding measurement 

procedures: We describe how an observer can apply 

two hand leads, in order to measure the distance to 

an object (Fig. 6). Definition 1: Gravitational paral-

lax distance to a mass: The gravitational parallax 

distance, 𝑑𝐺𝑃, between an observer and a (dynam-

ical) mass is defined by the measurement procedure 

in Fig. (6): 𝑑𝐺𝑃  =
0.5𝑏

𝑡𝑎𝑛(𝑝𝑔𝑟𝑎𝑣)
  {7} 

For details, see Carmesin (2023a,2024g) 

2.2.2.2. Didactic analysis 

In a first step, the measurement procedures are de-

fined. Hereby, the measurement of a distance by tri-

angulation is a well-known procedure. Similarly, 

hand leads are well-known devices. Additionally, it is 

clear that hand leads are influenced by an acceleration 

and by a rotation. Thus, these are excluded with re-

spect to a reference mass 𝑀 or 𝑀𝑒𝑓𝑓 . This step has a 

medium-sized learning barrier: The acceleration and 

angular velocity must be set to zero with help of a 

closed loop control. In a second didactic step, the fol-

lowing is reflected: In general, 𝑀 or 𝑀𝑒𝑓𝑓  can be ac-

celerated with respect to some other object. Accord-

ingly, the gravitational parallax distance 𝑑𝐺𝑃 is meas-

ured relative to 𝑀 or 𝑀𝑒𝑓𝑓 . This relation is not very 

complex, and so it can be understood clearly. Moreo-

ver, the fact that 𝑑𝐺𝑃 is measured relative to 𝑀 or 

𝑀𝑒𝑓𝑓  is clear from the very beginning. Thus, this step 

has only a medium-sized mental learning barrier. Al-

together, only medium-sized learning barriers occur 

in the measurement procedures for 𝑑𝐺𝑃. Moreover, 

the 𝑑𝐺𝑃 provides a useful tool: Curved space can be 

compared with flat space by observation. With it, the 

dynamics of distances and of volume can be meas-

ured and analysed. 

2.2.3. Representation of space with help of VPs 

2.2.3.1. Physical analysis 

In general, space can exhibit curvature (Fig. 5). It 

can be represented with help of a metric tensor 𝑔𝑖𝑗. 

However, as space consists of volume portions, it is 

valuable to transform the description with the metric 

tensor to a description using VPs. This transfor-

mation is worked out in this section: 

A mass 𝑀 causes additional volume 𝛿𝑉. It can be 

described with help of the metric tensor, see e. g. 

Hobson (2006, section 2.10): 

𝛿𝑉 = ∏ √|𝑔𝑗𝑗|𝐷
𝑗 ⋅ dξj − ∏ √|𝑔𝑗𝑗,𝑓𝑙𝑎𝑡|𝐷

𝑗 ⋅ dξj {8} 

Hereby, 𝑔𝑗𝑗,𝑓𝑙𝑎𝑡  is the metric tensor of flat space, 

whereas 𝑔𝑗𝑗 is the metric tensor of curved space. 

At each point in 𝐷-dimensional space or spacetime,  

a local orthogonal coordinate system can be used, 

Lay (2016, section 6.4). 

We name the corresponding incremental orthogonal 

coordinates 𝑑𝜉𝑗 and the corresponding basis vectors  

𝑑𝜉𝑗. Hereby, in traditional general relativity, GR, 

two types of components are used, contravariant 

components are marked by an upper index and co-

variant components are marked by a lower index, 

see e. g. Landau and Lifschitz (1971, § 6). The geo-

metric properties of 𝐷-dimensional space or 

spacetime can be described by the metric tensor 𝑔𝑖𝑗, 
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see e. g. {Landau and Lifschitz (1971, § 

84).Thereby, the metric tensor can be obtained by 

the scalar product of the basis vectors, see e. g. Hob-

son (2006, sections 4.1 – 4.4): 𝑔𝑖𝑗  = 𝑑𝜉𝑖 ⋅ 𝑑𝜉𝑗{9} 

It is useful to represent the light-travel distance 

based length of each basis vector 𝑑𝜉𝐿,𝑗 by an incre-

ment 𝑑𝑥𝐿,𝑗 which subsumes the root of the element 

of the metric tensor, see e. g. Hobson (2006, section 

2.10) and Fig. (7): 𝑑𝑥𝐿,𝑗  = √𝑔𝑗𝑗 ⋅  𝑑𝜉𝑗 {10} 

Consequently, the volume spanned by the 𝐷 basis 

vectors is as follows, see e. g. Hobson (2006, section 

2.10): 𝑑𝑉𝐿  = ∏ 𝑑𝑥𝐿
𝑗𝐷

𝑗 = ∏ 𝑑𝜉𝐿
𝑗𝐷

𝑗 ⋅ √|𝑔𝑗𝑗|  {11} 

  

Fig. 7: VPs can be represented with cubes and cuboids. 

Theorem: Law of representation by additional vol-

ume (proof: Carmesin 2024g): At each point, the met-

ric tensor can be represented by differences and rela-

tive differences as follows: Firstly, even if the space 

is curved, at each point, the incremental orthogonal 

coordinates of flat space 𝑑𝑥𝑗 can be measured. These 

are related to the metric tensor of flat space 𝑔𝑖𝑗,𝑓𝑙𝑎𝑡  as 

follows: 𝑑𝑥𝑗  = √𝑔𝑗𝑗,𝑓𝑙𝑎𝑡 ⋅  𝑑𝜉𝑗  {12} 

Secondly, at each point in space, the length differ-

ence caused by curvature can be measured: 

𝛿𝑥𝑗   =  𝑑𝑥𝐿,𝑗  −  𝑑𝑥𝑗   {13} 

Thirdly, at each point in space, the incremental vol-

ume in flat space can be measured: 

𝑑𝑉𝑅 = ∏ 𝑑𝑥𝑗𝐷
𝑗 = ∏ 𝑑𝜉𝑗𝐷

𝑗 ⋅ √|𝑔𝑗𝑗,𝑓𝑙𝑎𝑡|  {14} 

Fourthly, at each point in space, the additional vol-

ume can be measured: 𝛿𝑉 = 𝑑𝑉𝐿  −  𝑑𝑉𝑅 {15} 

Fifthly, at each point, the intensive quantity, normal-

ized by the advantageous 𝑑𝐿𝑇 based volume 𝑑𝑉𝐿, can 

be measured: 𝜀𝐿  ∶=
𝛿𝑉

𝑑𝑉𝐿
   {16} 

That ratio is named relative additional volume 𝜀𝐿. 

Sixthly, at each point, the relative additional volume 

is the following function of 𝑑𝑉𝐿 and 𝑑𝑉𝑅: 

𝜀𝐿 =  1 −
𝑑𝑉𝑅

𝑑𝑉𝐿
    {17} 

2.2.3.2. Didactic analysis 

In a first didactic step, the increments of a VP are 

described with help of the metric tensor, see Eqs. 

{9} and {10}. This notation is especially valuable 

for readers familiar with the metric tensor notation. 

This step has no special learning barrier for such 

learners. In a second didactic step, the root of the re-

spective metric tensor element is subsumed multi-

plied by the increment of the coordinate of the or-

thogonal coordinate system, see Eq. {11} and Fig 

(7). The product is an increment 𝑑𝑥𝐿,𝑗 . The resulting 

notation is especially valuable for readers familiar 

with Cartesian coordinate systems. This step has 

only a medium-sized mental learning barrier for 

readers that stick to one of the two notations. In di-

dactic step three, additional volume is introduced: 

Based on the volumetric property of volume in na-

ture and on the measurements of the light-travel dis-

tance and the gravitational parallax distance, the ad-

ditional volume caused by a mass 𝑀 or 𝑀𝑒𝑓𝑓  is de-

rived in a direct manner. This step is algebraically 

straight forward. This step has only a medium-sized 

mental learning barrier for readers that stick to a par-

ticular personal view in which difference of volume-

portions are avoided artificially. In a fourth didactic 

step, a very useful intensive quantity is derived. This 

step is algebraically straight forward. This step has a 

medium-sized mental learning barrier for readers 

that do not realize the immense advantage of inten-

sive physical quantities with respect to the search of 

universal laws of physics. This step has another me-

dium-sized mental learning barrier for readers that 

do not realize that the relative additional volume 

should have the light-travel distance based volume 

in the denominator in order to achieve universal lo-

cal laws of physics. In a didactic fifth step, some al-

gebraic transformations are used in order to prove 

the theorem. This step has no special learning bar-

rier. Altogether, the five didactic steps have no spe-

cial algebraic or formal or geometric learning bar-

rier, and they have several mental learning barriers. 

Moreover, the relative additional volume has many 

valuable implications. This topic provides a high 

learning efficiency, deep insights and a useful tool. 

2.2.4. Differential equation of volume  

Portions of additional volume propagate with 𝑣 = 𝑐 

(section 2.2.1).  

  
Fig. 8: A localizable portion of relative additional vol-

ume 𝜀𝐿 propagates in space. The relative additional vol-

ume is analysed as a function of 𝜏 and �⃗⃗�. 

2.2.4.1. Physical analysis 

The volume-portions 𝛿𝑉 in sections (2.2.1, 2.2.3) 

have a valuable completely new property: They can 

propagate in space: Theorem: Law of propagation of 

relative additional volume (proof: Carmesin 2024g): 

Localizable VPs propagate as follows: Firstly, dur-

ing an increment of time 𝑑𝜏, the local maximum of 

relative additional volume 𝜀𝐿 changes its position by 

a spatial increment 𝑑�⃗⃗� as follows: 

𝑑�⃗⃗� =
𝜕�⃗⃗�

𝜕𝜏
𝑑𝜏   with   

𝜕�⃗⃗�

𝜕𝜏
= 𝑐𝑒𝑣  {18} 

Secondly, if the relative additional volume 𝜀𝐿 is ana-

lysed as a function of 𝜏 and  �⃗⃗� (Fig. 8), then it fulfils 
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the following differential equation, DEQ of VD: 
𝜕

𝜕𝜏
 𝜀𝐿 = −𝑣 ⋅ 𝑒𝑣  ⋅

𝜕

𝜕�⃗⃗�
 𝜀𝐿   with   𝑣 = 𝑐 {19} 

Thirdly, in principle, there is no difference between 

a portion of additional volume 𝛿𝑉 and a localizable 

VP. Consequently, Eqs. {18} and {19} hold for each 

localizable VP. Fourthly, each localizable volume-

portion propagates according to the following Lo-

rentz invariant DEQ: 𝜀�̇�
2 − 𝑐2 ⋅ (

𝜕

𝜕�⃗⃗�
 𝜀𝐿)

2

=  0  {20} 

2.2.4.2. Didactic analysis 

In a first didactic step, the motion of the maximum is 

analysed. As a localizable portion of relative addi-

tional volume propagates at 𝑣 = 𝑐, the position �⃗⃗� of 

its maximum value moves according to Eqs. {18} and 

{20} as a function of time, �⃗⃗� = �⃗⃗�(𝜏). This motion is 

similar to the motion of a point-like mass. Thus, this 

step provides no essential learning barrier for learners 

familiar with analysis. In a second didactic step, the 

fact is realized that the portion is not point-like. Ac-

cordingly, its form is described as a function of 𝜏 and 

�⃗⃗� (Fig. 8). This step and this function 𝜀𝐿(𝜏, �⃗⃗�) provide 

no essential learning barrier for learners that are fa-

miliar with distribution functions or with density 

functions or with atomic orbitals. In didactic step 

three, both functions �⃗⃗�(𝜏) and 𝜀𝐿(𝜏, �⃗⃗�) are combined. 

For it, the fact is used that the maximum has zero de-

rivative. With it, the DEQs {19} and {20} are de-

rived. This derivation uses well-known methods of 

analysis, so it provides no essential learning barrier. 

Hence, this step has no essential learning barrier. 

2.2.5. Schrödinger equation derived from VD 

2.2.5.1. Physical analysis 

Theorem: Law of the derived GSEQ: Eq. {19} im-

plies the generalized SEQ, GSEQ (proof: Carmesin 

2024g): 𝑖ℏ
𝜕

𝜕𝜏
 Ψ = 𝑐 ⋅ �̂�Ψ =  �̂�Ψ  {22}  

Hereby, the wave function is Ψ = 𝑡𝑛 ⋅ 𝜀�̇�. And the 

normalization factor is 𝑡𝑛.  

Theorem: Law of the derived SEQ: Eq. {22} implies 

the SEQ (proof: Carmesin 2024g): In the limit of 

slow objects, the SEQ proposed or postulated by 

Schrödinger is derived: 

𝑖ℏ
𝜕

𝜕𝜏
Ψ =̇

p̂2

2𝑚0
Ψ + 𝐸𝑝𝑜𝑡 Ψ =  �̂�Ψ  {23} 

2.2.5.2. Didactic analysis 

In a first didactic step, the GSEQ is derived from the 

DEQ {19} of volume. For it, a time derivative is ap-

plied and 𝑖ℏ𝑡𝑛 is multiplied. This step has no essen-

tial analytic, algebraic or geometric learning barrier. 

The identification of DEQ {22} with a GSEQ repre-

sents a mental learning barrier for all readers that ex-

pect the form of the SEQ proposed by Schrödinger 

(1926). That learning barrier is reduced with help of 

a second didactic step: The traditional wave function 

is identified, see DEQ {23}. This step has only a 

mental learning barrier for those readers that have 

the opinion it would be impossible to identify the 

physical meaning of the wave function. In fact, this 

opinion is quite common, see e. g. Kumar (2018, p. 

14). However, that opinion has never been proven in 

general. Fortunately, some authors regard the inter-

pretation of the wave function as an open question, 

see e. g. Scheck (2013, p. vii, sections 1.3-5.1). That 

learning barrier is reduced further by using the tradi-

tional operators of momentum and energy in a third 

didactic step, see DEQs {22,23}. This step has only 

a mental learning barrier: The Hamiltonian of the 

GSEQ describes relativistic objects, including the 

option of a nonrelativistic limit. In contrast, the SEQ 

proposed by Schrödinger describes non-relativistic 

or slow objects only. Thus, the traditional SEQ is a 

special case of the GSEQ. That learning barrier is re-

duced further by deriving the non-relativistic limit. 

The result is the traditional form of the SEQ. This 

step has no essential learning barrier. Altogether, the 

derivation provides great insights: It bridges QP and 

cosmology. It clarifies the meaning of the wave 

function. It provides a generalization. 

2.2.6. Generalized potential 

2.2.6.1. Physical analysis 

The law of propagation of localizable relative addi-

tional volume can be applied to the vicinity of a 

mass 𝑀 or effective mass: Theorem: Law of the de-

rived generalized gravitational interaction. In the vi-

cinity of a mass 𝑀 or effective mass 𝑀𝑒𝑓𝑓 , the rela-

tive additional volume 𝜀𝐿 exhibits the following 

properties (proof: Carmesin 2024g, we use spherical 

polar coordinates with 𝑀 at the origin, 𝑑𝐺𝑃 = 𝑑𝑅 

and 𝑑𝐿𝑇 = 𝑑𝐿.): (1) The relative additional volume 

𝜀𝐿 propagates according to Eq. {19}. That Eq. is 

multiplied by 𝑐: 𝑐
𝜕

𝜕𝜏
 𝜀𝐿 = 𝑒𝑣  ⋅

𝜕

𝜕�⃗⃗�
⋅ (−𝑐2 ⋅ 𝜀𝐿) {24} 

The bracket in the above DEQ has the form of a gen-

eralized potential Φ𝑔𝑒𝑛: Φ𝑔𝑒𝑛 : =  −𝑐2 ⋅ 𝜀𝐿 {25} 

(Hereby, the potential is generalized as it describes 

volume, whereby volume can generate matter in a 

phase transition, see Higgs 1964). The negative gra-

dient of that generalized potential is the generalized 

field �⃗�𝑔𝑒𝑛:  

�⃗�𝑔𝑒𝑛: = −
𝜕

𝜕�⃗⃗�
 (−𝑐2 ⋅ 𝜀𝐿) =  −

𝜕

𝜕�⃗⃗�
 Φ𝑔𝑒𝑛 {26} 

The DEQ {22} takes the form of the following rate 

gravity relation: 

𝑐
𝜕

𝜕𝜏
 𝜀𝐿 = 𝑒𝑣 ⋅

𝜕

𝜕�⃗⃗�
⋅ Φ𝑔𝑒𝑛 = −𝑒𝑣 ⋅ �⃗�𝑔𝑒𝑛  {27} 

(2) That rate gravity relation can be expressed with 

help of the following rate gravity scalar 𝑅𝐺𝑆𝑔𝑒𝑛: 

𝑅𝐺𝑆𝑔𝑒𝑛 ≔ (𝑐
𝜕

𝜕𝜏
 𝜀𝐿)

2

− �⃗�𝑔𝑒𝑛
2 ,   thus {28} 

𝑅𝐺𝑆𝑔𝑒𝑛 = (𝑐
𝜕

𝜕𝜏
 𝜀𝐿)

2

− ∑ 𝐺𝑔𝑒𝑛,𝑗
2𝐷

𝑗     and {29} 

𝑅𝐺𝑆𝑔𝑒𝑛 = (𝑐
𝜕

𝜕𝜏
 𝜀𝐿)

2

− (𝑐
𝜕

𝜕�⃗⃗�
 Φ𝑔𝑒𝑛)

2

  and  {30} 

𝑅𝐺𝑆𝑔𝑒𝑛 = 0   {31} 

(3) The generalized field is proportional to 
1

𝑅𝐷−1: 

|�⃗�𝑔𝑒𝑛| =
1

𝑅𝐷−1   {32} 
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2.2.6.2. Didactic analysis 

In a first didactic step, the form of DEQ {19} of VD 

provides a generalized potential Φ𝑔𝑒𝑛(𝑅) and field 

�⃗�𝑔𝑒𝑛(𝑅) of the volume in an exact manner. This step 

has no analytic or algebraic learning barrier for all 

learners familiar with fields and potentials. Even 

though the derived results are exact, there remains 

an open question about the interpretation – it will be 

answered in the next section. In didactic step two, a 

coordinate invariant scalar is derived. This step has 

no learning barrier for learners familiar with four-

vectors. In a third didactic step, it is shown that the 

generalized field is proportional to 
1

𝑅𝐷−1, whereby 𝑅 

is the radial coordinate or the gravitational parallax 

distance to the field generating mass 𝑀. This step 

has no special learning barrier. The derived poten-

tial, field and the proportionality to 
1

𝑅𝐷−1 are very 

valuable, as they are exact. In contrast, the potential 

in Newton’s theory of gravitation is not exact, see e. 

g. Hobson (2006). 

2.2.7. General relativity and gravity 

2.2.7.1. Physical analysis 

We use spherical polar coordinates with radial coor-

dinate 𝑅. The inverse root of 𝑔𝑅𝑅 of the metric ten-

sor is named position factor 𝜀𝐸: 
1

√𝑔𝑅𝑅
 =: 𝜀𝐸 {33} 

In general, 𝜀𝐸 is a function of 𝑅.  

Theorem: Law of the derived curvature and interac-

tion (proof: Carmesin 2024g): 𝜀𝐸 has the following 

properties: 𝜀𝐸  =  1 − 𝜀𝐿  {34} 

The generalized field is proportional to the mass 𝑀 

and to 
1

𝑅𝐷−1: |�⃗�𝑔𝑒𝑛(𝑅)| ∝
𝑀

𝑅𝐷−1  {35} 

The proportionality factor is interpreted as a univer-

sal constant of nature 𝐺𝑔𝑒𝑛. It must be obtained from 

observation: |�⃗�𝑔𝑒𝑛(𝑅)| = 𝐺𝑔𝑒𝑛 ⋅
𝑀

𝑅𝐷−1 {36} 

𝜀𝐸(𝑅) fulfils: 
𝐺𝑔𝑒𝑛𝑀

𝑐2𝑅𝐷−1 = 𝜀𝐸
𝜕𝜀𝐸

𝜕𝑅
   {37} 

That DEQ and the relation 𝑙𝑖𝑚𝑅→∞𝜀𝐸 = 1 imply: 

𝜀𝐸(𝑅) = √1 −
2𝐺𝑔𝑒𝑛𝑀

𝑐2 ⋅
1

𝑅𝐷−2(𝐷−2)
   {38} 

Observation shows: 𝐺𝑔𝑒𝑛(𝐷 = 3) is Newton’s con-

stant of gravitation: 𝐺𝑔𝑒𝑛(𝐷 = 3) = 𝐺 {39} 

and   𝐺𝑔𝑒𝑛 = 𝐺 ⋅ 𝐿𝑃
𝐷−3 ⋅  (𝐷 − 2) = 𝐺𝐷  {40} 

Hereby, 𝐿𝑃 is the Planck length: 

𝐿𝑃 = √
ℏ𝐺

𝑐3  =  1.616 ⋅ 10−35 m  {41} 

At 𝐷 = 3, the Schwarzschild radius 𝑅𝑆 =
2𝐺𝑀

𝑐2  im-

plies: 𝜀𝐸(𝑅) = √1 −
𝑅𝑆

𝑅
   𝑎𝑡   𝐷 = 3  {42} 

At a dimension 𝐷 ≥  3, the Schwarzschild radius is 

as follows, see e. g. Carmesin (2019, section 2.6): 

𝑅𝑆𝐷 = (𝑅𝑆 ⋅ 𝐿𝑃
𝐷−3)

1

𝐷−2   {43} 

so, 𝜀𝐸(𝑅) = √1 − (
𝑅𝑆𝐷

𝑅
)

𝐷−2

    at  𝐷 ≥ 3 {44} 

As a consequence, in three-dimensional space, the 

generalized field is equal to the gravitational field: 

�⃗�𝑔𝑒𝑛(𝑅) = −
𝐺𝑀

𝑅2 ⋅  𝑒𝐿  =  �⃗�∗(𝑅)   at   𝐷 = 3 {45} 

Hereby, 𝑒𝐿 = 𝑒𝑣. Consequently, at 𝐷 ≥  3: 

�⃗�𝑔𝑒𝑛(𝑅) = −
𝐺𝐷𝑀

𝑅𝐷−1 ⋅  𝑒𝑣,   thus 

�⃗�𝑔𝑒𝑛(𝑅) =  − 
𝐺⋅𝑀

𝑅2 ⋅ 𝑒𝑣 ⋅ (𝐷 − 2) ⋅ (
𝐿𝑃

𝑅
)

𝐷−3

    {46} 

2.2.7.2. Didactic analysis 

In a first step, the position factor is used as an abbre-

viation. Moreover, the relative additional volume is 

related to the position factor. This step has no special 

learning barrier. That step provides the valuable in-

sight that the relative additional volume explains the 

position factor and the metric tensor element 𝑔𝑅𝑅. In 

a second didactic step, a term for the generalized field 

is derived. This step has no special learning barrier. 

In step three, the DEQ for the position factor is de-

rived. Moreover, the solution of that DEQ is derived. 

This step has no special learning barrier. In a fourth 

didactic step, it is shown that Newton’s constant of 

gravitation applies to the generalized potential and 

field. Thereby, it is shown that the derived position 

factor explains the element 𝑔𝑅𝑅 of the metric tensor 

in general relativity. With it, the other elements of the 

metric tensor of the Schwarzschild solution can be de-

rived, if desired, see e. g. Carmesin (2023a). This step 

has no special learning barrier. In a fifth step, the ex-

act gravitational field is derived. This step has no spe-

cial mathematical learning barrier. The results of the 

above didactic steps are exact, insightful, useful and 

general, as they show that the same volume dynamics 

in the DEQ {19} provide the SEQ as well as the 

Schwarzschild metric of GR as well as the exact grav-

itational field. Moreover, the results are general, as 

they can be applied to the vicinity of each effective 

mass. More generally, the relation to GR is provided 

in Carmesin (2024g). 

2.2.8. Local formation of volume, LFV 

2.2.8.1. Physical analysis 

As a byproduct of the propagation of relative addi-

tional volume, there can occur local formation of 

volume, LFV: Definition: LFV: If additional volume 

𝛿𝑉𝑗𝑗 forms in a volume 𝑑𝑉𝐿  and in a direction 𝑗 dur-

ing a time 𝛿𝜏, then this process can be described by 

the following normalized rate of unidirectional LFV, 

see Fig. (7): 𝜀�̇�,𝑗𝑗 ≔
𝛿𝑉𝑗𝑗

𝛿𝜏⋅𝑑𝑉𝐿
  {47} 

In the vicinity of a mass 𝑀 or an effective mass 

𝑀𝑒𝑓𝑓 , and at a 𝑑𝐺𝑃 based distance 𝑅 from 𝑀 or 

𝑀𝑒𝑓𝑓 , the following holds for the normalized rate: 

Theorem: Law of locally formed volume, LFV: 

(1) In the far distance approximation, FDA, the ratio 
𝑅𝑆

𝑅
 is relatively small. At first order in that ratio 

𝑅𝑆

𝑅
, 

the normalized rate is: 𝜀�̇�,𝑗𝑗
2 𝑐2 = 𝐺𝑔𝑒𝑛,𝑗

2  {48} 

𝐺𝑔𝑒𝑛,𝑗 is the component 𝑗 of the generalized field, 

see section (2.2.6). The full additional volume is ob-

tained by the sum with respect to the components 𝑗, 
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as nondiagonal components 𝜀�̇�,𝑖𝑗  do not provide add-

ional volume: 𝜀�̇�
2𝑐2 ≔  ∑ 𝜀�̇�,𝑗𝑗

2
𝑗 𝑐2 = ∑ 𝐺𝑔𝑒𝑛,𝑗

2
𝑗 {49} 

This relation can be expressed in a Lorentz invariant 

form: 𝜀�̇�
2𝑐2 − ∑ 𝐺𝑔𝑒𝑛,𝑗

2
𝑗 = 0  {50} 

Hereby, the generalized field is equal to the exact 

expression of the gravitational field, whereas New-

ton’s gravitational field is an approximation, see sec-

tions (2.2.6) and (2.2.7). 

2.2.8.2. Didactic analysis 

In a first step, the fact of formation of additional vol-

ume is realized. This step has no special learning 

barrier, as the dependence of 𝑅 is obvious. In step 

two, the rate of LFV is derived. As the derivation is 

quite simple, there is no special learning barrier.  

  
Fig. 9: A  mass 𝑀 (dark grey) in a shell at a radius 𝑅 is 

lifted to a radius 𝑅 + Δ𝑅: Differential parts 𝑑𝑀 are lifted, 

while the rest 𝑀𝑟𝑒𝑠𝑡 is still at 𝑅. Thereby the field �⃗�𝑔𝑒𝑛 

(medium grey) in the shell with radius 𝑅 and thickness Δ𝑅 

becomes zero, when the whole mass is at 𝑅 + Δ𝑅. 

2.2.9. Energy density of the field 

2.2.10.1. Physical analysis 

Theorem: Law of the energy density of a gravita-

tional field (Proof: Carmesin 2024g or 2023a): 

(1) A gravitational field �⃗�𝑔𝑒𝑛  has the following en-

ergy density: 𝑢𝑔𝑟.𝑓. =  − 
|�⃗�𝑔𝑒𝑛

2 |

8𝜋𝐺
  {51} 

(2) A gravitational field �⃗�𝑔𝑒𝑛   causes LFV with a 

rate: 𝜀�̇�
2 𝑐2  =̇  ∑ 𝐺𝑔𝑒𝑛,𝑗

2
𝑗 = �⃗�𝑔𝑒𝑛

2 ,  {52} 

at first order in the FDA. At that locally formed vol-

ume, there occurs the following density of a general-

ized kinetic energy: 𝑢𝑔𝑒𝑛,𝑘𝑖𝑛 =  
�̇�𝐿

2⋅𝑐2

8𝜋𝐺
 {53} 

Similarly, the analogous result can be derived for the 

relative additional volume: 𝑢𝑔𝑒𝑛,𝑘𝑖𝑛 =  
�̇�𝐿

2 ⋅  𝑐2

8𝜋𝐺
 {54} 

2.2.10.2. Didactic analysis 

In a first didactic step, the process in Fig. (9) is in-

troduced. As this is very intuitive, there is no special 

learning barrier. In step two, the change of general-

ized potential energy in the process in Fig. (9) is de-

rived. As the generalized potential is exact, that deri-

vation is exact. This increases the confidence. As the 

mathematical steps involve at most a simple integra-

tion, this step has no special learning barrier. In step 

three, the sign of the potential energy is derived. As 

the transfer of energy in the process in Fig. (9) is 

transparent, there is no special learning barrier. This 

is insightful, as it shows that the sum of the energy 

densities is zero. In step four, the LFV is applied. 

With it, the energy density of the gravitational field 

is identified directly. On that basis, the positive term 

in Eq. {53} is directly identified with another energy 

density. According to its sign and its form, it is inter-

preted as a generalized kinetic energy density. As 

the interpretation does not require a proof, this step 

has no special learning barrier. 
 

3. Experience: learning process and learners  

The experiences with learning groups have been doc-

umented in terms of photographs of the blackboard 

and with help of additional reports. These are summa-

rized as follows. In a general studies course at the uni-

versity, the learning process was enriched by a per-

manent discussion of the achieved results and by ex-

ercises about the derived relations. In particular, the 

learning process took place in eight unites, each last-

ing 90 minutes: (1) An introduction, the epistemolog-

ical method, the volume in nature, the evident prop-

erties and a summary of special relativity have been 

treated. (2) The existence of several volume-portions 

has been derived. The measurement methods for 𝑑𝐿𝑇 

and 𝑑𝐺𝑃 have been introduced (Fig. 6). The resulting 

maps (Fig. 5) have been treated. The additional vol-

ume (Fig. 7) and the law of representation by addi-

tional volume have been derived. (3) The propagation 

of VPs has been derived (DEQ {19} and Fig. 8). The 

GSEQ and SEQ have been derived. In exercises, sev-

eral solutions have been developed. (4) The stationary 

SEQ has been derived. In exercises, several solutions 

have been developed. And the semiclassical limit has 

been introduced. Hereby, the principle of least action 

has been developed. It has been shown, how the Ein-

stein field equation has been derived with help of that 

principle. (5) Newtonian gravity was summarized, in 

order to prepare the introduction of the generalized 

field G⃗⃗⃗𝑔𝑒𝑛 and potential  Φ𝑔𝑒𝑛 . Then, these quantities 

G⃗⃗⃗𝑔𝑒𝑛 and Φ𝑔𝑒𝑛  have been derived. (6) The position 

factor including the curvature of space have been de-

rived. In exercises, examples have been analysed and 

the Heisenberg uncertainty principle has been inves-

tigated. (7) LFV has been derived. (8) The energy 

densities of the gravitational field and of the general-

ized kinetic energy have been derived. 

A quantum gravity group of a research club meets 90 

minutes each week: Topics such as quantum comput-

ers, cosmology, astrophysics or quantum gravity are 

treated. In that group, essentially the same learning 

process has been treated in an extra meeting for one 

and a half days at a weekend. Hereby, questions and 

exercises, including adequate derivations, have been 

treated. So, training, metacognitive activity and expe-

rience of self-efficacy and competence are provided. 

4. Discussion 

Comets and asteroids could collide with Earth. So, 

planetary defence is organized, see Michel (2016). 

Hereby, precise observations, QP and GR are im-

portant. But QP and GR are incompatible, see Ein-

stein et al. (1935).  Here, the VD is derived from evi-

dent properties. The VD implies and generalizes QP 
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and GR. And the VD solves fundamental problems of 

QP and GR. And the VD have been tested: (1) The 

density of volume has been derived from the VD, see 

Carmesin (2023a, 2024c). (2) The VD solves the 

Hubble tension and predicts future measurements, see 

Carmesin (2023a, e, 2024d). (3) The VD solves the 

cosmological constant problem, see Carmesin (2023, 

a, 2024f,g). The results are in precise accordance with 

observation. Thereby, no fit has been executed and no 

postulate has been proposed. Such a testing of a (evi-

dent) hypothesis (section 1.4)  and such a deduction 

from prior knowledge have a high learning efficiency, 

see Hattie (2006). The learning process uses everyday 

life contexts, so it is meaningful, see Muckenfuß 

(1995), and it achieves an additional high learning ef-

ficiency, see Hattie (2006). 

The learning process of VD has been tested in two 

learning groups. That process takes 720 minutes at a 

university course as well as in a research club. In both 

learning groups, the students were able to perform ex-

ercises and to use instructions in order to derive parts 

of the theory. Moreover, the VD has been used in or-

der to derive the elementary charge, see Carmesin 

(2021a, 2024g). This result is beyond GR, QP and the 

standard model of elementary particles. 
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