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Abstract 

In everyday life, time and space are essential. Moreover, space and time are fundamental concepts 

of physics. For it, Newton made a first proposal with flat space and time evolving at a constant rate 

as a basis. Einstein improved it with relativistic and curved spacetime. Accordingly to its relevance 

in everyday life and in physics, students are interested in the topic. Here, I present a learning process, 

by which learners can achieve the essential insights of special relativity and general relativity in an 

exact manner. Thereby, students experience basic principles directly at a free fall tower and by tak-

ing photographs in a school observatory. Using these basic principles, they achieve inspiring and 

exact results on their own, after an appropriate instruction. I present the learning process and a di-

dactic analysis, so that you can directly use the concept for teaching. I tested the learning process in 

various learning groups, and I report about experiences.   

 

1. Introduction 

Students are interested in the evolution of space since 

the Big Bang. Accordingly, they observed the Big 

Bang with our school observatory by using three dif-

ferent methods, see e. g. Helmcke et al. (2018).  

For instance, they provide a very basic method that 

can be understood even by students at the age 14 with-

out any special knowledge about astronomy or astro-

physics: In that method, our students used our school 

telescope with an aperture of 0.28 m, in order to take 

the picture in Fig. 1. So they obtained a photo of a 

quasar at a light-travel distance of 12.05 billion light 

years. For comparison, the aperture of the Hubble tel-

escope is to 2.4 m. Thus, for each observed object, the 

amount of light received by the Hubble telescope ex-

ceeds the amount of light received by our telescope 

by the following factor: 

(
2.4

0.28
)

2

≈ 73     {1} 

In flat and constant space, as proposed by Newton 

(1687), the energy density of the light emitted by an 

object decreases proportional to the square of the dis-

tance. Correspondingly, the Hubble telescope should 

observe quasars at a light-travel distance that exceeds 

the light-travel distance of quasars observed by our 

telescope, 12.05 billion light years, by the factor 

√73 ≈ 8.5, at least. However, the Hubble telescope 

did never observe any object at a light-travel distance 

beyond 13.8 billion light years. We interpret this find-

ing with the Big Bang that occurred 13.8 billion years 

ago: Light observed at Earth has propagated for less 

than 13.8 billion years, so that it propagated less than 

13.8 billion light years. 

In a second method, our students observed the 

 

Fig.1: We observe the quasar APM08279+5255 at the 

light-travel distance of 12.05 billion light years. The qua-

sar is near the light horizon. Objects can be observed at 

light-travel distance less than 13.8 billion light years. How 

can this finding be interpreted? 

redshift and distance of galaxies and produced the  

Hubble diagram in Fig. 2. While in a third method, 

they used the supernova in Fig. 3. Of course, we hu-

mans want to understand our observations. Accord-

ingly, the students ask the question: How can we un-

derstand, calculate and derive the time evolution of 

the expansion of space since the Big Bang?   

1.1. Organization of the paper 

We propose our learning process in part 2. Part 3 pro-

vides a didactic analysis. Experiences with teaching 

and a discussion are presented in parts 4 and 5. 

2. Learning process 

The learning process has been developed for the fol-

lowing groups: members of a research club with stu-

dents in classes 5 to 13 and general studies courses at 

the university. 
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Fig.2: We observe galaxies at redshifts z (squares and tri-

angle). Moreover, the learners observe the light-travel dis-

tances d (squares). In the case of the galaxy UGC 8058, 

the light-travel distance is obtained from the literature. 

The straight line has the slope 12.5, corresponding to a 

measured age of the universe of 12.5 billion years. The 

linear law shown in this diagram is called Hubble law, and 

the inverse of the slope in this diagram is called Hubble 

constant 𝐻0. 

2.1. Preconditions of learning 

As a precondition of the learning process, the students 

treated already basic facts in gravity and special rela-

tivity, see e. g. Newton (1687), Einstein (1905), Car-

mesin (2023a, pp 102-129). Moreover, they have 

basic competences about the Schwarzschild metric, 

including the position factor and findings in general 

relativity, see e. g. Einstein (1915), Schwarzschild 

(1916), Carmesin (2023b) or Burisch (2022, pp 484-

489): 

In the vicinity of a field generating mass M, a probe 

mass m has the following energy: 

𝐸(𝑟, 𝑣) = 𝑚0𝑐2𝜀(𝑟)𝛾(𝑣) = 𝑚0𝑐2 = 𝐸0  {2} 

Thereby, 𝛾(𝑣) is the Lorentz factor, 

𝛾(𝑣) =
1

√1−
𝑣2

𝑐2 

     {3} 

And 𝜀(𝑟) is the position factor: 

𝜀(𝑟) = √1 −
𝑅𝑆

𝑟
  with   𝑅𝑆 =

2𝐺𝑀

𝑐2    {4} 

Hereby, the energy is conserved, as the vicinity of M 

is stationary, so that the Noether (1918) theorem can 

be applied. 

Moreover, the students are familiar with basic facts 

about the expansion of space since the Big Bang, see 

e. g. Carmesin (2020a, pp 296-301). In particular, 

they know that the Hubble constant 𝐻0 is a time de-

pendent Hubble parameter 𝐻(𝑡), more generally, see 

Fig. 2. Hereby, the square of the Hubble parameter is 

described by the Friedmann (1922) Lemaitre (1927) 

equation, FLE: 

  

Fig.3: We observed the supernova SN 2017eaw (red cir-

cle) in the fireworks galaxy NGC 6946 (at white bars). 

H2 =
 Ṙ2

R2    =  
8πG

3
 ρ − k

c2

R2    {5} 

Hereby, R is a radius of a prototypical ball in the uni-

verse, see Fig. 4. That ball increases as a function of 

time, whereby it describes the expansion of space. As 

usual, 𝜌 describes the density. The possible curvature 

of space is described by the curvature parameter 𝑘. 

Thereby, the FLE has been derived on the basis of the 

Einstein field equation, the dynamical equation of the 

usual theory of relativity proposed by Einstein (1915) 

and Hilbert (1915), see e. g. Hobson (2006).  

If 𝑘 = 0, then the space is not curved or flat. 

If 𝑘 > 0, then the space is a hyperball. 

If 𝑘 < 0, then the space is curved like a saddle. 

 

Fig.4: Prototypical ball in the universe. Many such balls 

form space as a whole. It  is like a hyperball, if the curva-

ture parameter is positive. Space is flat and unlimited, if 

the curvature parameter is zero. Space is curved like a sad-

dle and unlimited, if the curvature parameter is negative.   

2.2. Flatness problem 

When the students discuss the FLE, they realize that  

the FLE includes the above three possibilities of cur-

vature. However, the universe cannot exhibit all three 

possibilities simultaneously. Using observations, see 

e. g. Planck collaboration (2020), the learners realize 
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that the observed curvature is zero within the error of 

measurement. This fact of observation should be ex-

plained. That missing explanation is called flatness 

problem, see e. g. Hobson (2006, p. 418) or Guth 

(1981).  

2.3. Derivation of the squared Hubble parameter 

In order to solve the flatness problem, we plan to de-

rive the squared Hubble parameter 𝐻2 of the proto-

typical ball in Fig. 4 on our own. Thereby, we should 

derive a value of the curvature parameter. If that value 

is zero, then we solved the flatness problem, and we 

can analyse the reason for flatness. If we derive a non-

zero value of the curvature parameter, then the flat-

ness problem remains. 

2.3.1. Plan of transformation  

We plan to derive the dynamics of the radius of the 

ball in Fig. 4 on the basis of the Schwarzschild metric  

in Eqs. {2-4}, as this metric has been confirmed by 

many observations of present-day objects, see e. g. 

Will (2014). Thus, we plan to transform Eqs. {2-4}. 

For it, we analyse a probe mass m0 that marks the ra-

dius 𝑅 of the ball in Fig. 4.  

 

Fig.5: Prototypical ball in the universe. A shell of the sur-

roundings causes forces at a test mass 𝑚𝑎 in the ball. 

Thereby, the forces caused by the two masses 𝑑𝑚1 and 

𝑑𝑚2 cancel each other. Thus, all forces caused by the shell 

cancel each other at  𝑚𝑎. Hence, the forces caused by all 

shells cancel each other at 𝑚𝑎. Thence, the forces caused 

by the surroundings cancel each other at 𝑚𝑎. As the loca-

tion of the test mass is arbitrary, the homogeneous and iso-

tropic surroundings cause no field in the ball.   

2.3.2. Fields of surroundings cancel in the ball  

As the surroundings of the ball are homogeneous, 

they do not cause any gravitational field within the 

ball. This fact has already been derived by Newton 

(1687).  

The students derive it with help of the shell and the 

test mass ma in Fig. 5. That test mass is at an arbitrary 

location in the ball. An area 𝑑𝐴1 has a mass 𝑑𝑚1 and 

a distance 𝑟1 to the test mass. The learners derive the 

absolute value of the force of interaction between the 

test mass and 𝑑𝑚1: 

𝐹1 =
𝐺⋅𝑚𝑎⋅𝑑𝑚1

𝑟1
2     {6} 

The area 𝑑𝐴2 in Fig. 5 is the point reflection of the 

area 𝑑𝐴1  at the test mass. The students derive the ab-

solute value of the force of interaction between the 

test mass and 𝑑𝑚2 in Fig. 5: 

𝐹2 =
𝐺⋅𝑚𝑎⋅𝑑𝑚2

𝑟2
2  with   {7} 

𝑑𝐴2 = 𝑑𝐴1 ⋅
𝑟2

2

𝑟1
2 and   {8} 

𝑑𝑚2 = 𝑑𝑚1 ⋅
𝑟2

2

𝑟1
2    {9} 

The students combine the above Eqs. {6-9} and real-

ize that the two forces cancel each other: 

𝐹1 = 𝐹2   and    �⃗�1 = −�⃗�2   {10} 

As the area 𝑑𝐴1 has been chosen arbitrarily, each pair 

of such an area and its point reflection cause forces 

that cancel each other. Thus, there is no remaining 

force or field at each such test mass. Hence, the shell 

in Fig. 5 does not cause any field in the ball. As the 

homogeneous surroundings of the ball (see Fig. 4) can 

be partitioned into shells similar to that in Fig. 5, the 

surroundings of the ball do not cause any field in the 

ball. 

2.3.3. Field at the probe mass  

The students remind that the field at the surface of 

Earth is derived from the mass of Earth 𝑀𝐸 at the dis-

tance of the radius 𝑅𝐸, see e. g. Carmesin (2023a, pp 

102-129): 

𝐺∗(𝑅𝐸) =
𝐺⋅𝑀𝐸

𝑅𝐸
2     {11} 

With it, they realize that the field at the surface of the 

ball, at the probe mass 𝑚0 is derived similarly: 

𝐺∗(𝑅) =
𝐺⋅𝑀

𝑅2      {12} 

With it, the  conditions for the application of the der-

ivation of the position factor in Carmesin (2023b) are 

fulfilled. Thus, Eqs. {2-4} can be applied . 

2.3.4. Transformations with the position factor  

In order to derive the square of the Hubble constant 

in Eq. {5}, we  plan to form the square of Eq. {2}, as 

a first step of the transformation planned at the begin-

ning: 

𝐸2(𝑟, 𝑣) = 𝑚0
2𝑐4𝜀2(𝑟)𝛾2(𝑣)   {13} 

As we are interested in the energy of the dynamics, 

not in the relativistic energy 𝐸0 of the probe mass, we 

subtract the square 𝐸0
2, as a second step of the trans-

formation: 

𝐸2(𝑟, 𝑣) − 𝐸0
2 = 𝐸0

2(𝜀2(𝑟)𝛾2(𝑣) − 1)   {14} 

The above difference is divided by the squared avail-

able energy of the probe mass 𝐸0
2𝛾2, so that we obtain 

a dimensionless term scaled by the locally measurable 

available energy: 

𝐸2(𝑟,𝑣)−𝐸0
2

𝐸0
2𝛾2 = (𝜀2(𝑟) − 𝛾−2(𝑣))    {15} 
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The students simplify the above scaled difference by 

using Eqs. {3-4}: 

𝐸2(𝑟,𝑣)−𝐸0
2

𝐸0
2𝛾2 =

𝑣2

𝑐2 −
𝑅𝑆

𝑅
      {16} 

According to our plan, the learners use the above 

scaled difference in order to derive the squared Hub-

ble parameter. For it, they realize that the velocity 𝑣 

is equal to the time derivative  �̇� of 𝑅, as the probe 

mass is at the radius of the ball. In order to derive the 

square of the Hubble parameter, the students multiply 

by 
𝑐2

𝑅2. Correspondingly, they insert for the Schwarz-

schild radius 𝑅𝑆 (Eq. {4}): 

𝐸2(𝑟,𝑣)−𝐸0
2

𝐸0
2𝛾2  

𝑐2

𝑅2 = 𝐻2 −
2𝐺𝑀

𝑅3      {17} 

The learners use the density in Fig. 4: 

𝐸2(𝑟,𝑣)−𝐸0
2

𝐸0
2𝛾2  

𝑐2

𝑅2 = 𝐻2 −
8𝜋𝐺

3
𝜌     {18} 

According to our plan, the students solve for 𝐻2: 

𝐻2 =
8𝜋𝐺

3
𝜌 +

𝐸2(𝑟,𝑣)−𝐸0
2

𝐸0
2𝛾2  

𝑐2

𝑅2     {19} 

Basically, according to the principle of energy con-

servation, the energy E(𝑟, 𝑣) is constant and equal to 

𝐸0, see Eq. {4}. Thus the fraction 
𝐸2(𝑟,𝑣)−𝐸0

2

𝐸0
2𝛾2  in the 

above equation is basically zero. Hence, the learners 

derive the following term for the squared Hubble pa-

rameter: 

𝐻2 =
8𝜋𝐺

3
𝜌       {20} 

The learners compare with the FLE in Eq. {5}. With 

it, they conclude that the curvature parameter is basi-

cally zero: 

 𝑏𝑎𝑠𝑖𝑐𝑎𝑙𝑙𝑦: 𝑘 = 0      {21} 

This result is a first basic solution of the flatness prob-

lem. 

2.3.5. Basic principle underlying our solution   

A discussion of our solution shows that we used the 

principle of energy conservation. This principle is ap-

plicable according to the stationarity of the field gen-

erating mass 𝑀 and its vicinity, according to the No-

ether (1918) theorem. 

2.3.6. Generalization   

In a discussion, we realize that the field generating 

mass is nearly constant in the matter era, see Carme-

sin (2020a, pp 296-301) and Carmesin (2020b). As 

our universe changed from the radiation era to the 

matter era already at a redshift of 𝑧𝑒𝑞 = 3411, see 

Planck collaboration (2020), and as it is just changing 

towards the vacuum era, our universe is still domi-

nated by the matter era. Thus, our universe exhibits 

the curvature parameter zero within the errors of 

measurement. 

More generally, the scaled difference  
𝐸2(𝑟,𝑣)−𝐸0

2

𝐸0
2𝛾2  in 

Eq. {19} is identified with the negative curvature pa-

rameter in Eq. {5}.Thus, we derive the usual FLE, 

and we derive a term for the curvature parameter in 

addition: 

𝐻2 =
8𝜋𝐺

3
𝜌 − 𝑘 

𝑐2

𝑅2   with 𝑘 = −
𝐸2(𝑟,𝑣)−𝐸0

2

𝐸0
2𝛾2    {22} 

In order to analyse the curvature parameter directly, 

we insert Eqs. {2-4} and cancel out 𝐸0
2𝛾2: 

𝑘 = −𝜀2(𝑟) + 𝛾−2 = −𝜀2(𝑟) + 𝜀2(𝑟) = 0   {23} 

This result represents a second solution of the flatness 

problem. Hereby, we consider a nonzero curvature 

parameter. By using energy conservation inherent to 

Eqs. {2-4}, we solve the flatness problem again.  

In our next solution, we do not use energy conserva-

tion. Of course, we do not state energy conservation 

would be violated, but we do not apply energy con-

servation. In principle, one might think that energy 

could be lost at a redshift of radiation, if one does not 

consider a corresponding gravitational potential, for 

instance. Accordingly, we introduce the density of ra-

diation and all essential densities in cosmology:     

2.3.7. Notations in cosmology 

In cosmology, dynamically essential densities are de-

noted as follows, see e. g. Hobson (2006) or Carmesin 

(2019) or Carmesin (2020a, pp 296-301): The density 

is a sum of the density of radiation 𝜌𝑟, the density of 

matter 𝜌𝑚 and the density of the cosmological con-

stant the density of radiation 𝜌Λ: 

𝜌 = 𝜌𝑟 + 𝜌𝑚 + 𝜌Λ        {24} 

In the time evolution, present-day values are marked 

by the subscript zero. For instance, the present-day 

value of the Hubble parameter is the Hubble constant 

𝐻0 = 𝐻(𝑡0), see Fig. 2. The inverse of the Hubble 

constant is called Hubble time, at a good approxima-

tion, see Carmesin (2019) or Hobson (2006), it is the 

age of the universe: 

  𝑡𝐻0
=

1

𝐻0
        {25} 

During the Hubble time, light travelled the light-

travel distance 𝑐 ⋅ 𝑡𝐻0
, it is called Hubble radius: 

   𝑅𝐻0
= 𝑐 ⋅ 𝑡𝐻0

=
𝑐

𝐻0
      {26} 

The density of flat space is called critical density, we 

derive with Eq. {22}: 

𝐻2 =
8𝜋𝐺

3
𝜌𝑐𝑟  and   𝐻0

2 =
8𝜋𝐺

3
𝜌𝑐𝑟.0 or  {27} 
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𝜌𝑐𝑟.0 =
3𝐻0

2

8𝜋𝐺
        {28} 

The present-day curvature parameter is expressed 

with a density: 

𝜌𝑘 = −𝜌𝑐𝑟
𝑐2

𝐻2𝑅2 
𝑘   or   Ω𝑘 = −

𝑐2

𝐻2𝑅2 
𝑘 {29} 

The ratio of a density and the critical density is called 

density parameter: 

𝜌𝑗

𝜌𝑐𝑟
= Ωj and  

𝜌𝑗,0

𝜌𝑐𝑟.0
= Ωj,0 with 𝑗 ∈ {𝑟, 𝑚, Λ, k}  {30} 

Einstein (1917) introduced the cosmological constant 

Λ. Accordingly, the corresponding density is a con-

stant: 

𝜌Λ(𝑡) = 𝜌Λ,0        {31} 

As the volume is proportional to the third power of 

the radius 𝑅3(𝑡), and as matter does not change as a 

consequence of expansion, the density of matter is 

proportional to 𝑅−3(𝑡): 

𝜌m(𝑡) = 𝜌m,0 ⋅ (
𝑅

𝑅𝐻0

)
−3

=
𝜌m,0

𝑎3   {32} 

Hereby, we introduce the scaled radius and the red-

shift 𝑧 =
Δ𝜆

𝜆
: 

𝑎(𝑡) =
𝑅(𝑡)

𝑅𝐻0

=
1

𝑧+1
    {33} 

As the volume is proportional to the third power of 

the radius 𝑅3(𝑡), and as the energy or dynamical den-

sity of radiation changes as a consequence of expan-

sion by the redshift proportional to 𝑅−1(𝑡), the den-

sity of radiation is proportional to 𝑅−4(𝑡): 

𝜌r(𝑡) = 𝜌r,0 ⋅ (
𝑅

𝑅𝐻0

)
−4

=
𝜌m,0

𝑎4   {34} 

Using the above definitions, the students express the 

density in terms of the density parameters as follows: 

𝜌 = 𝜌𝑐𝑟.0(ΩΛ + Ω𝑘,0𝑎−2 + Ω𝑚,0𝑎−3 + Ω𝑟,0𝑎−4){35} 

And the dynamics in Eq. {22} are as follows: 

𝐻2 = 𝐻0
2(ΩΛ + Ω𝑘,0𝑎−2 + Ω𝑚,0𝑎−3 + Ω𝑟,0𝑎−4){36} 

Hereby, the sum of the density parameters is one: 

ΩΛ + Ω𝑘,0 + Ω𝑚,0 + Ω𝑟,0 = 1  {37} 

The Planck collaboration (2020) measured the fol-

lowing parameters, see the TT-mode in table 2, the 

abstract and Carmesin (2019) for an evaluation of 

Ω𝑟,0: 

ΩΛ = 0,679 ± 0.013   {38} 

Ω𝑚,0 = 0.321 ± 0.013   {39} 

Ω𝑘,0 = 0.001 ± 0.002   {40} 

Ω𝑟,0 = 9.265 ⋅ 10−5 ± 3.1%  {41} 

H0 = 66.88 ± 0.92 
𝑘𝑚

𝑠⋅𝑀𝑝𝑐
   {42} 

 
Fig.6: Mass or dynamical mass 𝑀 in the ball with 

present-day radius 𝑅𝐻0
 as a function of the redshift 

𝑧. Thereby, the density 𝜌(𝑧) in Eq. {44} is a func-

tion of the redshift 𝑧, see Eqs. {33,35}.  

2.3.8. Time evolution of M   

As the only possibility for a nonzero curvature param-

eter is a time evolution of the field generating mass 𝑀 

in Figs. 4 and 5 and in Eq. {4}, we analyse that time 

evolution. 

For instance, we consider a ball with the present-day 

radius equal to the Hubble radius. At a scaled radius 

𝑎(𝑡), that ball had the radius 𝑎(𝑡). Thus, that ball had 

the following mass or dynamical mass, with the den-

sity in Eq. {34}, the critical density in Eq. {28} and 

the parameters in Eqs. {38-42}: 

𝑀(𝑎) = 𝜌(𝑎) ⋅
4𝜋

3
𝑎3 ⋅ 𝑅𝐻0

3  or  {43} 

𝑀(𝑧) = 𝜌(𝑧) ⋅
4𝜋

3

1

(1+𝑧)3  ⋅ 𝑅𝐻0
3   {44} 

That mass or dynamical mass in Eq. 44 as a function 

of the redshift is shown in Fig. 6. That function ex-

hibits a local minimum. Thus, that (dynamical) mass 

𝑀 is constant at the local minimum 𝑧𝑐𝑜𝑛𝑠𝑡 , so that the 

density parameter of curvature in Eq. {28} is zero at 

that redshift: 

Ω𝑘 = −
𝑐2

𝐻2𝑅2 
𝑘 and Ω𝑘(𝑧𝑐𝑜𝑛𝑠𝑡) = 0 {45} 

That result implies that the curvature is zero also at 

smaller redshifts 𝑧 ≤ 𝑧𝑐𝑜𝑛𝑠𝑡, or at later times 𝑡 ≥

𝑡𝑐𝑜𝑛𝑠𝑡, see Carmesin (2023c) or section 2.3.9. 

2.3.9. Time evolution of curvature   

We apply the method of the analysis of the curvature 

parameter 𝑘 and of the density parameter Ω𝑘 as a 

function of the radius 𝑟 of the ball. 

Firstly, at very small 𝑟 or in the very early universe, 

the radiation was blue-shifted compared to the pre-

sent-day primordial radiation, for details see Carme-

sin (2021a). In principle, that could have caused an 
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increased field generating mass or dynamic mass 𝑀 

in the ball in Fig. 4. In principle, that could have 

caused a large positive curvature, as proposed by 

Hobson (2006, p. 417) or by Guth (1981). This could 

be the case even if that effect was made smaller by 

the era of cosmic inflation, see e. g. Guth (1981), Car-

mesin (2019). We will show that such possible values 

of curvature in the early universe are not essential for 

the curvature in the present-day universe: 

Secondly, the curvature is zero at 𝑧𝑐𝑜𝑛𝑠𝑡  or at the time 

𝑡𝑐𝑜𝑛𝑠𝑡, see Eq. {45}. 

Thirdly, the density parameter Ω𝑘 in Eq. {45} is a 

function of time. With it and the FLE, the time deriv-

ative of that density parameter can be derived, see e. 

g. Hobson (2006, Eq. 15.48) or Carmesin (2023c): 

𝑑Ω𝑘

𝑑𝑡
= Ω𝑘[𝐻(Ω𝑚 + 2Ω𝑟 − 2ΩΛ)]  {46} 

As the term in the rectangular bracket does not be-

come infinite at redshifts 𝑧 ≤ 𝑧𝑐𝑜𝑛𝑠𝑡 , or at times 𝑡 ≥

𝑡𝑐𝑜𝑛𝑠𝑡, that bracket is limited by its maximum and by 

its minimum: 

[𝐻(Ω𝑚 + 2Ω𝑟 − 2ΩΛ)] ≤ 𝐵𝑚𝑎𝑥  {47} 

[𝐻(Ω𝑚 + 2Ω𝑟 − 2ΩΛ)] ≥ 𝐵𝑚𝑖𝑛   {48} 

With it, we derive an upper limit Ω𝑘,𝑢𝑝𝑝𝑒𝑟  and a lower 

limit Ω𝑘,𝑙𝑜𝑤𝑒𝑟  of the density parameter as follows: 

Ω𝑘,𝑙𝑜𝑤𝑒𝑟 ≤ Ω𝑘 ≤ Ω𝑘,𝑢𝑝𝑝𝑒𝑟   {49} 

𝑑Ω𝑘,𝑢𝑝𝑝𝑒𝑟

𝑑𝑡
= Ω𝑘,𝑢𝑝𝑝𝑒𝑟 ⋅ 𝐵𝑚𝑎𝑥    {50} 

𝑑Ω𝑘,𝑙𝑜𝑤𝑒𝑟

𝑑𝑡
= Ω𝑘,𝑙𝑜𝑤𝑒𝑟 ⋅ 𝐵𝑚𝑖𝑛   {51} 

The solutions are exponential functions with the ini-

tial value Ω𝑘(𝑧𝑐𝑜𝑛𝑠𝑡): 

Ω𝑘,𝑢𝑝𝑝𝑒𝑟 = Ω𝑘(𝑧𝑐𝑜𝑛𝑠𝑡) ⋅ 𝑒𝐵𝑚𝑎𝑥⋅(𝑡−𝑡𝑐𝑜𝑛𝑠𝑡) = 0  {52} 

Ω𝑘,𝑙𝑜𝑤𝑒𝑟 = Ω𝑘(𝑧𝑐𝑜𝑛𝑠𝑡) ⋅ 𝑒𝐵𝑚𝑖𝑛⋅(𝑡−𝑡𝑐𝑜𝑛𝑠𝑡) = 0  {53} 

As both functions are zero, and as the density param-

eter is limited by these, see Eq. {49}, the density pa-

rameter is zero at times 𝑡 ≥ 𝑡𝑐𝑜𝑛𝑠𝑡, or at redshifts 𝑧 ≤

𝑧𝑐𝑜𝑛𝑠𝑡: 

Ω𝑘 = 0  for  𝑡 ≥ 𝑡𝑐𝑜𝑛𝑠𝑡  or  𝑧 ≤ 𝑧𝑐𝑜𝑛𝑠𝑡 {54} 

Altogether, we derived that the curvature is zero at the 

present-day universe. Thus, we solved the flatness 

problem.   

3. Didactic analysis 

We provide three solutions of the flatness problem, in 

order to cover a wide range of discussed physical sit-

uations, proposed for instance by Hobson (2006, p. 

417) or Guth (1981). 

 

 

3.1. Didactic steps in the first solution 

In a first didactic step, the students realize in a discus-

sion that the solution of the curvature problem pro-

vided by general relativity and the FLE includes the 

observed value 𝑘 = 0 of the curvature parameter as a 

possibility. However, these theories do not predict the 

observed value. The students realize that there is an 

element missing in these theories. Moreover, they re-

alize that such a missing explanation of the observed 

flatness (𝑘 = 0) of global space is a problem of the 

theory. They understand that it makes sense to iden-

tify the problem and to call it flatness problem. In this 

manner, the students accept the cognitive conflict and 

are motivated to solve it in the course. This didactic 

step does not provide any technical learning barrier. 

So the step is directly executed in a discussion. 

In a second didactic step, during a discussion, the stu-

dents plan that we derive the squared Hubble param-

eter on our own, in order to analyse or solve the flat-

ness problem. The learners realize that the Schwarz-

schild metric is an ideal starting point, as it is con-

firmed by many experiments, as the local dynamics 

should explain the global dynamics, similarly as the 

molecules in a gas explain the universal gas equation 

via the kinetic gas theory. Moreover, the students feel 

confident, as they did already derive the Schwarz-

schild metric with help of the free fall tower, see Car-

mesin (2023b). This didactic step does not provide 

any technical learning barrier. So the step is directly 

executed in a discussion. 

In a third didactic step, we show that there is no field 

in the prototypical ball. Hereby, the mathematical 

barrier is high. That barrier consists of two parts: the 

idea of the separation of caused fields as shown in 

Fig. 5, and the analysis on the basis of that idea. The 

first part of the barrier is very high, so Fig. 5 and the 

idea are presented to the learners.  

In the didactic step four, the field at the probe mass is 

derived. Hereby, the learners can activate their 

knowledge about the field at Earth. Thus the learning 

barrier is intermediate. Accordingly, the step is di-

rectly executed in a discussion. 

In a fifth didactic step, we transform the energy func-

tion 𝐸(𝑟, 𝑣) so that we derive the squared Hubble pa-

rameter. As we know the desired product of the trans-

formation, we can plan each of the steps of the trans-

formation. At each step, the learning mathematical 

learning barrier is relatively low, as only simple 

equivalent transformations are required. Each equiv-

alent transformation is planned in a short discussion, 

then everybody can execute it, finally, the result is re-

flected in a short discussion. In this manner, we 

achieve the first solution of the flatness problem, see 

Eq. {21}. 

3.2. Didactic steps in the second solution 

In the didactic step six, we identify the term of the 

curvature parameter in Eq. {22} and evaluate it in Eq. 

{23}. This provides the second solution of the 
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flatness problem. Thereby, there occurs no essential 

learning barrier. So the step is directly executed in a 

discussion. Hereby, the learners should realize that 

energy conservation is used again. 

3.3. Didactic steps in the third solution 

In the seventh didactic step, the mass or dynamic 

mass is calculated as a function of time. That process 

is straight forward, but time consuming. Accordingly, 

the result in Fig. 6 can be presented directly. Then the 

students can identify the minimum, with slope zero, 

the corresponding energy conservation and the im-

plied flatness at the time or redshift of the minimum.  

Each of these arguments has a low barrier, however, 

the chain of arguments is complex. Thus, this step is 

at best achieved in an interactive discussion.  

In the didactic step eight, the differential equation 

{46} is presented and discussed. Thereby, the plan to 

introduce an upper and lower bound is introduced in 

an interactive manner. These bounds can be derived 

by the learners. Hereby, the mathematical barrier is 

high. So that solution and the conclusion can be de-

rived interactively as well. Thus, the third solution of 

the flatness problem is derived. Hereby, energy con-

servation has not been used. 

4. Experiences with teaching 

I used this solution of the flatness problem in several 

courses in the framework of a research club. Moreo-

ver I used it in several courses in general studies at 

the university.  

In all groups, we used and needed the preconditions 

of the learning process. Thereby, we use the transfor-

mation as the start of the formation of the theory of 

the Big Bang. Accordingly, the learners have an es-

pecially high motivation, as they want to understand 

how the dynamics of the Big Bang works. Thereby, 

the first solution of the flatness problem arises as a 

by-product of the theory. The cognitive conflict about 

the curvature provides an additional motivation, of 

course. As the transformation has no essential mathe-

matical barrier, all students can explain the transfor-

mation and interpret the results, including the first so-

lution of the flatness problem. The second solution 

provides a term for the curvature constant as another 

by-product, and the derivation of its value is easy. 

The third solution provides the introduction of the 

densities as a by-product. These densities are essen-

tial for the following treatment of dark energy and the 

𝐻0 tension, see e. g. Carmesin (2018, 2019, 2021a,b, 

2022a, 2023c). As the students know that application 

of the densities, there is an additional high motivation 

hereby. So far, I treated the introduction and solution 

of the differential equations only in the form of a dis-

cussion, whereby I provided the derivation in written 

form, in order to save time. The students appeared 

very interested also in that topic.  

 

 

5. Discussion 

Spacetime and its curvature are very interesting to 

many students, as space and time are very fundamen-

tal concepts. Moreover, the dynamics of the Big Bang 

is very motivating to learners.   

In the proposed learning process, the flatness problem 

serves as a cognitive conflict. This is especially moti-

vating. Accordingly, the students participate in the so-

lution at various levels: They can derive the dynamics 

of the Big Bang on their own, if they are supported by 

common phases of planning the steps and interpreting 

the results. Thus, the learning process provides an ex-

perience of competence and self-esteem. 

Moreover, the learning process shows how the local 

dynamics of the Schwarzschild metric implies the 

global dynamics of the expansion of space since the 

Big Bang. Furthermore, the learning process provides 

clear insights into the role of energy conservation and 

global curvature of spacetime, see e. g. Carmesin 

(2019, 2021c). The students can experience, how en-

ergy conservation can solve the flatness problem. Ad-

ditionally, they can realize that it suffices to identify 

a minimum of dynamic mass or energy in Fig. 6, in 

order to derive and explain the flatness problem.  

Moreover, all results are derived from first principles 

in an exact manner. So, the new results are fully con-

nected with previous knowledge, and a high learning 

efficiency is achieved, see Hattie (2009). Further-

more, the results explain observations, partially ob-

tained by the learners, see Figs. 1-3, such explana-

tions of observations also provide a high learning ef-

ficiency, see Hattie (2009). 

I tested the learning process in several learning 

groups several times. I showed that most learning bar-

riers are low. Moreover, the results are exact, very 

elucidating, rich in content and useful for many topics 

of the Big Bang, spacetime and dark energy. Thereby, 

the theories of general relativity and of the FLE are 

already very good, however, the solution of the flat-

ness problem is beyond these theories. Similarly, the 

theories of general relativity and of the FLE describe 

the evolution of spacetime already in a very good 

manner, however, the prepared derivation and expla-

nation of dark energy, see Carmesin (2018, 2019, 

2021a,b,d 2022a, 2023c) is beyond these theories.     

The learning process is very robust and transparent. I 

provide a description of the learning process that can 

be used directly for teaching. 

6. Literature 

Burisch, C. et al. (2022). Universum Physik Gesamt-

band SII. Berlin: Cornelsen Verlag. 

Carmesin, Hans-Otto (2018). Theory for the Emer-

gence of Space, Dark matter, Dark Energy and 

Space-Time. Berlin: Verlag Dr. Köster. 

Carmesin, Hans-Otto (2019): Die Grundschwingun-

gen des Universums - The Cosmic Unification. 

Berlin: Verlag Dr. Köster. 

29



Carmesin 

Carmesin, Hans-Otto et al. (2020a): Universum Phy-

sik, Qualifikationsphase, Niedersachsen. Berlin: 

Cornelsen Verlag. 

Carmesin, Hans-Otto (2020b): The Universe Devel-

oping from Zero-Point-Energy - Discovered by 

Making Photos, Experiments and Calculations. 

Berlin: Verlag Dr. Köster. 

Carmesin, Hans-Otto (2021a). Cosmological and El-

ementary Particles Explained by Quantum Gravity. 

Berlin: Verlag Dr. Köster. 

Carmesin, Hans-Otto (2021b). Quanta of Spacetime 

Explain Observations, Dark Energy, Graviton and 

Nonlocality. Berlin: Verlag Dr. Köster. 

Carmesin, Hans-Otto (2021c): The Origin of the En-

ergy. PhyDid B, p. 29-34.  

Carmesin, Hans-Otto (2021d): Lernende erkunden 

die Raumzeit. Der Mathematikunterricht 67(2), pp 

47-56.  

Carmesin, Hans-Otto (2022a). Quantum Physics Ex-

plained by Gravity and Relativity. Berlin: Verlag 

Dr. Köster. 

Carmesin, Hans-Otto et al. (2023a). Universum Phy-

sik Nordrhein-Westfalen Einführungsphase. Ber-

lin: Cornelsen. 

Carmesin, Hans-Otto (2023b). Students discover the 

Schwarzschild metric at a free fall tower. PhyDid 

B. 

Carmesin, Hans-Otto (2023c). Geometric and Exact 

Unification of Spacetime, Gravity and Quanta. Ber-

lin: Verlag Dr. Köster. 

Einstein, Albert (1905). Zur Elektrodynamik beweg-

ter Körper. Annalen der Physik, 17, pp 891-921. 

Einstein, Albert (1915). Die Feldgleichungen der 

Gravitation. Sitzungsberichte der Königlich Preu-

ßischen Akademie der Wissenschaften, pp 844-

847. 

Einstein, Albert (1917). Kosmologische Betrachtun-

gen zur Relativitätstheorie. Sitzungsberichte der 

Königlich Preußischen Akademie der Wissen-

schaften, pp 142-152. 

Friedmann, Albert (1915). Die Feldgleichungen der 

Gravitation. Sitzungsberichte der Königlich Preu-

ßischen Akademie der Wissenschaften, pp 844-

847. 

Guth, Alan H. (1981). Inflationary universe: A possi-

ble solution to the horizon and flatness problems. 

Physical Review D, 23, pp 347-356. 

Hattie, John (2009). Visible Learning. London: Tay-

lor and Francis Ltd. 

Hilbert, David (1915). General Relativity. Cam-

bridge: Cambridge University Press. 

Hobson, M. P. and Efstathiou, G. P. and Lasenby, A. 

N. (2006). General Relativity. Cambridge: Cam-

bridge University Press. 

Lemaitre, Albert (1915). Die Feldgleichungen der 

Gravitation. Sitzungsberichte der Königlich Preu-

ßischen Akademie der Wissenschaften, pp 844-

847. 

Newton, Isaac (1687). Mathematical Principles of 

Natural Philosophy. Translated into English by An-

drew Motte. New York: Daniel Adee. 

Noether, Emmy (1918). Invariante Variationsprob-

leme. Nachrichten der Königlichen Gesellschaft 

der Wissenschaften zu Göttingen, Math-phys. 

Klasse, pp 235-257. 

Schwarzschild, K. (1916). Über das Gravitationsfeld 

eines Massenpunktes nach der Einstein’schen The-

orie. Sitzungsberichte der Deutschen Akademie der 

Wissenschaften, pp 186-196. 

Will, Clifford, M. (2014). The Confrontation between 

General Relativity and Experiment. Living Rev. 

Relativity, 17, (2014), 4, pp 1-117. 

 

Acknowledgement 

I am very grateful to I. Carmesin for many interest-

ing discussions and for proofreading the manuscript. 

I am also grateful to Matthias Carmesin for interest-

ing discussions. 

 

    

 

30




