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Abstract 

In everyday life, time and space are essential. Moreover, space and time are fundamental concepts 

of physics. For it, Newton proposed flat space and time evolving at a constant rate as a basis. Ac-

cordingly to its relevance in everyday life and in physics, students are interested in the topic. Here, 

I present a learning process, by which learners can achieve the essential insights of special relativity 

and general relativity in an exact manner. Thereby, students experience basic principles directly at 

a free fall tower and by taking photographs in a school observatory. Using these basic principles, 

they achieve inspiring and exact results on their own, after an appropriate instruction. I present the 

learning process and a didactic analysis, so that you can directly use the concept for teaching. I tested 

the learning process in various learning groups, and I report about experiences.   

 

1. Introduction 

Newton (1687) postulated that space is flat and static 

and that time evolves at a constant rate. However, in 

their school observatory, students take photos of a 

gravitational lens, see Fig. 1 and Carmesin (2018a,b). 

With it they confirm the concept of curved spacetime 

proposed by Einstein (1915). But how can they un-

derstand or experience it?  

1.1. Organization of the paper 

We propose our learning process in section 2. In part 

3, we provide a didactic analysis. Experiences with 

teaching are presented in part 4. We discuss our find-

ings in section 5. 

2. Learning process 

The students are members of a research club. They 

are in classes 5 to 13. Accordingly, the younger pupils 

describe findings and graphic representations, inter-

mediate students evaluate measured quantities, while 

advanced students provide derivations.  

 

Fig.1: Students observe the twin quasar, a gravitational 

lens: It causes the two marked pictures of the same galaxy. 

2.1. Special relativity 

As a precondition of teaching, the students treated al-

ready basic facts in special relativity. The students use 

the light curve of a binary star in order to realize that 

the velocity of light in vacuum does not depend on the 

velocity of the light source, see Fig. 2. In particular, 

the light curve is regular, see Fig. 3. If the light emit-

ted by the two stars would have different velocities as 

a consequence of the different velocities of the two 

stars, then the light curve would be very different 

from the observed light curve. In this manner, the stu-

dents confirm on their own that the velocity of light 

in vacuum does not depend on the velocity of the 

source of the light. Accordingly, light is used as a 

measure for space and time. This is the main principle 

of special relativity.  

Based on that principle, the students analyse the con-

cept of the light clock in Fig. 4. The black box emits 

a laser beam. The beam propagates 0.6 m to the bot-

tom. Then it is reflected and propagates back the box. 

After that process, the box indicates that the time  

 

Fig.2: Students observed the star W Ursae Mayoris. It is a 

photometric binary. The students measured the light curve.  
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Fig.3: Students observed the star W Ursae Mayoris. It is a 

photometric binary. The students measured the light curve.  

interval t = 4 ns has elapsed, as the light propagated 

the light-travel distance 1.2 m. However, if the clock 

moves at the velocity v = 0.18 m/ns, then an observer 

at rest observes that the light propagated the distance 

1.5 m. Thus the observer at rest measures that the pro-

cess lasted 5 ns, as the velocity of light has the same 

value in both systems or frames. Accordingly, be-

tween the same two events of the emission and arrival 

of the light at the box, there elapse two different 

amounts of time in the two different systems: In the 

own system of the clock, there elapses the shortest 

time 𝑡𝑜𝑤𝑛 = 4𝑛𝑠. In the rest system or external sys-

tem, there elapses the longer time 𝑡𝑒𝑥𝑡 = 5𝑛𝑠. Using 

the theorem of Pythagoras, the students derive the 

equation of the time dilation: 

𝑡𝑒𝑥𝑡 = 𝑡𝑜𝑤𝑛 ⋅ 𝛾(𝑣)    {1} 

Thereby, the Lorentz factor 𝛾(𝑣) is defined as fol-

lows: 

𝛾(𝑣) =
1

√1−
𝑣2

𝑐2 

     {2} 

Based on the Lorentz factor, the students analyse the 

energy 𝐸(𝑣) that a mass 𝑚𝑜𝑤𝑛 or 𝑚0 has at a velocity 

𝑣: 

𝐸(𝑣) = 𝑚𝑜𝑤𝑛 ⋅ 𝛾(𝑣) ⋅ 𝑐2    {3} 

In the light clock, the velocity of the clock and the 

propagation of light are orthogonal to each other. 

Next, the students analyse the case of parallel velocity 

and propagation in Fig. 5. Thereby, they discover the 

length contraction. 

      

 

Fig.4: Light clock, drawn similar to Burisch et al. (2022).  

 

Fig.5: An observer moving at the box with two mirrors 

measures the light-travel distance drown between the mir-

rors. An external observer at rest in his system rext 

measures the light-travel distance drext between the same 

mirrors.  

The observer at the moving box in Fig. 5 measures 

the following light-travel distance 𝑑𝑟𝑜𝑤𝑛: 
2

𝑐
⋅ 𝑑𝑟𝑜𝑤𝑛 = 𝑑𝑡𝑜𝑤𝑛    {4} 

In his system rext, the observer at rest in Fig. 5 

measures the following light-travel time: The propa-

gation from the back mirror towards the front mirror 

requires the light-travel time 
𝑑𝑟𝑒𝑥𝑡

𝑐−𝑣
. The propagation 

from the front mirror towards the back mirror requires 

the light-travel time 
𝑑𝑟𝑒𝑥𝑡

𝑐+𝑣
. The observed light-travel 

time is the sum: 

𝑑𝑡𝑒𝑥𝑡 =
𝑑𝑟𝑒𝑥𝑡

𝑐−𝑣
+

𝑑𝑟𝑒𝑥𝑡

𝑐+𝑣
=

2

𝑐
⋅ 𝑑𝑟𝑒𝑥𝑡 ⋅ 𝛾2(𝑣) {5} 

The students use Eqs. {1}, {4} and {5}, in order to 

derive the relation: 

𝑑𝑡𝑒𝑥𝑡 = 𝑑𝑡𝑜𝑤𝑛𝛾 =
2

𝑐
𝑑𝑟𝑜𝑤𝑛𝛾 =

2

𝑐
𝑑𝑟𝑒𝑥𝑡𝛾2 {6} 

This equation is solved for 𝑑𝑟𝑒𝑥𝑡 . Thus, the students 

derive the following length contraction: 

𝑑𝑟𝑒𝑥𝑡 =
𝑑𝑟𝑜𝑤𝑛

𝛾
     {7} 

The students realize that they derived the length con-

traction from the time dilation. Thus, these transfor-

mations are not independent from each other. There-

from, they realize that space and time form a system. 

It is called spacetime. 

 
Fig.6: Light flash  

Einstein (1905) described that system of spacetime 

with help of a light flash, see Fig. 6. Thereby, the  

light propagates the distance 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 dur-

ing the scaled time 𝑐2 ⋅ 𝑑𝑡2. The difference is zero 

and denoted by the line element 𝑑𝑠2: 

𝑑𝑠2 = −𝑐2𝑑𝑡2 + 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 = 0  

If that increment describes an own system moving at 

a velocity v in direction x relative to an external sys-

tem, then the line element in the external system is as 

follows: 
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𝑑𝑠2 = −
𝑐2𝑑𝑡2

𝛾2 + 𝑑𝑥2 ⋅ 𝛾2 + 𝑑𝑦2 + 𝑑𝑧2 = 0   {8} 

The line element describes a scalar product in four-

dimensional spacetime. 

The time dilation and the Lorentz factor are used in 

order to derive the relativistic energy of a mass m0, 

for details of the derivation see Burish et al. (2022, pp 

480-483): 

𝐸(𝑣) = 𝑚0𝑐2 ⋅ 𝛾(𝑣)    {9} 

Alternatively, the relativistic energy can be obtained 

from observation, see Carmesin et al. (2020 p. 49). 

2.2. General relativity 

The students summarize: Special relativity is based 

on the invariance of the velocity of light. If an own 

system moves at constant velocity relative to an ex-

ternal system or rest system, then the values of phys-

ical quantities are transformed as a consequence of 

the invariance of the velocity of light. Such transfor-

mations are described by special relativity. 

Students realize that we did not yet analyse conse-

quences in accelerated systems. This analysis is the 

goal of general relativity. In order to investigate an 

accelerated system, the students make an excursion to 

a free fall tower. At that tower, the students can expe-

rience, measure and analyse consequences of a pre-

cisely known acceleration.  

2.3. Investigations at a free fall tower 

The students make an excursion to a free fall tower, 

see Fig. 7. At the tower, the students measure gravity 

and acceleration with their smartphones. For it, they 

can use the app phyphox or physics toolbox, for in-

stance.  

 

Fig.7: Free fall tower Scream at the Heidepark at Soltau 

2.3.1. Model experiment 

In order to understand the acceleration sensor, the stu-

dents perform the model experiment in Fig. 8. A  

block represents the smartphone. A spring steel wire 

is attached to the block, and a mass is attached to the 

spring steel wire. This represents the acceleration sen-

sor. At rest, the mass bends the spring steel wire 

downwards, and so it indicates the gravitational 

field  �⃗�∗ directed in the SAME direction (down-

wards), see Fig. 8. 

 

Fig.8: In this model experiment of an acceleration sensor, 

the sensor is at rest or accelerated upwards. 

If the block experiences an acceleration  �⃗� to the right, 

then the mass bends the spring steel wire to the 

OPPOSITE direction (to the left), see Fig. 9. Thus, at 

the display, the acceleration sensor shows the differ-

ence of acceleration observed by an external ob-

server  �⃗�𝑒𝑥𝑡 and gravitational field: 

�⃗�𝑑𝑖𝑠𝑝𝑙𝑎𝑦 = �⃗�𝑒𝑥𝑡 − �⃗�∗    {10} 

 

Fig.9: In this model experiment of an acceleration sensor, 

the sensor is accelerated to the right. 

2.3.2. Observations at the free fall tower 

At the free fall tower, the students put their 

smartphones into a shirt pocket, with the y-axis show-

ing upwards. At the top of the tower, they start the 

recording of the y-component of the acceleration as a 

function of time.  

 

Fig.10: Measurement at the free fall tower with an accel-

eration sensor 
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A typical result is shown in Fig. 10. The students de-

scribe and explain the result as follows: At rest at the 

top of the tower, the acceleration is zero, so the sensor 

shows the absolute value of the gravitational field, see 

Fig. 8 or Eq. {10}: 

 �⃗�𝑑𝑖𝑠𝑝𝑙𝑎𝑦 = 0⃗⃗𝑒𝑥𝑡 − �⃗�∗ = |�⃗�∗| = 9.81
𝑚

𝑠2 {11} 

Most students prefer the explanation with Fig. 8. 

At free fall, the displayed acceleration is zero, 

see Fig. 10. For it, most students prefer the explana-

tion that the smartphone and the mass of the sensor 

fall in the same manner. As a consequence, the mass 

of the sensor does NOT bend the spring steel wire, see 

Fig. 11. Consequently, the displayed acceleration is 

zero. Some students explain the observation with Eq. 

{10}:    

 �⃗�𝑑𝑖𝑠𝑝𝑙𝑎𝑦 = �⃗�𝑒𝑥𝑡 − �⃗�∗ = −9.81
𝑚

𝑠2 + 9.81
𝑚

𝑠2 = 0
𝑚

𝑠2

      {12} 

 

Fig.11: At free fall, the mass in the model experiment of 

an acceleration sensor does not bend the spring steel wire. 

After free fall, the displayed acceleration is in-

creases up to 40
𝑚

𝑠2 , see Fig. 10. Spontaneously, many 

students explain it with the slowdown of the gondola 

including the seats and passengers. After a short dis-

cussion, all agree that the display shows the sum of 

the acceleration of the slowdown and the gravitational 

field, according to Eq. {10} or Figs. 8 and 9. 

2.4. Equivalence principle 

When the students are reminded that we want to in-

vestigate the physics of the accelerated observer, they 

realize that the display shows the acceleration  �⃗�𝑜𝑤𝑛  

of the accelerated observer in his own system. Ac-

cordingly, Eq. {10} is as follows: 

�⃗�𝑑𝑜𝑤𝑛 = �⃗�𝑒𝑥𝑡 − �⃗�∗    {13} 

In particular, if an observer is at free fall, then the ac-

celeration in the own system is zero. Thus, the accel-

eration  �⃗�𝑒𝑥𝑡 observed in the system of the Earth (or 

of the field generating mass in general) is equal to the 

gravitational field: 

�⃗�𝑒𝑥𝑡 = �⃗�∗     {14} 

In a discussion, the students realize that this is a basic 

physical principle, as it exactly describes the motion 

caused by a gravitational field. That principle is called 

equivalence principle.  

2.5. Principle of energy conservation 

In addition to the equivalence principle, we use the 

principle of energy conservation. Usually, no student 

asks whether that principle is applicable here. In order 

to provide a better overview, I proposed an analysis 

of the applicability of the principle of energy conser-

vation.  

Firstly, we realized that different energies are ob-

served in different systems: For instance, if you ride 

a bicycle, then the kinetic energy is zero in your own 

system or frame. However, the kinetic energy is pos-

itive in the frame of an observer sitting at a bench 

nearby. 

Secondly, we realized that the principle of energy 

conservation holds for a process taking place in a con-

stant gravitational field: For instance, if you fall at 

your seat in the gondola of a free fall tower, then the 

height and the kinetic energy are both zero in your 

own frame. In contrast, the kinetic energy 𝐸𝑘𝑖𝑛  in-

creases and the height as well as the potential energy 

𝐸𝑝𝑜𝑡 decrease as a function of time in the frame of an 

observer sitting at a bench near the tower. Thereby, 

the absolute values of the changes Δ𝐸𝑘𝑖𝑛 and Δ𝐸𝑝𝑜𝑡 

are equal: 

Δ𝐸𝑘𝑖𝑛 = |Δ𝐸𝑝𝑜𝑡|    {15} 

Accordingly, the principle of energy conservation 

holds in both systems. 

However, if the gravitational field would be switched 

off at the end of the process of acceleration, then the 

kinetic energy would still be positive, whereas the po-

tential energy would be zero. Thus, the principle of 

energy conservation would not hold in the system at 

the bench. Of course, the gravitational field is con-

stant, and as a consequence, the principle of energy 

conservation holds.  

The students are informed: In each system that is in-

variant as a function of time, the principle of energy 

conservation holds. Emmy Noether (1918) derived 

this result in general. 

2.6. Derivation of the exact energy function 

In an interactive process, we analysed the energy of a 

mass m0 that is at free fall in the gravitational field of 

a mass M and that has the velocity v = 0 in the radius 

𝑟∞ describing the limit 𝑟 → ∞, see Eq. {9}:                    

𝐸(𝑟∞, 𝑣) = 𝑚0 ⋅ 𝑐2    {16} 

During free fall, v increases, so the energy is multi-

plied by Lorentz factor in {2}. According to Energy 

conservation, the Lorentz factor is compensated by a 

position factor 𝜀(𝑟), so that the product of both fac-

tors is one: 

 1 = 𝛾(𝑣) ⋅ 𝜀(𝑟)    {17} 

We apply the derivative and the chain rule: 

0 =
𝑑

𝑑𝑟
(𝛾(𝑣(𝑟)) ⋅ 𝜀(𝑟)) =

𝑑𝛾

𝑑𝑣
⋅

𝑑𝑣

𝑑𝑟
⋅ 𝜀 + 𝛾 ⋅

𝑑𝜀

𝑑𝑟
  {18}  

The two above factors of the position factor are eval-

uated with help of the chain rule:  

 
𝑑𝑣

𝑑𝑟
=

𝑑𝑣

𝑑𝑡
⋅

𝑑𝑡

𝑑𝑟
=

𝑎

𝑣
  &   

𝑑𝛾

𝑑𝑣
= 𝛾3 𝑣

𝑐2  {19} 

The derivatives in Eq. {19} are inserted in Eq. {18} 

(representing energy conservation): 
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𝛾3 𝑣

𝑐2 ⋅
𝑎

𝑣
⋅ 𝜀 + 𝛾 ⋅

𝑑𝜀

𝑑𝑟
= 0   {20} 

In order to derive a differential equation, we solve for 

the derivative of the position factor. Hereby, we apply 

energy conservation in Eq. {17}: 

𝑑𝜀

𝑑𝑟
= 𝜀′(𝑟) = −

𝑎

𝑐2 ⋅
1

𝜀(𝑟)
   {21} 

In order to relate the position factor to the gravita-

tional field, we apply the equivalence principle. 

Hereby we remind that we did not explicate the sign 

of the acceleration: 

𝜀′(𝑟) = −
|𝐺∗|

𝑐2 ⋅
1

𝜀(𝑟)
= −

𝐺𝑀

𝑐2⋅𝑟2 ⋅
1

𝜀(𝑟)
  {22}                                                    

We abbreviate the mass M with help of the Schwarz-

schild radius: 

𝑅𝑆 =
2𝐺𝑀

𝑐2      {23} 

With it, the differential equation is as follows: 

𝜀′(𝑟) = −
𝑅𝑆

2⋅𝑟2 ⋅
1

𝜀(𝑟)
    {24} 

In order to obtain a solution, we make an Ansatz:  

𝜀(𝑟) = √1 −
𝑅𝑆

𝑟
      {25} 

We confirm the Ansatz by inserting it into the differ-

ential equation {25} and into the boundary condition 

Eq. {16}. Altogether the energy of the falling mass is 

as follows: 

𝐸(𝑟, 𝑣) = 𝑚0𝑐2 ⋅
√1−

𝑅𝑆
𝑟

√1−
𝑣2

𝑐2

    {26} 

2.7. Classical approximation of the exact energy 

In order to compare the exact energy in Eq. {26} with 

the classical energy, the students realized that the ra-

tios 
𝑅𝑆

𝑟
 and 

𝑣2

𝑐2 are very small compared to one in a 

classical system. Accordingly, they expressed the Lo-

rentz factor as a function of 
𝑣2

𝑐2 by the tangent. The 

tangent describes the linear order and is marked by a 

dot above the equality sign: 

𝛾 (
𝑣

𝑐
) =

1

√1−
𝑣2

𝑐2

=̇ 1 +
1

2

𝑣2

𝑐2    {27} 

Similarly, the students derive the position factor in 

linear order: 

𝜀 (
𝑅𝑆

𝑟
) = √1 −

𝑅𝑆

𝑟
 =̇ 1 −

1

2

𝑅𝑆

𝑟
   {28} 

Thus, the exact energy is expressed in linear order as 

follows: 

𝐸(𝑟, 𝑣) =̇ 𝑚0𝑐2 ⋅ (1 +
1

2

𝑣2

𝑐2 −
1

2

𝑅𝑆

𝑟
)  {29} 

We applied the distributive law and the abbreviation 

in Eq. {23}: 

𝐸(𝑟, 𝑣) =̇ 𝑚0𝑐2 +
1

2
𝑚0𝑣2 − 

𝐺⋅𝑀⋅𝑚0

𝑟
 {30} 

In this term, the students identified the classical ki-

netic energy  

𝐸𝑘𝑖𝑛 =̇
1

2
𝑚0𝑣2,    {31} 

The classical potential energy 

𝐸𝑝𝑜𝑡 =̇− 
𝐺⋅𝑀⋅𝑚0

𝑟
    {32} 

And the relativistic energy of a mass m0: 

𝐸0 = 𝑚0𝑐2     {33} 

2.8. Derivation of the Schwarzschild metric 

The students derived the  Schwarzschild metric in the 

form of the line element ds2, see Eq. {8}. For it, they 

used the line element describing the effect of the ve-

locity, see Eq. {17}. In free fall, the Lorentz factor is 

equal to the inverse position factor, according to the 

law of energy conservation in Eq. {17}. So the effect 

of the velocity can be transformed to the effect of the 

position: 

𝑑𝑠2 = −𝑐2𝑑𝑡2𝜀2 +
𝑑𝑥2

𝜀2 + 𝑑𝑦2 + 𝑑𝑧2 = 0   {34} 

This line element describes the falling mass at the ra-

dius 𝑟  for the case that the velocity has been slowed 

down to zero. In principle, the above Eq. represents 

the Schwarzschild metric, see e. g. Schwarzschild 

(1916) or Hobson (2006). In the usual form, spherical 

polar coordinates are used: 

𝑑𝑦2 + 𝑑𝑧2 = 𝑟2𝑑𝜃2 + 𝑟2 ⋅ sin2(𝜃) ⋅ 𝑑𝜙  {35} 

Additionally, usually, the position factor is replaced 

according to its definition: 

𝑑𝑠2 = −𝑐2𝑑𝑡2 ⋅ (1 −
𝑅𝑆

𝑟
) +

𝑑𝑟2

1−
𝑅𝑆
𝑟

+ 𝑟2𝑑𝜃2 + 𝑟2 ⋅

sin2(𝜃) ⋅ 𝑑𝜙     {36} 

2.9. Applications of the Schwarzschild metric 

The students applied the Schwarzschild metric in or-

der to explain the gravitational lens in Fig. 1. For de-

tails see Carmesin (2018a,b) or Burisch et al. (2022, 

p. 488). Moreover, they used that metric in order to 

explain the black hole, Burisch et al. (2022, p. 489). 

Additionally, the students explained autonomous cars 

with help of the derived general relativity, see Burisch 

et al. (2022, p. 489). Furthermore, the learners used 

the concepts of general relativity in order to derive 

results about the expansion of space since the Big 

Bang, see e. g. Burisch et al. (2022, p. 492-502) or 

Carmesin et al. (2020, pp. 296-302). Additionally, the 

students applied the concepts of general relativity to 

gravitational waves, see e. g. Burisch et al. (2022, p. 

518-519) or Carmesin (2017).  

3. Didactic analysis 

The approach to relativity presented above is based 

on the following didactic steps:  
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3.1. Didactic steps in special relativity 

In a first didactic step, the students discover the invar-

iance of the velocity of light. For it, they use the light 

curve (Fig. 3) of the star W Ursae Mayoris (Fig. 2), 

obtained by students in the school observatory. 

Thereby, the cognitive conflict with the Galileo trans-

formation in everyday life is elaborated. Hereby, the 

students realize that the invariance is a completely 

new and fundamental principle. The used learning 

material has the advantage, that students can obtain 

that result by observation on their own, in principle. 

Moreover, the used light emitted by a binary star can 

be extended to a thought experiment that provides the 

invariance of the velocity of light, see Carmesin 

(2022). There is no mathematics used here, so the 

technical learning barrier is very low. Furthermore, 

the students can obtain the hypothetic light curve cor-

responding to the basic Galileo transformation by a 

computer simulation, see Carmesin (2006).  

In a second didactic step, the students derive the time 

dilation and the Lorentz factor. Mathematically, only 

the theorem of Pythagoras is used. So the technical 

learning barrier is very low. Hereby, the students re-

alize that the usual assumption of everyday life and of 

Newton (section 1) of constant rate of increase of time 

is invalid in general. Usually, this is very inspiring to 

the students. This effect can be made very transparent 

with help of the twin paradox, see e. g. Burisch et al. 

(2022, p. 478-479) or Carmesin (2016).  

In a third didactic step, the light-travel distance is 

used in order to derive the Lorentz contraction. Math-

ematically, only the third binomial formula is used. 

So the technical learning barrier is very low. The re-

sult is very inspiring, as it shows that space and time 

are combined to spacetime. 

In the didactic step four, a light flash is used in order 

to develop the line element ds2. Mathematically, only 

the theorem of Pythagoras is used. So the technical 

learning barrier is very low. The result is very 

propädeutic, as it is extended to a representation of 

the Schwarzschild metric in section 2.8. 

In a fifth didactic step, the relativistic energy is de-

rived from the time dilation, see Eq. {9}. Mathemati-

cally, this derivation requires an integration, see 

Burisch et al. (2022, pp. 480-483). Alternatively, the 

relativistic energy can be obtained from observation, 

see Carmesin et al. (2020 p. 49). Hereby, the mathe-

matical and the conceptual learning barrier are both 

very low. 

3.2. Didactic steps in general relativity 

In the didactic step six, the concept of the investiga-

tion of acceleration in general relativity and the use of 

the acceleration sensor are elaborated. The developed 

ideas are very inspiring, and there is no mathematical 

learning barrier. 

In the seventh didactic step, the equivalence principle 

is obtained by observation at the free fall tower. The 

students like that experiment very much, as they can 

experience and measure the state of free fall. The 

analysis of the data (Fig. 10) is very elucidating, and 

the concept of zero gravity at free fall is very surpris-

ing and inspiring to most students. Moreover, the 

learners realize that the equivalence principle is very 

powerful, as it combines gravity and motion is a pre-

cise and clear manner. 

In didactic step eight, the conditions of the principle 

of energy conservation are analysed. This didactic 

step can be omitted, as most learners have no doubts 

about that concept. 

In didactic step nine, the exact energy function is de-

rived. Hereby, several derivatives have to be evalu-

ated, including a test of an Ansatz by inserting into a 

derived differential equation. So the mathematics of 

differentiation is required. In comparison to the usu-

ally used mathematic of differential geometry, the 

proposed learning process has a very low learning 

barrier. The result is fully exact. Thus, this didactic 

step is regarded as highly efficient. 

In a tenth didactic step, the classical energy is derived. 

For it, a linear approximation or the functional term 

of a tangent is elaborated. Thus, the mathematics of 

differentiation is required. In principle, that step could 

be omitted, as it is not used in the following. How-

ever, the students like that step very much, as it con-

nects the new exact energy to the well-known classi-

cal energy. According to Hattie (2009), the learning 

efficiency is very high (1.48), as new and previous 

knowledge are connected in the field of science. 

In didactic step eleven, the Schwarzschild metric is 

derived. The result is very inspiring, as it provides 

new insights in connects the Schwarzschild metric 

with the Minkowski metric, formally. Thus, this step 

has a very high learning efficiency according to 

Hattie (2009). Moreover, the achieved result is exact. 

As this result is usually derived via the Einstein field 

equation in four-dimensional spacetime by using dif-

ferential geometry, see e. g. Hobson (2006), the pre-

sent learning process is especially efficient, as the ex-

act result is obtained by a complete and one-dimen-

sional analysis based on the mathematics of calculat-

ing derivatives only. This step provides the essential 

result, and it makes possible many applications, see 

section 2.9. 

4. Experiences with teaching 

I used this derivation of the Schwarzschild metric in 

several courses in the framework of a research club. 

Moreover I used it in several courses in general stud-

ies at the university.  

In all groups, we used the results obtained by obser-

vation of the light curve and of the gravitational 

lensing, see Figs. (1-3). Only in few groups, we made 

the photos. The understanding of the principle of in-

variance of the velocity of light and the concept of 

gravitational lensing was good in all courses. Thus, 

the astronomical observation makes the learning 
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process more intensive, but the observation by stu-

dents is not necessary.  

In all groups, we used the results obtained at the free 

fall tower. In most groups, we did not make the ex-

cursion. The understanding of the equivalence princi-

ple was good in all courses. Thus, the excursion 

makes the learning process more intensive, but it is 

not necessary.  

All didactic steps have been achieved by all groups in 

a good manner, though the heights of the learning bar-

riers are very different. This is achieved by adapting 

the amount of instruction to the respective learning 

barrier. 

Altogether, all learning groups achieved the full in-

sight to the Schwarzschild metric and to many of its 

applications. Thus, the present learning process pro-

vides full and exact participation of learners in an es-

sential part of modern physics of spacetime. Thereby, 

the learners experience their own competence in an 

especially intensive manner, as they can elaborate and 

explain all steps (after an appropriate phase of in-

struction) on their own. 

5. Discussion 

Spacetime is very interesting to many students, as 

space and time are very fundamental concepts. More-

over, both concepts are used in everyday life. 

Here, a learning process is presented that provides a 

high level of participation and competence. For it,  all 

insights are achieved by the learners on their own, af-

ter an appropriate phase of instruction. Moreover, all 

results are derived from first principles in an exact 

manner. So, the new results are fully connected with 

previous knowledge, and a high learning efficiency is 

achieved, see Hattie (2009). Furthermore, the learners 

are enabled to participate in a discussion of the meth-

ods, results and applications at a high level. Addition-

ally, learners obtain intensive experiences by making 

astronomical observations on their own and by expe-

riencing free fall and the corresponding equivalence 

principle at the free fall tower. In this manner, learn-

ers experience their own competence and develop 

their self-esteem. 

I tested the full learning process in several learning 

groups several times. I showed that the learning bar-

riers are especially low, but the results are exact, very 

inspiring and elucidating as well as rich in content.   

The learning process is very robust and transparent. I 

provide a description of the learning process that can 

be used directly for teaching. 

As the free fall tower and the Heidepark in general 

provide interesting and exciting processes in classical 

and in relativistic physics (the equivalence principle, 

for instance), students can explore and discover es-

sential results in both: in Newton’s mechanics (Car-

mesin 2014a,b,c) and in relativity. 
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