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Kurzfassung  

Die Quantenphysik ist sehr geeignet zur Beschreibung der Natur und zur Entwicklung neuer Tech-

nologie. Allerdings war die Quantenphysik bisher nicht wirklich verstanden. Stattdessen wurden 

Quantisierungsverfahren und Postulate vorgeschlagen, ohne eine Herleitung aus allgemeineren phy-

sikalischen Erkenntnissen zu entwickeln. Nun ist die Quantenphysik als natürliche Folge der Dyna-

mik des Vakuums hergeleitet. Diese Dynamik wiederum ist aus der Gravitation und Relativität her-

geleitet. Also ist Quantenphysik eine natürliche Folge von Gravitation und Relativität. In diesem 

Aufsatz analysiere ich die didaktische Perspektive des Themas. Dazu leite ich die Dynamik des 

Vakuums sowie die Quantenphysik her. Hierfür schlage ich ein didaktisches Konzept für einen Kurs 

der Quantenphysik vor. Das Konzept habe ich in zwei Lerngruppen erprobt, in einer Jugend forscht 

Arbeitsgruppe für die Klassenstufen 8 bis 13 und in einem General Studies Kurs an der Universität 

Bremen. Ich berichte ich über Erfahrungen mit dem Konzept in den beiden Lerngruppen. 

 

Abstract 

Quantum physics is very successful in describing nature and developing technology. However, 

quantum physics has not yet been really understood. Instead, quantization procedures and postulates 

had been proposed without derivation from more general physics. Now, quantum physics has been 

derived as a natural consequence of the dynamics of vacuum. These dynamics, in turn, have been 

derived from gravity and relativity. Thus, quantum physics is a natural consequence of gravity and 

relativity. In this paper, I analyse the didactical perspective of the topic. For it, I derive the dynamics 

of the vacuum, and there from, I derive quantum physics. On that basis, I propose a didactical con-

cept for a course of quantum physics. I tested that concept in two learning groups: a research club 

for classes 8 to 13 and a general studies course at the university Bremen. I report about the experi-

ence with the use of that concept in the two learning groups. 

 

 

1. Introduction 

Students are highly interested in astronomy and astro-

physics (Elster 2010, Jenkins 2006, Pössel 2015). 

Moreover, students are also interested in the charac-

teristics of nature (Elster 2010), this includes the field 

of quantum physics and general relativity, including 

gravity. Hereby, Einstein, Podolsky and Rosen 

(1935) pointed out that the relation between relativity 

and quantum physics represents an especially inter-

esting question about the characteristics of nature. In-

deed, there has been some progress (Bell 1964, As-

pect et al. 1981), however, according to Weinberg 

(2017), that does not yet provide a sufficient answer. 

Similarly, Feynman (1965, p. 129) wrote: ‘… I think 

I can safely say that nobody understands quantum 

mechanics.’ Accordingly, the student’s interest in the 

relation between relativity and quanta provides a ba-

sis for a substantial didactical perspective. 

 

 

 

1.1. Didactical perspective 

The didactical perspective can be analysed in the 

framework of the didactical triangle, see Franke and 

Gruschka (1996) or Fig. 1. That triangle represents 

the relation between the students, the teacher and the 

subject. Hereby, the relation between the students and 

the subject is characterized by a high interest of the 

students, including the motivating aspect of scientific 

curiosity. According to that scientific question about 

the relation of relativity and quantum physics, the 

subject physics can be represented by the two funda-

mental concepts of physics, see Fig. 2. 

 

Fig. 1: Didactical triangle.  
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According to the didactical triangle, the role of the 

teacher becomes essential. The teacher should take 

care of the following expectations: Firstly, the stu-

dents expect answers. Secondly, some advanced stu-

dents expect methods, so that they can achieve an-

swers on their own. Thirdly, the students expect the 

teacher to present an actual topic, if possible (see e. g. 

Busch 2009). The present scientific question repre-

sents an actual topic, of course. Fourthly, the teacher 

is expected to take care of respective curricula. Thus, 

an actual scientific question can be included in les-

sons in research clubs, or in university lectures, for 

instance. Altogether, the present topic has a substan-

tial didactical potential. Hereby, the most interesting 

didactical perspective is to enable the students to ob-

tain answers on their own. For it, an analysis of the 

subject and a development of a productive concept 

are preconditions, see sections (1.2-1.5, 2-6). 

Moreover, quantum physics provides substantial op-

portunities in quantum technologies. So there is an 

additional didactical potential, whereby the physical 

and technological aspect are both essential, see Pso-

piech (2021). In particular, phenomena and basic 

principles represent essential fields with correspond-

ing skills and competences, see Gerke et al. (2021). 

 

Fig. 2: Didactical triangle with scientific question.  

 

 

1.2. Didactical perspective of vacuum 

The scientific question about the relation of quantum 

physics and relativity (including gravity) can be 

treated in an analytic and productive manner. For it, 

the dynamics of the vacuum are analysed.  

These dynamics of vacuum provides several didacti-

cal perspectives, see Fig. 3. In fact, I presented the 

topics illustrated in Fig. 3 to students ranging from 

class 8 to 13 (see Carmesin, 2021f, Lieber and Car-

mesin 2021, Carmesin and Carmesin 2020) in a re-

search club and to students of a general studies course 

at a university. In both groups, the students were able 

to describe the steps of derivations and to discuss the 

consequences. Moreover, some advanced students 

derived some results on their own. Some of these pre-

sented their results at Jugend forscht competitions and 

won prizes. In particular, the students of both groups 

achieved the following competences: 

The students described and discussed the steps of the 

derivation of the dynamics of vacuum (sections 2-4). 

As an advance organizer, I summarize the dynamics 

of vacuum: Vacuum represents a concept of physics, 

whereas concepts of space are used in mathematics 

and in physics. Basically, the dynamics of vacuum 

have been derived from fundamental physical princi-

ples including quantum physics, see e. g. Carmesin 

(2017, 2018a, b, 2019a, 2021a-f), moreover, quantum 

physics has been derived from gravity and special rel-

ativity only (Carmesin 2022a). 

In particular, vacuum dynamics provides various re-

sults: Basically, the dynamics of vacuum describe the 

following: three-dimensional vacuum, and more gen-

erally higher dimensional vacuum, see e. g. Carmesin 

(2021a, f). Vacuum dynamics have been analysed at 

a semi-classical level and at a quantum physical level, 

see e. g. Carmesin (2021a, f). Basically, vacuum dy-

namics describe the formation of space, and more 

generally the formation of matter as well as the for-

mation of elementary charges, couplings and of fun-

damental interactions, see Carmesin (2021a-f, 2022b, 

c). Basically, the dynamics of vacuum describe the 

rate of expansion of space since the Big Bang, includ-

ing the Hubble constant H0, and more generally the 

Hubble tension and the era of inflation (Carmesin 

2021a-c). Vacuum dynamics describe the propaga-

tion of the gravitational interaction, see Carmesin 

(2021a). Basically, vacuum dynamics describe the 

formation and propagation of vacuum at a far distance 

of a possible black hole with a Schwarzschild radius 

RS, RS/R>>1, and more generally the formation and 

propagation of vacuum in the vicinity of a black hole 

Carmesin (2022a, Eq. 3.250-3.252). 

 

Fig. 3: Didactical triangle illustrates students describing 

and discussing a derivation of vacuum dynamics as well as 

items provided by the dynamics of the vacuum. 

The students described and discussed how the dynam-

ics of vacuum provides the curvature of spacetime of 

the Schwarzschild metric (sections 2-4). 

Furthermore, the students described and discussed 

how quanta emerge from the dynamics of vacuum 

(section 5). Progressively, the students described and 

discussed how the dynamics of vacuum provides the 

deterministic and the stochastic dynamics of quanta, 

including the postulates (sections 5-6). Moreover, the 
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students described and discussed how the dynamics 

of vacuum provides the formation of space and of its 

density (section 1.3). Additionally, the students de-

scribed and discussed how the dynamics of vacuum 

provides an expansion of space (sections 2-4). Alto-

gether, the didactical potential of the scientific ques-

tion illustrated in Fig. 2 can be used to generate a 

course with a substantial didactical perspective, for 

details see section 9. 

 

 

1.3. Overview 

The scientific question about the relation of quantum 

physics and relativity (including gravity) provides a 

substantial didactical potential. In order to reveal this 

relation, I used gravity and relativity, to derive the dy-

namics of vacuum (Carmesin 2017, 2018a, b, 2019, 

2021a, b), and I used the dynamics of vacuum, to de-

rive quantum physics (Carmesin 2022a, Fig. 4). 

Vacuum is characterized by a density, by a spectrum, 

by a process of formation of vacuum since the Big 

Bang, by a propagation, by a time evolution, by di-

mensional phase transitions and by quadrupolar sym-

metry. Vacuum establishes space, spacetime, curva-

ture of spacetime, the gravitational interaction (simi-

lar to the graviton hypothesis), the basic energy of the 

universe (Carmesin 2020a), objects of vacuum, the 

formation of elementary particles, the formation of 

mass, the formation of the elementary charge includ-

ing the fine structure constant, the formation of elec-

troweak charges and couplings, the formation of 

quanta. Thus, the dynamics of vacuum provide a nat-

ural explanation of quantum physics. 

 

Fig. 4: The dynamics of the vacuum has been derived 

from gravity and special relativity (Carmesin 2021a). 

Later it has been discovered for the first time, that vacuum 

dynamics causes emerging quanta and quantum physics, 

QP (Carmesin 2022a). Moreover, vacuum dynamics pro-

vides general relativity, GR, in a continuum limit (Carme-

sin 2022b). Furthermore, vacuum dynamics provides 

physics beyond GR and QP.  

 

 

1.4. Tests of the dynamics of vacuum 

In order to confirm the derived dynamics of vacuum, 

I elaborated a series of tests: As a first test of that the-

ory of vacuum, I showed that it implies general rela-

tivity. (Carmesin 2022b, Figs. 2, 3. For it, I derived 

the Einstein field equation for an event at a Schwarz-

schild radius, whereby each event can be represented 

in a frame so that the event is at a Schwarzschild ra-

dius, see Rindler, 1966. Additional quantities, such as 

charges, can be introduced by using the first law of 

black hole mechanics, see Bardeen et al. 1973. More-

over, charges have been explained in Carmesin 

2021d, Carmesin 2022b.) As a second test, I showed 

that my dynamics of vacuum provides the density of 

vacuum (Carmesin 2021a, b). As a third test, I 

showed the vacuum theory explains the local value of 

the Hubble constant (Carmesin 2021c, 2022c), that 

has been observed recently by Riess et al. (2022). As 

a fourth test, I derived and calculated the six parame-

ters of the standard model of cosmology (Zyla 2020, 

pp 409-509) on the basis of my dynamics of vacuum 

(Carmesin 2021b). As a fifth test, I derived and cal-

culated the elementary charge, the fine structure con-

stant and the electromagnetic interactions on the basis 

of my dynamics of vacuum (Carmesin 2021d). As a 

sixth test, I derived and calculated the electroweak 

charges, the weak angle and the electroweak interac-

tions on the basis of my dynamics of vacuum (Car-

mesin 2022b).  

 

Fig. 5: Relation among physical subject areas: The dy-

namics of objects based on vacuum is very general (Car-

mesin 2021a-e). With it, and for particular conditions, 

quantum physics (Carmesin 2022a) and general relativity 

(Carmesin 2022b, chapter 9) have been derived.  

 

 

1.5. Quanta emerging via dynamics of vacuum 

In order to understand the nature of vacuum, I ana-

lysed properties of my well tested theory of vacuum: 

Thereby, I discovered that the theory describes a va-

riety of objects (Carmesin 2021b): the present-day 

vacuum, the vacuum of the early universe, excited 
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states of vacuum, objects propagating at the velocity 

of light, 𝑣 = 𝑐, as well as objects propagating slower, 

𝑣 < 𝑐. Each object that is described by my theory of 

vacuum is called an object of vacuum. Thus, the ob-

jects of vacuum include the above variety of objects. 

Moreover, the objects of vacuum include elementary 

particles, electric charges and electroweak charges or 

couplings (Carmesin 2021d, Carmesin 2022b). 

Moreover, I discovered that all observable objects of 

vacuum are quanta (Carmesin 2022a). Furthermore, I 

derived the following: If a distant observer measures 

properties of these quanta, then these properties can 

be described by the postulates of quantum physics. In 

particular, I derived the postulates of quantum phys-

ics from the dynamics of vacuum. Thus, quantum 

physics is a natural property of the observable objects 

of vacuum. 

Hence, general relativity and quantum physics can be 

derived from my theory of the vacuum. This is an es-

sential relation between general relativity and quan-

tum physics. Moreover, the postulates of quantum 

physics have become consequences of the more fun-

damental theory of vacuum. In this paper, I propose a 

course that uses the above fundamental theory or dy-

namics of vacuum. 

 

 

1.6. Postulates 

Quantum physics is usually described by a set of pos-

tulates (Kumar 2018 or Ballentine 1998). Accord-

ingly, the concept of a conventional course of quan-

tum physics is to motivate the postulates by experi-

ments. 

 

Fig. 6: Formation of vacuum caused by a mass 𝑀.  

 

 

1.7. Proposed course 

Here, a more fundamental course is proposed. Essen-

tial steps of the course are as follows: 

• The following might be known from school: rela-

tivity (Burisch et al., 2022, p. 472-490), gravity 

(Carmesin et al., 2021, p. 102-120) 

• Most easily, the dynamics of vacuum are derived 

from the Schwarzschild metric. 

• The Schrödinger (1926) equation is directly de-

rived from the dynamics of vacuum. 

• The postulates of quantum physics are derived 

from the dynamics of vacuum. 

 

  

2. Formation of vacuum 

In this section, I show how a mass 𝑀 with a Schwarz-

schild radius 𝑅𝑆 = 2𝐺𝑀/𝑐2 forms vacuum at a coor-

dinate distance 𝑅 from 𝑀. Hereby, 𝐺 =

6.67430(15) ⋅ 10−11 𝑚3

𝑘𝑔⋅𝑠2 is the gravitational con-

stant, and 𝑐 = 299 792 458
𝑚

𝑠
 is the velocity of light 

(Zyla 2020). In particular, I derive the corresponding 

differential equation, DEQ. I derived this result di-

rectly from gravity and relativity (Carmesin 2022a, 

section 3.9). Here I present a shorter derivation based 

on the Schwarzschild metric (Fig. 6). 

A mass 𝑀 with a Schwarzschild radius 𝑅𝑆 = 2𝐺𝑀/𝑐2 

causes curvature of spacetime (Schwarzschild 1916 

or e. g. Carmesin 1996). The radial component of that 

curvature represents the elongation of a radial coordi-

nate difference 𝑑𝑅 to a physical length 𝑑𝐿 as follows:   

𝑑𝐿 = 𝑑𝑅 ⋅ (1 −
𝑅𝑆

𝑅
)

−
1

2
          {1} 

Hereby, 𝑅 is the radial coordinate with the mass at 

𝑅 = 0 and 𝑑𝑅, 𝛿𝑅 as well as 𝛿𝑅 are radial coordinate 

differences at 𝑅 (Fig. 6). I emphasize that 𝑅, 𝑑𝑅, 𝛿𝑅 

and 𝛿𝑅 can be measured by a local observer, see e. g. 

Carmesin (2022a, p. 19). Also 𝑑𝐿 can be measured, 

for instance, the time of flight can be observed. Thus, 

these quantities are as real physical quantities can be.  

Differences marked by 𝑑, 𝛿 or 𝛿 are regarded as in-

finitesimal in the sense of the Leibniz (1684) calculus, 

so that corresponding derivatives are exact. Next, we 

analyse the elongated length 𝑑𝐿 in the limit of limit 

𝑅𝑆/𝑅 to zero, we name that limit the far distance 

limit. For it, we apply the first order Taylor approxi-

mation: 

𝑑𝐿̇ =̇ 𝑑𝑅 ⋅ (1 +
𝑅𝑆

2𝑅
)     {2} 

Thus, the observable increase of length is as follows: 

𝛿𝑅 = 𝑑𝑅 ⋅
𝑅𝑆

2𝑅
      {3} 

Hence, the observable increase of length 𝛿𝑅 corre-

sponds to an observable increase of volume 𝛿𝑉 as fol-

lows: 

𝛿𝑉 = 4𝜋𝑅2𝛿𝑅 = 2𝜋𝑅𝑆𝑅 ⋅ 𝑑𝑅   {4} 
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I emphasize that this increase of volume is filled with 

additional vacuum, whereby the vacuum has a vac-

uum density 𝜌Λ or 𝜌𝑣 (Perlmutter et al. 1998, Riess et 

al.  2000). Hereby, that vacuum corresponds to 

68.47 % of all energy or mass in the universe (Planck 

collaboration 2020). Thus, the additional vacuum is 

as real as a physical quantity can be.  

Moreover, that additional vacuum propagates at the 

velocity of light. Otherwise, an object’s velocity rel-

ative to the additional vacuum (with volume 𝛿𝑉 or 

space with volume 𝛿𝑉) could be measured. However, 

a relative velocity relative to space cannot be meas-

ured, according to relativity. So, the question arises, 

whether this additional vacuum (with volume 𝛿𝑉) is 

formed at 𝑀, at 𝑅 or anywhere else. This question is 

analysed next. 

Corresponding to the symmetry, the additional vac-

uum flows radially away from the mass 𝑀. During a 

time-interval 𝛿𝑡, the vacuum 𝛿𝑉 propagates a radial 

difference 𝛿𝑅 = 𝑐 ⋅ 𝛿𝑡 (Fig. 6). We analyse the dif-

ference 𝛿𝑉 of the vacuum 𝛿𝑉, that occurs during that 

propagation. For it, we multiply the partial derivative 

𝜕𝑅 of 𝛿𝑉 with the difference 𝛿𝑅: 

𝛿𝑉 = 𝜕𝑅  𝛿𝑉 ⋅ 𝛿𝑅    {5} 

We apply equation {4}: 

𝛿𝑉 = 2𝜋𝑅𝑆𝑅 ⋅ 𝑑𝑅 ⋅ 𝛿𝑅   {6} 

We use 𝑑𝑉 = 4𝜋𝑅2𝑑𝑅: 

𝛿𝑉 =
𝑅𝑆

2𝑅
⋅ 𝑑𝑉 ⋅ 𝛿𝑅    {7} 

We apply the Schwarzschild radius 𝑅𝑆 =
2𝐺𝑀

𝑐2 :  

𝛿𝑉 =
𝐺𝑀

𝑅2 ⋅ 𝑑𝑉 ⋅
𝛿𝑅

𝑐2 =
𝐺𝑀

𝑅2 ⋅ 𝑑𝑉 ⋅
𝛿𝑡

𝑐
  {8} 

We identify the first fraction with the gravitational 

field at 𝑅: 

𝐺∗(𝑅) =
𝐺𝑀

𝑅2      {9} 

Thus, the new volume 𝛿𝑉 that formed from the pre-

sent volume 𝑑𝑉 during a time  𝛿𝑡 is as follows: 

𝛿𝑉 =
𝐺∗

𝑐
⋅ 𝑑𝑉 ⋅ 𝛿𝑡    {10} 

We name the ratio of the new vacuum 𝛿𝑉 formed 

from the present vacuum 𝑑𝑉 by the relative formation 

𝜀: 

𝜀 =
𝛿𝑉

𝑑𝑉
      {11} 

During that process, the present volume 𝑑𝑉 is con-

stant. Thus, within the Leibniz calculus, the time de-

rivative of the relative formation 𝜀 is as follows: 

𝜀̇ =
𝛿𝑉

𝑑𝑉⋅𝛿𝑡
     {12} 

This time derivative represents the (relative) rate of 

formation of vacuum. We solve equation {10} for the 

rate of formation of vacuum: 

𝜀̇ =
𝐺∗

𝑐
      {13} 

This DEQ describes the formation of vacuum caused 

by a mass 𝑀. Many properties of that formed vacuum 

have been analysed in detail in Carmesin (2021a). 

 

Fig. 7: Formation of vacuum caused by a mass 𝑀 and in a 

direction 𝑦.  

 

 

3. Tensors 

In this section, we show how Eq. {13} is generalized 

to tensors.  

A mass 𝑀 causes the formation of vacuum in a radial 

direction, for instance, the radial direction can be 

marked by 𝑦 (Fig. 7). Accordingly, the relative for-

mation is the ratio of 𝛿𝑦 and 𝑑𝑦, correspondingly, 

that relative ratio can be described by a tensor element 

𝜀𝑦𝑦 as follows: 

𝜀𝑦𝑦 =
𝛿𝑦

𝑑𝑦
     {14} 

That tensor describes the formation of vacuum in one 

direction, it is called unidirectional formation of vac-

uum (Carmesin 2021a).  That tensor also describes 

the fact that the formed vacuum flows away from the 

mass 𝑀  in a radial manner or in direction 𝑦 in Fig. 7.   

If the same unidirectional formation of vacuum takes 

place in each Cartesian direction, then isotropic for-

mation of vacuum takes place (Carmesin 2021a): 

𝜀𝑥𝑥 = 𝜀𝑦𝑦 = 𝜀𝑧𝑧    𝑎𝑛𝑑    𝜀 = Σ𝑗=1
𝑗=3

𝜀𝑗𝑗 {15} 

A nondiagonal element of the tensor can be inter-

preted by a deformation (Fig. 8): 

𝜀𝑖,𝑗 =
𝛿𝑟𝑖

𝑑𝑟𝑗
     {16} 

Such deformations can occur in spacetime, see e. g. 

Carmesin (2021a, section 5.4). Additionally, nondi-

agonal tensors can be obtained from diagonal tensors 

by coordinate transformations.  

 

Fig. 8: Deformation 𝛿𝑥 = 𝜀𝑥,𝑦 ⋅ 𝑑𝑦 of vacuum.  
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For the case of a diagonal element of the rate in Eq. 

{13}, the gravitational field is parallel to the direction 

of the rate, and so the formation of vacuum is de-

scribed as follows: 

𝜀𝑗̇𝑗 =
𝐺𝑗

∗

𝑐
= 𝜀𝑗̇     {17} 

Hereby, we abbreviated 𝜀𝑗̇𝑗 = 𝜀𝑗̇. For the case of a 

nondiagonal element of the rate in Eq. {13}, we in-

troduce the gravitational field tensor. For it, we ex-

press the field 𝐺𝑗
∗ as a force per probing mass 𝑚: 

𝐺𝑗
∗ =

𝐹𝑗

𝑚
     {18} 

Additionally, we describe the force by the product of 

stress and area 𝐴 (Fig. 8), see Sommerfeld (1978): 

𝐺𝑗
∗ =

𝜎𝑗𝑗⋅𝐴

𝑚
     {19} 

Thus, the gravitational field tensor is obtained by re-

alizing that the tensor property of the stress tensor is 

transferred to the gravitational field: 

𝐺𝑗𝑗
∗ =

𝜎𝑗𝑗⋅𝐴

𝑚
 and 𝐺𝑖𝑗

∗ =
𝜎𝑖𝑗⋅𝐴

𝑚
  {20} 

Thus, the formation of vacuum is described as fol-

lows: 

𝜀𝑖̇𝑗 =
𝐺𝑖𝑗

∗

𝑐
     {21} 

 

 

4. Propagation of vacuum 

The dynamics of the formation of vacuum (Eqs. {13} 

or {17}) causes the dynamics of the propagation of 

vacuum (Carmesin 2021a, chapter 5). In this section, 

we derive the propagation for the case of plane waves. 

For it, we apply the gravitational potential 𝜙 to Eq. 

{17}: 

𝜀𝑗̇ = 𝜕𝑡𝜀𝑗 = −
1

𝑐
⋅ 𝜕𝑟𝑗

𝜙   {22} 

The following plane waves are solutions of the above 

DEQ: 

𝜀(𝑡, 𝑅𝑗) = 𝜀𝑗̂,𝜔 ⋅ sin(𝜔 ⋅ 𝑡 − 𝑘𝑗 ⋅ 𝑅𝑗) {23} 

𝜙(𝑡, 𝑅𝑗) = 𝜙̂𝑗,𝜔 ⋅ sin(𝜔 ⋅ 𝑡 − 𝑘𝑗 ⋅ 𝑅𝑗) {24} 

We insert into the DEQ: 

𝜀𝑗̂,𝜔𝜔 cos(𝜔𝑡 − 𝑘𝑗𝑅𝑗) = 𝜙̂𝑗,𝜔

𝑘𝑗

𝑐
cos(𝜔𝑡 − 𝑘𝑗𝑅𝑗) 

We subtract the right-hand side of the above Eq., and 

we factorize: 

cos(𝜔𝑡 − 𝑘𝑗𝑅𝑗) ⋅ (𝜀𝑗̂,𝜔𝜔 − 𝜙̂𝑗,𝜔

𝑘𝑗

𝑐
) = 0 

As the cosine can take nonzero values, the large 

bracket is zero: 

𝜀𝑗̂,𝜔𝜔 − 𝜙̂𝑗,𝜔

𝑘𝑗

𝑐
= 0    {25} 

These dynamics describes waves that propagate at ar-

bitrary velocity: 

𝑣 =
𝜔

𝑘𝑗
      {26} 

With it, we solve Eq. {25}: 

𝜙̂𝑗,𝜔 = 𝜀𝑗̂,𝜔 ⋅ 𝑐 ⋅ 𝑣    {27} 

With it, we express the wave of the potential (Eq. 

{24}) by the rate: 

𝜙(𝑡, 𝑅𝑗) = 𝜀𝑗̂,𝜔 ⋅ 𝑐 ⋅ 𝑣 ⋅ sin(𝜔 ⋅ 𝑡 − 𝑘𝑗 ⋅ 𝑅𝑗)   or 

𝜙(𝑡, 𝑅𝑗) = 𝜀(𝑡, 𝑅𝑗) ⋅ 𝑐 ⋅ 𝑣     {28} 

Thus, the propagation can be described by the rate 

𝜀(𝑡, 𝑅𝑗) only. Thence, objects of vacuum propagate in 

the form of waves. These waves are characterized by 

the rate 𝜀(𝑡, 𝑅𝑗) and by gravity, in the form of the 

gravitational potential 𝜙(𝑡, 𝑅𝑗). Accordingly, these 

waves are called rate gravity waves, RGW (Carmesin 

2021a, chapter 5). 

So far, we showed that all harmonic plane waves are 

solutions of the DEQ {22}. As that DEQ is linear, all 

linear combinations of all harmonic plane waves are 

solutions. So, the solutions of the DEQ establish a 

Hilbert space H, whereby we apply the usual scalar 

product (Carmesin 2022a, section 3.12.1): 

⟨𝜓1|𝜓2⟩ = ∫ 𝜓1(𝑥) ⋅ 𝜓2
𝑐𝑐(𝑥)𝑑𝑥  {29} 

Herby, 𝜓2
𝑐𝑐  marks the complex conjugate of 𝜓2

𝑐𝑐 . 

 

 

4.1. Objects with a rest mass 

All solutions of DEQ {22} represent objects of vac-

uum. Thus, there are objects of vacuum that propa-

gate at a velocity 𝑣 = 𝑐, and there are objects that 

propagate at 𝑣 < 𝑐. Objects propagating at 𝑣 < 𝑐 

have a nonzero rest mass 𝑚0 ≠ 0, whereas objects 

propagating at 𝑣 = 𝑐 have zero rest mass 𝑚0 = 0, ac-

cording to relativity (Einstein 1905, Carmesin 2021b, 

2022a). 

 

 

4.2. Observable objects of vacuum 

Masses typically are excitations of vacuum. This is 

the essence of the Higgs (1964) mechanism. The 

Higgs mechanism explains the formation of mass by 

a postulated phase transition, and the corresponding 

Higgs particle has been discovered (Aad et al. 2012, 

Chatrchyan et al. 2012). The dynamics of vacuum 

naturally exhibit phase transitions that explain the for-

mation of a variety of masses, whereby the values of 

the masses are provided in addition, and whereby the 

mechanisms of formation of electric or weak charges 

or couplings are provided also, including the precise 

values of these charges and couplings (Carmesin 

2021b, d, Carmesin 2022b). Thus, elementary parti-

cles with nonzero rest mass are objects of vacuum that 

can be observed. 
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Furthermore, there are objects of vacuum with zero 

rest mass, such as objects presenting vacuum in three-

dimensional space. For such objects, I derived the en-

ergy spectrum by two very different methods: I used 

the time evolution starting at the Planck scale (Car-

mesin 2018a, b, 2019), or I used the time evolution 

starting at present-day vacuum (Carmesin 2021a, 

chapter 4, Carmesin 2022c).  

 

 

5. Emerging quanta 

In this section, we show how objects based on vac-

uum exhibit quanta as a result of the dynamics of the 

vacuum.  

 

 

5.1. Quanta of objects with v = c 

In this section, we show how relativistic objects based 

on vacuum are inherently quantized. Hereby, we do 

not yet include an interaction. 

A relativistic object propagating in a direction 𝑥 can 

be characterized by its energy 𝐸 and by its nonzero 

momentum 𝑝𝑥. Hereby, the following relativistic re-

lation holds (Einstein 1905): 
𝐸

𝑝𝑥
= 𝑐      {30} 

As the object is based on vacuum and as it propagates 

at the velocity of light, 𝑣 = 𝑐, it can be described by 

a wave with a circular frequency 𝜔 and a wave vector 

component 𝑘𝑥. Hereby, the following relation holds: 
𝜔

𝑘𝑥
= 𝑐      {31} 

So, the above fractions are equal: 
𝜔

𝑘𝑥
=

𝐸

𝑝𝑥
= 𝑐      {32} 

As 𝜔 is nonzero, we can derive the following relation: 
𝐸

𝜔
=

𝑝𝑥

𝑘𝑥
≠ 0      {33} 

The two fractions represent the same positive func-

tion or constant 𝐾(𝜔). That term 𝐾(𝜔) cannot de-

pend on time, as there is no interaction: 
𝐸

𝜔
=

𝑝𝑥

𝑘𝑥
= 𝐾(𝜔)    {34} 

In order to show the universality of that term, we an-

alyse the gravitational redshift of an object with  𝑣 =
𝑐, energy 𝐸, at a coordinate distance 𝑅 from a mass 

𝑀, and we show that 𝐾(𝜔) is the same for all 𝜔. We 

denote 𝐸∞ = 𝑙𝑖𝑚𝑅→∞𝐸(𝑅), 𝜔∞ = 𝑙𝑖𝑚𝑅→∞𝜔(𝑅). 

Additionally, the energy observed by a local ob-

server at 𝑅 is named 𝐸𝑜𝑏𝑠,𝑙𝑜𝑐(𝑅). Thus, at 𝑅 the posi-

tion factor 𝜀(𝑅) = √1 − 𝑅𝑆/𝑅 describes the de-

crease of energy according to position. According to 

the law of energy conservation, 𝐸∞ is a constant, and 

hence we derive: 

𝐸∞ = 𝐸𝑜𝑏𝑠,𝑙𝑜𝑐(R) ⋅ 𝜀(𝑅)   {35} 

We solve for 𝐸𝑜𝑏𝑠,𝑙𝑜𝑐(𝑅): 

𝐸𝑜𝑏𝑠,𝑙𝑜𝑐(𝑅) =
𝐸∞

𝜀(𝑅)
     {36} 

We apply the quantization Eq. {34}: 

𝐸𝑜𝑏𝑠,𝑙𝑜𝑐(𝑅) = 𝐾(𝜔(𝑅)) ⋅ 𝜔(𝑅)   {37} 

We use the Schwarzschild metric (Fig. 6): 

ω(R) =
ω∞

ε(R)
     {38} 

We analyse two observers at 𝑅 and 𝑅′:  

𝐸𝑜𝑏𝑠,𝑙𝑜𝑐(𝑅)

𝐸𝑜𝑏𝑠,𝑙𝑜𝑐(𝑅′)
=

𝐾(𝜔(𝑅))𝜔(𝑅)

𝐾(𝜔(𝑅′))𝜔(𝑅′)
   {39} 

We apply Eqs. {36} and {38}: 

𝐸∞𝜀(𝑅)

𝐸∞𝜀(𝑅′)
=

𝐾(𝜔(𝑅))𝜔∞𝜀(𝑅)

𝐾(𝜔(𝑅′))𝜔∞𝜀(𝑅′)
   {40} 

We simplify that equation: 

1 =
𝐾(𝜔(𝑅))

𝐾(𝜔(𝑅′))
     {41} 

Thus, the quantization constant does not depend on 

𝜔, and according to Eq. {31}, that constant does not 

depend on the wave number. Thence, the constant 𝐾 

is a universal constant. That constant can be meas-

ured, and it takes the value of the reduced Planck con-

stant ℎ: 

𝐾 = ℏ = ℎ/2𝜋     {42} 

We insert equation {42} into equation {34}, in order 

to derive the usual relations of quantization of energy 

and momentum: 

𝐸 = ℏ ⋅ 𝜔     {43} 

𝑝𝑥 = ℏ ⋅ 𝑘𝑥     {44} 

 

 

5.2. Derivation of the Schrödinger equation 

In this section, we use the dynamics of the vacuum, 

in order to derive the Schrödinger equation. 

For it, we apply the DEQ {22}, whereby we substitute 

the potential by the rate according to Eq. {28}, and 

we consider the case 𝑣 = 𝑐: 

𝜕𝑡𝜀𝑗 = −𝑐 ⋅ 𝜕𝑟𝑗
𝜀𝑗    {45} 

In order to obtain the correct wave dynamics and sto-

chastic dynamics, we apply the time derivative to the 

above Eq. (Carmesin 2022a, section 3.8.3): 

𝜕𝑡𝜀𝑗̇ = −𝑐 ⋅ 𝜕𝑟𝑗
𝜀𝑗̇    {46} 

In order to get a simple notation, we name 𝑅𝑗 by 𝑥:   

𝜕𝑡𝜀̇ = −𝜕𝑥𝜀̇ ⋅ 𝑐    {47} 

In order to derive the traditional form of the Schrö-

dinger equation, we multiply by 𝑖ℏ, we multiply the 

rate 𝜀̇ by a normalization factor 𝑡𝑛, and we use the 

product as the wave function 𝜓: 

𝑖 ⋅ ℏ ⋅ 𝜕𝑡𝜀̇ = −𝑖 ⋅ ℏ ⋅ 𝜕𝑥𝜀̇ ⋅ 𝑐   {48} 

𝜀̇ ⋅ 𝑡𝑛 = 𝜓     {49} 

𝑖 ⋅ ℏ ⋅ 𝜕𝑡𝜓 = −𝑖 ⋅ ℏ ⋅ 𝜕𝑥𝜓 ⋅ 𝑐  {50} 
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Next, we compare the resulting DEQ with the relativ-

istic relation between energy 𝐸 of the object and the 

momentum 𝑝 of the object: 

𝐸 = 𝑝 ⋅ 𝑐     {51} 

An object of vacuum is described by the DEQ {50} 

and by equation {51}, the factors in front of the wave 

function can be identified by the operators corre-

sponding to the energy 𝐸 and the momentum 𝑝 as fol-

lows:  

𝐸̂ = 𝑖ℏ𝜕𝑡     {52} 

𝑝̂𝑥 = −𝑖ℏ𝜕𝑥     {53} 

So, the DEQ {50} describing objects of vacuum with 

𝑣 = 𝑐 takes the following form:  

𝐸̂ 𝜓 = 𝑐 ⋅ 𝑝̂ 𝜓     {54} 

In the above equation, the product 𝑐 ⋅ 𝑝̂ represents the 

energy function 𝐸(𝑝) as a function of the momentum, 

whereby the momentum is represented by its opera-

tor:  

𝐸̂ 𝜓 = 𝐸(𝑝̂) 𝜓    {55} 

In a considered physical system, the energy function 

can also depend on a potential 𝑉 or on a rest mass 𝑚0 

or on a velocity 𝑣, or on an additional physical quan-

tity 𝑞, for instance. Accordingly, these terms are in-

cluded in the energy function in equation {55}: 

𝐸̂ 𝜓 = 𝐸(𝑝̂, 𝑉, 𝑚0, 𝑣, 𝑞) 𝜓   {56} 

This equation represents a usual form of a Schrö-

dinger equation, SEQ: The energy operator multiplied 

by the wave function is equal to the energy function 

multiplied by the wave function. 

 

 

5.3. Quanta of objects with v < c 

In this section, we use the fact that objects based on 

vacuum are described by the differential equation, 

DEQ, {22}. Thereby, this DEQ provides solutions 

that propagate with a velocity 𝑣, whereby 𝑣 = 𝑐 as 

well as 𝑣 < 𝑐 are possible. In this section, we show 

that objects based on vacuum and propagating at a ve-

locity 𝑣 < 𝑐 are inherently quantized. Hereby, we do 

not yet include an interaction.  

For an object based on vacuum, the DEQ {22} holds. 

As a consequence, derived in section 5.2, the SEQ 

{56} holds for such an object: 

𝐸̂ 𝜓 = 𝐸(𝑝̂, 𝑉, 𝑚0, 𝑣, 𝑞) 𝜓   {57} 

Next, we analyse the form of the energy function for 

the case of an object of vacuum propagating at a ve-

locity 𝑣 < 𝑐 and without interaction. An object prop-

agating in a direction 𝑥 can be characterized by its en-

ergy 𝐸 and by its nonzero momentum 𝑝𝑥. As the ob-

ject propagates at a velocity 𝑣 < 𝑐, it has a rest mass 

or own mass 𝑚0 (Einstein 1905). Correspondingly, 

the following relation holds: 

𝐸2 = 𝑝𝑥
2 ⋅ 𝑐2 + 𝑚0

2 ⋅ 𝑐4    {58} 

With it, the SEQ {57} takes the following form: 

𝐸̂ 𝜓 = √𝑝̂𝑥
2 ⋅ 𝑐2 + 𝑚0

2 ⋅ 𝑐4 𝜓  {59} 

This is the SEQ of an object of vacuum propagating 

at a velocity 𝑣 < 𝑐 and without interaction.  

In particular, if the object of vacuum propagating at a 

velocity 𝑣 < 𝑐 and without interaction so that 

𝑝𝑥
2/(𝑚0

2 ⋅ 𝑐2) is very small compared to one, then the 

linear approximation of the SEQ {59} is appropriate: 

𝐸̂ 𝜓 =̇ 𝑚0𝑐2 ⋅ (1 +
1

2
⋅

𝑝𝑥
2

𝑚0
2𝑐2) 𝜓  {60} 

We simplify: 

𝐸̂ 𝜓 =̇ 𝑚0𝑐2 ⋅ 𝜓 +
𝑝𝑥

2

2𝑚0
 𝜓   {61} 

This is the SEQ of an object of vacuum propagating 

at a velocity 𝑣 < 𝑐, without interaction and with a rel-

atively large rest mass. 

As the rest mass is relatively large, the factorization 

outlined in section 4.3 may be applied. Thus, the 

above SEQ is separated as follows: 

𝐸̂0 𝜓0  =̇ 𝑚0𝑐2 ⋅ 𝜓0    {62} 

𝐸̂1 𝜓1  =̇
𝑝𝑥

2

2𝑚0
 𝜓1    {63} 

The SEQ {63} is the usual SEQ for a nonrelativistic 

object without interaction. 

 

 

6. Background information 

In this section, I describe the derivation of the postu-

lates of quantum physics. Hereby, I introduce mixed 

states. Additionally, I provide further background in-

formation. 

 

 

6.1. Postulate on quantum states 

A first postulate is as follows: A quantum state is de-

scribed by a vector in a Hilbert space (Kumar 2018, 

p. 168). 

That Hilbert space is established by the solutions of 

the DEQ {22}. For a detailed derivation of that pos-

tulate, see Carmesin (2022a, section 3.12.1). 

 

 

6.2. Postulate on observables 

A second postulate is as follows: An observable A is 

represented by a hermitian or self-adjoint operator 𝐴̂ 

acting in the Hilbert space 𝐻 (Kumar 2018, p. 169). 

We derive that postulate as follows: An object that 

acts upon a state in Hilbert space is an operator. A 

measurement apparatus providing an observable 𝐴 

acts upon a state in reality. Thus, a measurement ap-

paratus of an observable 𝐴 corresponds to a linear op-

erator  𝐴̂ acting in the Hilbert space 𝐻 of the object or 

system under consideration. 
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Moreover, the measurement apparatus can provide a 

value of the observable 𝐴, without changing the state. 

For instance, a polarizer measures polarization, and a 

state with the corresponding polarization is transmit-

ted. Thus, there should be states that are not changed 

by the operator  𝐴̂, these are the eigenstates, each with 

a corresponding eigenvalue, e. g. 𝑎𝑗.  

Furthermore, the results of such a single measurement 

are represented by a real number. Thus, each opera-

tor  𝐴̂ corresponding to an observable 𝐴 has real ei-

genvalues only. Thence, that operator is self-adjoint, 

as only self-adjoint operators only have real eigenval-

ues (Teschl 2014).  

Altogether, the second postulate is derived. For de-

tails see Carmesin (2022a, section 3.12.2). 

 

 

6.3. Postulate on outcomes of measurements 

A third postulate is as follows: A possible outcome of 

a measurement of an observable 𝐴 is an eigenvalue of 

𝐴̂ (Kumar 2018, p. 169). 

As derived in the above section, an observable 𝐴 and 

its measurement apparatus are represented by a self-

adjoint operator 𝐴̂. It is characterized by a spectrum 

of eigenvalues 𝑎𝑗 with corresponding eigenstates 𝜓𝑗 

(Teschl 2014, theorem 3.6). Correspondingly, these 

eigenstates correspond to possible outcomes of meas-

urements, for details see Carmesin (2022a, section 

3.12.3). 

 

 

6.4. Postulate on probabilistic outcomes 

A fourth postulate about probabilistic outcomes of 

measurements is as follows, whereby we present the 

case of discrete and non-degenerate eigenvalues (Ku-

mar 2018, pp 169-170): 

‘If a measurement of an observable 𝐴 is made in a 

normalized state |𝜓(𝑡)⟩ of the quantum mechanical 

system, then the following holds: 

The probability of obtaining one of the non-degener-

ate discrete eigenvalues 𝑎𝑗 of the corresponding op-

erator 𝐴̂ is given by:’ 

𝑃(𝑎𝑗) = |⟨𝜙𝑗|𝜓⟩|2   {64} 

That result has been derived for the case of the objects 

of vacuum in Carmesin (2022a, section 3.12.4). 

Thereby, the following more basic result has been de-

rived and applied: The square of the field 𝐺∗(𝑥) is 

proportional to the energy density: 

𝑢𝑓(𝑥) ∝ |𝐺∗|2(𝑥)   {65} 

That square is proportional to the square of the rate 

𝜀̇2, which is in turn proportional to the absolute 

square of the wave function |𝜓(𝑥)|2. Thus, we derive: 

𝑢𝑓(𝑥) ∝ |𝜓(𝑥)|2   {66} 

The probability 𝑝(𝑥) to measure an object of vacuum 

at a location 𝑥 is proportional to the energy density, 

as the energy is quantized. Thence we obtain the 

proportionality of the probability and the absolute 

square of the wave function: 

𝑝(𝑥) ∝ 𝑢𝑓(𝑥) ∝ |𝜓(𝑥)|2   {67} 

 

 

6.5. Postulate on the dynamics 

The dynamics of quanta can be represented by the 

Schrödinger equation (Kumar 2018, p. 170). We de-

rived the result in section 5, for details see Carmesin 

(2022a, section 3.12.5). 

 

 

6.6. Postulate on mixed states 

The above postulates describe the physics of states 

that correspond to a one-dimensional subspace of Hil-

bert space. In this section, we analyse mixed states 

that correspond to a higher dimensional subspace of 

Hilbert space. For instance, Ballentine (1998, p. 46) 

or Grawert (1977) present such postulates. 

Firstly, we show that objects of vacuum typically ex-

hibit such mixed states. A pure state represents a co-

herent wave function, as a pure state is represented by 

a one-dimensional subspace of Hilbert space. We 

consider two equal masses 𝑚1 and 𝑚2. These masses 

do permanently generate vacuum. If each mass would 

generate that vacuum in the form of a coherent wave 

function, then these wave functions would form a 

standing wave in the space between the two masses. 

Hence an observer could determine his position and 

velocity relative to a node of the standing wave. 

Thence the observer could determine his velocity rel-

ative to space, however, that is not possible according 

to relativity. Thus, the masses generate the vacuum in 

terms of several independent waves in an incoherent 

manner. So, the generated vacuum is represented by 

a mixed state.  

Secondly, we derive the probabilistic properties of 

such mixed states, and we represent these properties 

in the usual manner (Ballentine 1998, Grawert 1977): 

In order to analyse a mixed state, we use an operator 

𝐴̂ of an observable 𝐴. Accordingly, a mixed state 

consists of several eigenstates ⟨𝜙𝑗|, each with an ei-

genvalue 𝑎𝑗 and with a probability 𝑝𝑗. Thus, the ex-

pectation value of a measurement is obtained by the 

weighted sum of the eigenvalues: 

⟨𝐴̂⟩ = Σ𝑗𝑎𝑗𝑝𝑗  with    1 = Σ𝑗𝑝𝑗 {68} 

We identify the sum with the following trace: 

⟨𝐴̂⟩ = 𝑇𝑟(Σ𝑗|𝜙𝑗⟩ 𝑝𝑗  𝑎𝑗⟨𝜙𝑗|)    {69} 

We add an additional sum that does not change the 

value of the term: 

⟨𝐴̂⟩ = 𝑇𝑟(Σ𝑖  Σ𝑗|𝜙𝑖⟩𝑝𝑖  𝛿𝑖𝑗  𝑎𝑗⟨𝜙𝑗|)   {70} 

We represent the Kronecker delta by a scalar prod-

uct of the orthonormal eigenfunctions: 

⟨𝐴̂⟩ = 𝑇𝑟(Σ𝑖  |𝜙𝑖⟩𝑝𝑖  ⟨𝜙𝑖| Σ𝑗  |𝜙𝑗⟩ 𝑎𝑗⟨𝜙𝑗|)  {71} 

We identify the sum by a linear combination of pro-

jection operators 𝑃̂𝑖: 
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Σ𝑖  |𝜙𝑖⟩ 𝑝𝑖⟨𝜙𝑖| = Σ𝑖  𝑝𝑖𝑃̂𝑖 = 𝜌̂   {72} 

The above linear combination of projection opera-

tors is called density operator. We identify the den-

sity operator and the operator 𝐴̂ = Σ𝑗  |𝜙𝑗⟩ 𝑎𝑗⟨𝜙𝑗| in 

Eq. {71}:  

⟨𝐴̂⟩ = 𝑇𝑟(𝜌̂ 𝐴̂)     {73} 

Thus, the expectation value ⟨𝐴̂⟩ of a measurement of 

an observable 𝐴 of a mixed state described by a den-

sity operator 𝜌̂ is equal to the trace of the product of 

the density operator 𝜌̂ and the operator 𝐴̂. This sen-

tence represents the postulate about mixed states, see 

Ballentine (1998, p. 46).  

Altogether, we derived all six postulates of quantum 

physics. 

 

 

6.7. On generalizations 

So far, we analysed plane waves and a corresponding 

one-dimensional version of quantum physics. A 

three-dimensional generalization is straight forward. 

Thereby, the spin enters as a consequence. Addition-

ally, the spin statistics theorem enters as a further con-

sequence. Furthermore, the second quantization can 

be applied (Carmesin 2021a, chapter 6). With it, a 

quantum field theory can be derived. 

Moreover, additional interactions can be derived by 

using the principle of gauge invariance (Carmesin 

2022b, chapter 8). For it, the elementary charges are 

fundamental. These can be derived by analysing and 

using phase transitions of vacuum (Carmesin 2021d). 

 

 

7. Nature of quantum gravity 

Many approaches to quantum gravity have been pub-

lished. E.g., Chandrasekhar (1931) used laws of grav-

ity and laws of quantum physics, in order to derive 

the mass at which a white dwarf becomes unstable. 

Kiefer (2003) discussed various methods of combin-

ing gravity and quantum physics. Giulini (2003) dis-

cussed various methods of quantization of a relativ-

istic or non-relativistic classical description. In all 

these approaches, a classical description has been 

combined with methods of quantum physics.  

Now, we discover how quantum gravity emerges in a 

completely natural manner from the well tested dy-

namics of the vacuum: For it, we generalized general 

relativity, in order to obtain the dynamics of vacuum. 

Then we discovered that the dynamics of vacuum in-

herently makes possible a far distance limit, which 

naturally provides quantum physics of relativistic 

(𝑣 = 𝑐) and massive (𝑣 < 𝑐) observable objects.  

Thus, if we do not perform the far distance limit, or if 

we use correction terms corresponding to the far dis-

tance limit, then we obtain a generalization of quan-

tum physics. That generalization provides a natural 

theory of quantum gravity (Carmesin 2022a). 

8. Proposed course 

In this section, we propose a course of quantum phys-

ics that uses the fundamental dynamics of the vac-

uum. For all lessons, material for exercises and exam-

ples can be found in Carmesin (2022a). 

 

 

8.1. Recapitulation 

In a first lesson, the law of gravity, special relativity 

and the Schwarzschild metric should be recapitulated. 

In order to avoid unnecessary complications, I recom-

mend a presentation provided by school books:  

Firstly, Newton’s law of gravity should be treated 

(Carmesin et al., 2021, p. 102-120). Hereby, I recom-

mend to mention that the 1/𝑟2-law has an empirical 

basis, whereas Newton’s speculations about absolute 

time and space are hypothetic.  

Secondly, special relativity should be recapitulated 

(Burisch et al., 2022, p. 472-483). 

Thirdly, gravity and special relativity can be applied, 

in order to derive the Schwarzschild metric (Burisch 

et al., 2022, p. 484-490). 

 

 

8.2. Formation of vacuum 

In a second lesson, the Schwarzschild metric should 

be applied, in order to derive the DEQ {13} describ-

ing the formation of vacuum, see section 2. 

 

 

8.3. Tensors 

In a next lesson, tensors describing the formation vac-

uum and possible deformations can be treated. 

Thereby, the following lesson on propagation is pre-

pared. Moreover, there is time for some exercises. 

 

 

8.4. Propagation of vacuum 

Based on lessons two and three, the propagation of 

vacuum should be derived, see section 4. Hereby the 

DEQ {13} is applied, in order to derive plane waves. 

Hereby, the students can develop main results on their 

own. 

 

 

8.5. Objects of vacuum 

Based on the propagation of vacuum, relativistic and 

nonrelativistic objects of vacuum can be derived. 

Hereby, there should be time for exercises. 

 

 

8.6. Hilbert space 

Based on the propagation of plane waves and on the 

linear DEQ, the space of solutions, the Hilbert space, 
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should be introduced. Depending on the students and 

on the available time, the correspondence between 

observables and hermitian operators should be intro-

duced and analysed. 

 

 

8.7. Discovery of quanta 

Based on the description of objects of vacuum by 

RGWs and by relativity, the emergence of quanta 

should be derived, see section 5. This derivation can 

be applied to all objects that propagate at v = c, and 

that exhibit wave properties. Hereby, the universality 

of the Planck constant can be derived. The value of 

the Planck constant must be measured, while its uni-

versality is derived. 

 

 

8.8.  Deterministic dynamics 

Based on the DEQ of RGWs, the Schrödinger equa-

tion should be derived, see section 5. Thereby, the ad-

ditional derivative with respect to time can be moti-

vated by the probabilistic dynamics in Eq. {67}. 

 

 

8.9. Observables and operators 

Based on the Hilbert space, the correspondence be-

tween observables and hermitian operators should be 

introduced.  

 

 

8.10. Probabilistic dynamics 

Based on the DEQ {13} of the formation of vacuum, 

the probabilistic dynamics in the measurement should 

be derived in the basic form of Eq. {67}, see section 

6.4. Depending on the students and on the available 

time, the full probabilistic dynamics, Eq. {64}, and 

the density operator, sections 6.5, can be treated. 

 

 

8.11. Uncertainty complementarity and entan-

glement 

The subject area of uncertainty, complementarity and 

entanglement is particularly interesting. As we de-

rived all postulates of quantum physics, and as uncer-

tainty, complementarity and entanglement can be de-

rived from these postulates (e. g. Ballentine 1998, Ma 

et al. 2016), these three topics can be treated, inter-

preted and explained within the framework derived of 

QP (Carmesin et al. 2020), as derived here. Note that 

quantum field theory exhibits divergencies in an en-

tanglement entropy (Witten 2018), this property of 

quantum field theory might reflect the fact that quan-

tum field theories are based on a short wavelength-

approximation of the present and derived description 

of quantum physics (Carmesin 2022b). 

 

8.12. Quantum cryptography and computer 

The subject area of quantum cryptography and quan-

tum computer is especially relevant for technology 

and for the personal application of digital tools. As 

we derived all postulates of quantum physics, and as 

these two topics can be derived from these postulates 

(e. g. Ballentine 1998), quantum cryptography (Car-

mesin et al. 2020) and quantum computers (Burisch 

et al. 2023) can be treated directly on the basis derived 

here.  

 

 

9. Experience with teaching 

The scientific question about the correspondence of 

relativity and quantum physics can be treated in an 

analytic and productive manner. I presented that con-

cept to learners ranging from class 8 to 13 in a re-

search club (see Carmesin, 2021f) and to students of 

a general studies course at the university Bremen. In 

both groups, the students were able to describe the 

steps of the respective derivations and to discuss the 

consequences.  

In the derivation of the dynamics of vacuum, the stu-

dents discussed in more detail the expansion of space 

according to the Friedmann Lemaitre equation, in-

cluding the accelerated expansion. Perhaps, the stu-

dents wanted to be very sure about the uniform trans-

formation of space, the corresponding increase of vol-

ume and the respective observations. In particular, the 

students discussed in detail the function H0(z). Pre-

sumably, they wanted to be very sure about the tests 

of the vacuum dynamics. 

Furthermore, the students discussed in detail the dif-

ference between the flowing additional vacuum at a 

location and the new formed vacuum at the same lo-

cation. This behaviour could be expected, as that dif-

ference might easily be overlooked. Also the physical 

reality of vacuum was discussed extensively. This 

might be expected as well as that vacuum is usually 

not discussed or analysed in the transformations of 

general relativity. Also the frames have been dis-

cussed, as they are always discussed in relativity and 

in mechanics (e. g. for kinetic energy).  

Moreover, the students discussed the far distance 

limit. This could be expected, as it is essential for the 

linearity versus nonlinearity of the DEQ. Progres-

sively, the students discussed the deterministic dy-

namics of wave functions, the stochastic dynamics 

based on the energy density and about the role of the 

Hilbert space. These topics could be expected, as they 

are basic to the postulates of quantum physics. 

Altogether, the students showed that they can de-

scribe the derivations and that they can discuss espe-

cially interesting topics within the relation between 

relativity and quantum physics. 
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10. Summary 

Students are highly interested in astronomy, astro-

physics and in the characteristics of nature. An espe-

cially interesting, essential and fundamental concept 

is presented by quantum physics. However, it was not 

yet really understood (see e. g. Feynman 1965, p. 

129). Moreover, the relation of quantum physics and 

relativity present an interesting scientific question. 

Thus, that topic includes a substantial didactical po-

tential and an exciting didactical perspective, see 

Figs. (1, 2).  

In order to use that didactical potential, an analysis 

and a productive concept of the subject are necessary. 

For it, we presented sections 2-6. In these, we derived 

quantum physics from the dynamics of vacuum. For 

it, we derived the dynamics of vacuum from gravity 

and relativity, and we considered a variety of tests of 

these dynamics.  

Thus, quantum physics is now understood on the ba-

sis of a dynamics of vacuum, which includes the dy-

namics of space and time. So, we achieved a very 

clear and fundamental derivation and explanation of 

quantum physics.  

That insight should be made available to students of 

quantum physics. For this purpose, I developed a 

course in quantum physics that is based on the dy-

namics of vacuum. The course can easily be supple-

mented by any desired generalizing or special topics 

in quantum physics.  

I tested parts of the course in a research club (see e. g. 

Carmesin 2018c, 2019b, 2020b, 2021e, Sawitzki and 

Carmesin 2021, Schöneberg and Carmesin 2021) in 

public astronomy evenings in the assembly hall and 

in online courses at Bremen university. Thereby, the 

didactical potential of the topic was used, so that stu-

dents described and discussed the steps of the deriva-

tion of the dynamics of vacuum, including the appli-

cation of these dynamics to quantum physics and cos-

mology, see Fig. 3.  
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