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Kurzfassung 

In unserem Beitrag stellen wir eine Lösung des seit 1970 bekannten Horizontproblems vor, wel-

ches die Frage aufwirft, wie die Lichtwellen seit dem Zeitpunkt des Urknalls den Horizont des ex-

pandierenden Universums thermalisieren konnten. Unser Lösungsweg bedient sich Berechnungen, 

Diagrammen, sowie eines eigens entwickelten Zeitverlaufs. Diesen haben wir bereits in dem Bei-

trag „Solution of a Density Problem in the Early Universe“ in der Zeitschrift PhyDid B pp. 43-46 

(Frühjahrstagung 2020) vorgestellt. In diesem Zeitverlauf nutzen wir dimensionale Übergänge, 

welche im direkten Zusammenhang zur Größe des Universums und der somit von den Lichtwellen 

zu überwindenden Distanz stehen. Dadurch können wir darstellen, wie durch die anfänglich gro-

ßen Dimensionen, die Distanzen gering waren und die Lichtwellen früh den Horizont thermalisie-

ren konnten. 

 

Abstract 

In our article we will show a solution for the horizon problem. The problem is known since 1970. 

It´s about the question how the light waves could thermalize the hole expanding universe since the 

big bang. Our solution will use calculations, diagrams and a new self-designed time evolution. We 

had shown this time evolution in the article “Solution of a Density Problem in the Early Universe” 

out of the journal PhyDid B pp. 43-46 (spring conference 2020). In this time evolution we use di-

mensional transitions, which are connected to the size of the universe. So it also is connected to 

the distance which has to be reached from the light. With those methods we can explain how the 

early big dimensions could take care for the small distances and how the light was able to thermal-

ize the space within horizon. 

 

1. Introduction 

Since 1970 the horizon Problem exists. This de-

scribes the problem that the General Relativity The-

ory, GRT (Einstein, 1915), can´t describes how the 

light waves could thermalize the visible universe 

since the big bang. 

 

Fig. 1: Cosmic microwave background (Courtesy 

NASA/JPL-Caltech, Pietrobon 2012, 7 year 

WMAP) 

This Fig. shows the cosmic microwave background 

of within the light horizon of the years 2001 to 2010. 

The Nasa indicates that the measurements have 

temperature fluctuations of maximum 200 micro 

kelvin. This confirms the horizon problem with the 

essential fact that the whole space within the light 

horizon is completely thermalized. In this article we 

will show different time evolutions and their capa-

bility to explain and solve the horizon problem. Our 

time evolutions show the evolution of the light hori-

zon and the light path which is the covered track of 

light by time. 

2. Methods and Calculations 

2.1. Method 

To decide whether a time evolution can solve the 

horizon problem it´s necessary to compare the 

length of the radius of the light horizon with the 

length of the light path. Because if the radius of the 

light horizon is longer than the light path, the light 
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waves weren´t able to thermalize the whole space 

within the light horizon because they didn´t cross it 

completely. But if the lightpath in any time is equal 

or longer than the radius of the light horizon the 

light waves have crossed the whole light horizon 

and have thermalized it. So the horizon problem 

would be solved. This means it’s necessary to com-

pare the lengths of the radius of the light horizon 

and the light path in any time. Because the length of 

the radius of the light horizon is known (Carmesin, 

2019 and Sawitzki with Carmesin 2021) it´s only 

necessary to calculate the lengths of the lightpath. 

2.2. Definitions and requirements 

For the calculations it is needful to use some known 

values like the following constants (Fig. 2). 

 

Fig. 2: All used constants. rLH is the current radius 

of the light horizon, cc the speed of light, LP the 

Planck length and tP the Planck time. 

Further requirements for the calculations are the 

time and associated radius of the light horizon val-

ues (Carmesin, 2019 and Sawitzki with Carmesin, 

2021). Also we need values to different used dimen-

sions (Schöneberg with Carmesin, 2020) because 

they have direct influences of the lengths of the light 

path and radius of the light horizon. Dimensions are 

like a folded paper. In our third dimension the paper 

would be folded three times and if the density in our 

universe is getting higher until a critical density a 

dimensional transition occurs and the dimension 

changes into the next higher dimension. So in our 

example the paper would fold again and the distanc-

es between two points get much smaller. 

2.3. Calculations 

To calculate the light path in a special time period 

it´s necessary to multiply the speed of light with the 

difference of the start time value and end time value 

of this period. Because the universe expands since 

the big bang (Hubble, 1929) and the expanding af-

fects all paths in the universe, it´s required to apply 

this on the light path. After that we get the expanded 

light path in a special time period. Because the light 

didn´t move only in a special period but the whole 

time since the begin of the universe it´s needful to 

add all of these periods since the big bang to the 

time period with the redshifted (Einstein, 1915) 

recording of the cosmic microwave background 

together. So now we get the final time path to com-

pare with the radius of the light horizon. (Fig. 3). 

 

 

Fig. 3: Diagram of the length of the radius of the 

light horizon according to the time of the time evo-

lution 1 and 2. The x-axis shows the time in Planck 

time and the y-axis the matching radius of the light 

horizon in meter. 

2.4 Evolution of the light horizon 

The evolution of the light horizon is composed of 

different calculations and time evolutions. So the 

upper part of Fig. 3 (Fig. 4) is a derivation of the 

GRT (Heeren, Sawitzki and Carmesin, 2020). 

 

 

Fig. 4: Diagram of the length of the radius of the 

light horizon according to the time of the time evo-

lution 1. The x-axis shows the time in Planck time 

and the y-axis the matching radius of the light hori-

zon in meter. 

 

Fig. 5: Graph of the dimensional transitions and 

matching distance enlargements of the lower part of 

the graph in Fig. 3. On the x-axis are the dimensions 

and on the y-axis the length of the light horizon. 

Constants

r_LH 4,14E+26

cc 3,00E+08

L_P 1,62E-35

t_P 5,39E-44

1,00E-35

1,00E-28

1,00E-21

1,00E-14

1,00E-07

1,00E+00

1,00E+07

1,00E+14

1,00E+21

1,00E-44 1,00E-34 1,00E-24 1,00E-14 1,00E-04 1,00E+06

r_LH according to timeline 1 & 2

r_LH in m

1,00E-35

1,00E-28

1,00E-21

1,00E-14

1,00E-07

1,00E+00

1,00E+07

1,00E+14

1,00E+21

1,00E-41 1,00E-31 1,00E-21 1,00E-11 1,00E-01 1,00E+09

r_LH according to timeline 1

r_LH in m

1

1000

1000000

1E+09

1E+12

1E+15

1E+18

1E+21

1E+24

1E+27

1E+30

0100200300

62



Solution of the Horizon Problem 

The lower part of the graph in Fig. 3 is composed of 

the time and radius of the light horizon values (Car-

mesin 2019). Further this part includes dimensional 

transitions and resulting great distance changes (Fig. 

5) (Schöneberg with Carmesin, 2020). 

3. Tested time evolutions 

3.1. Time evolution 1 

The first time evolution is described of the GRT and 

a replication of known information to compare it 

with the other time evolutions. It shows an evolu-

tion in the third dimension, which is stopped at a 

certain point (begin of the upper part of the graph in 

Fig. 3) because it reached the maximal density, the 

half Planck density. So this time evolution is limited 

that it never could reach the minimal observable 

length (Heeren, Sawitzki and Carmesin, 2020), the 

Planck length (begin lower part of the graph in Fig. 

3). After the use of the explained calculation we can 

see that the horizon problem isn´t solved by this 

time evolution. This shows the following diagram 

(Fig. 6) because every time the lightpath is shorter 

than the radius of the light horizon. 

 

 

Fig. 6: Diagram of the time evolution 1. The x-axis 

shows the time in Planck times and the y-axis the 

length in meter. The blue graph represents the radius 

of the light horizon and the red graph the light path. 

3.2. Time evolution 2 

This time evolution also describes the evolution of 

the light horizon according to the GRT. The differ-

ence this time is that it also uses the distance en-

largements by the dimensional transitions which 

begins at the 301
st
 dimension and ends at the 3

rd
 

dimension (Fig. 5). The values in this time evolution 

are based on an approximation of two particles 

(Carmesin 2019). It is important that dimensional 

transitions always occur at critical densities, this 

means that this time evolution doesn´t have the 

problem of the limitation by the maximal density. 

After the calculations the diagram (Fig. 7) shows us 

that this time evolution can solve the horizon prob-

lem, because the length of the lightpath is always 

longer than the length of radius of the light horizon. 

 

 

Fig. 7: Diagram of the time evolution 2. The x-axis 

shows the time in Planck times and the y-axis the 

length in meter. The blue graph represents the radius 

of the light horizon and the green graph the light 

path. 

3.3. Time evolution 3 

The third time evolution describes a nearly similar 

evolution as the second. So it also describes the 

evolution of the light horizon according to the GRT 

supplemented by the dimensional transitions of the 

dimensions from the 301
st
 to the 3

rd
. The only dif-

ference between those time evolutions is that their 

values are based on different approximations. So the 

values of this time evolution are based on a quantum 

gas which is a gas of quantum objects. Normally 

there are two quantum gases, the Fermi gas and the 

Bose gas. The Fermi gas is out of fermions and the 

Bose gas includes bosons. The difference is that 

much bosons can fill the same place but only one 

fermion can be in one place in the same state. Be-

cause the phase of dimensional transitions is in a 

density above a quarter Planck density also bosons 

can only stay solo in one place and the difference 

between the both quantum gases disappears. That 

means that the values don´t change by using differ-

ent quantum gases and we can use these values 

according to an approximation of a Bose gas. The 

use of values with such an approximation enables 

the possibility of any accuracy which is in that case 

one with 2
Dimesnion

 particles. Because the calculation 

of the values needs much time we currently have the 

values of the dimension 3 to 32 (Sawitzki, Carmesin 

2021). So probably the length of the light path will 

increase a lot, after adding the other values of the 

dimensions 33 to 301. But even without them, after 

calculating the light path, we can see that at the 

beginning the lightpath is much longer than the 

radius of the light horizon (Fig. 8). Furthermore, we 

can see that after a while the light horizon gets larg-

er than the lightpath. But for the solution of the 

horizon problem it doesn´t change anything because 

if the lightpath is in some time larger than the radius 

of the light horizon the light has thermalized it. 

Even the light horizon gets larger by expanding, all 
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distances in it will expand too and because all dis-

tances which get larger are thermalized, all new 

distances are also thermalized. 

 

 

Fig. 8: Diagram of the time evolution 3. The x-axis 

shows the time in Planck times and the y-axis the 

length in meter. The blue graph represents the radius 

of the light horizon and the yellow graph the light 

path. 

4. Solutions 

The check of time evolution one to three shows that 

the time evolution one only according to the GRT 

can´t solve the horizon problem and meanwhile 

confirm it. But because in that case we got the same 

solution than the known information’s, we know 

that our calculations method was right. Also we got 

the solution that the time evolutions two and three 

which uses the GRT supplemented by the dimen-

sional transitions can solve the horizon problem. 

This shows clearly that the solution of the horizon 

problem is provided by the dimensional transitions. 

Because the dimensional transitions are part of the 

quantum gravity we can conclude that the limitation 

of the GRT to the gravitation in the macrocosm is 

the cause of the horizon problem.  

5. Discussion of results 

The accuracy of the solution is very important. So 

the time evolution two has a limited accuracy be-

cause its values are based on an approximation of 

two particles. But because of the approximation of 

the time evolution 3 which is based on a Bose gas 

we know that the horizon problem is also solved at a 

high accuracy.  
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