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Englisch Abstract 

Surely you know the Pythagorean and Euclidean Theorems. They seem to be a little bit boring if 

presented with scalars. Please use vectors instead to make these theorems interesting! 

The reason to do this is simple: Equivalence operations with scalar variables are a cornerstone con-

cept of modern algebra. It will be shown how equivalence operations with vector variables can be 

seen as a similar firm cornerstone of geometry. We only have to get rid of the usual restriction to 

scalars when discussing the Pythagorean, the Euclidean and the many other theorems of geo-

metry. 

Vectors, bivector as oriented area elements and other higher-dimensional quantities should be used 

as variables, too. The Geometric Algebra constructed this way delivers a valuable and convincing 

conceptual frame for this modern view on geometry. 

 

German Abstract [11] 

Äquivalenzumformungen von Gleichungen, deren Variablen zahlenartig (also durch Skalare) be-

legt sind, stellen einen Grundpfeiler der modernen Algebra dar. Es wird am Beispiel der Satzgrup-

pe des Pythagoras gezeigt, wie Äquivalenzumformungen einen ebenso festen Pfeiler der Geomet-

rie bilden können. 

Die Satzgruppe des Pythagoras kenne wir alle. Sie scheint relativ langweilig, wenn sie lediglich 

mit Skalaren formuliert wird. Machen wir sie also interessant, indem wir einen vektoriellen Blick 

auf sie werfen! 

Dazu wird die Beschränkung auf zahlenartige Größen aufgehoben und eine Belegung von Variab-

len durch Vektoren, durch Bivektoren als orientierte Flächenstücke oder durch andere geometri-

sche Größen zugelassen. Die so entstehende Geometrische Algebra wird vorgestellt und diskutiert. 

 

 

1. Mathematicians is a fossilized science 

In contrast to the mostly progressive and positive 

self-image many mathematicians possess, mathemat-

ics must be considered as an extremely conservative, 

backwards looking and extremely retrospective, 

fossilized and petrified science on the long term, 

looking for and preserving the old and rejecting the 

new. It appears that the history of mathematics is 

characterized by stagnation by far the most time. 

So at the beginning of Old-Babylonian mathematics 

there is a revolutionary start at the times of Hammu-

rabi. According to Derbyshire and Conway [1, p. 32] 

the mathematics created at this time was transmitted 

to  following  generations  of  mathematicians  without 

 

 

significant changes over the following thousands of 

years. 

The same can be seen in Egypt: "We have no 

grounds for thinking that Egyptian mathematics 

made any notable progress from the 16th to the 4th 

century BCE” [1, p. 32]. 

In a similar conservative, limiting and restricting 

way we deal today with the revolutionary insights of 

the group of mathematicians, Diophantus, “the fa-

ther of algebra” [1, chap. 2] gathered around him. 

They – or he – invented the notion of variables, 

transformations of terms and equivalence operations 

at this special date at the change of millenniums. 
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Since then equivalence operations constitute the firm 

cornerstone at the center of modern algebra. Without 

equivalence operations algebra would not mean any-

thing to us. 

But at the same time we refuse to think about equiv-

alence operations in geometry. Even today we still 

refuse to acknowledge the cornerstone position 

equivalence operations might have in geometry. It is 

really disturbing, that we – obsessed by our petrified 

views about geometry - not even allow simple trans-

formations today. 

2. The Pythagorean Theorem 

It is really disturbing that we even reject the simple 

and easy transformation of a sum of two vectors a 

and b. Of course this sum 

a + b = c {1} 

describes the three side vectors of an arbitrary trian-

gle (see fig, 1). 

 

Fig.1: The three vectors of a triangle with arbitrary angles. 

And of course squaring this sum of two vectors 

(a + b)
2
 = (a + b) (a + b) 

             = a
2
 + a b + b a + b

2
 {2}

 

             = c
2
 

must result in the square of the third side vector c
2
. 

If a + b = c is valid, (a + b)
2
 = c

2
 has to be valid, too 

– always and forever! If a mathematical system is 

not capable of reproducing (a + b)
2
 = c

2
 correctly, it 

should be considered as useless. And it should be 

dismissed immediately [2]. 

If now the two side vectors a and b are the orthogo-

nal legs of a right-angled triangle with hypotenuse c 

(see fig. 2), the square of their sum can be found 

according to eq. {2} again. The conventional formu-

la of the Pythagorean Theorem on the right side of 

(a + b)
2
 = a

2
 + b

2
 = c

2
 {3} 

will then result, if both legs anti-commute: 

a b = – b a {4} 

Eq. {4} is an algebraic relation for orthogonal vec-

tors, which is well-known since the invention of the 

theory of extensions by Hermann Grassmann [3]. 

And eq. {4} has been ignored by main-stream math-

ematicians again and again when trying to preserve 

the old and to reject the new. 

Since more than 175 years traditional school and 

highschool mathematics (and in an even fiercer way 

didactics of mathematics) bluntly fight against bas-

ing the mathematics of vectors on a modern founda-

tion which includes the impressive findings of 

Grassmann and Clifford. 

Rota [4, pp. 232/233] comments on this grotesque 

backwardness and retarded mathematical antiquat-

edness with the words: “The neglect of exterior al-

gebra is the mathematical tragedy of this century. 

(…) Meanwhile, we have to bear with mathemati-

cians who are exterior algebra-blind.” 

3. The Euclidean Theorems 

While orthogonal vectors anti-commute, parallel 

vectors commute and their product is commutative 

with respect to multiplication. 

Therefore the vectors of the two hypotenuse seg-

ments m and n (see fig. 2) multiply according to 

m n = n m  {5} 

Together with the Pythagorean Theorem of the small 

 

Fig.2: Vectors and vector segments of a right-             

angled triangle. 

right-angled triangles 

(m + h)
2
 = m

2
 + h

2
 = a

2
 {6} 

and 

(n – h)
2
 = n

2
 + h

2
 = b

2
 {7} 

the square of the altitude vector h can be constructed 

by squaring the hypotenuse c 

c
2
 = (m + n)

2
 

    = m
2
 + m n + n m + n

2
 {8} 

     = a
2
 – h

2
 + 2 m n + b

2
 – h

2
 

     = c
2
 – 2 h

2
 + 2 m n 

and then cancelling this hypotenuse square c
2
 to get 

the expected result: 

h
2
 = m n {9}

 

The missing Euclidean Theorems are simple modifi-

cations of eq. {9} as only the squares of the vectors 

of the hypotenuse segment m
2
 

a
2
 = h

2
 + m

2
 

    = m n + m
2
 {10} 

     = m (n + m) 

     = m c 

or of the hypotenuse segment n
2
 

b
2
 = h

2
 + n

2
 

    = m n + n
2
 {11} 

     = (m + n) n 

     = n c 

should be added. 
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All these squares of vectors and all theses products 

of two parallel vectors are scalars. Consequently 

they are completely different quantities compared to 

products of two orthogonal vectors, which always 

are oriented area elements and thus bivectors. 

The Pythagorean and Euclidean Theorems should 

therefore be supplemented and completed by an area 

theorem 

a b = h c {12}
 

which can be motivated by comparing the oriented 

area of an right-angled triangle. 

4. More equivalence operations 

While in conventional presentations of the Pythago-

rean and Euclidean Theorems only scalars a, b, c, m, 

n, h are taken into account, we are now able to work 

with oriented line elements or vectors a, b, c, m, n, 

h (printed in boldface) and thus get a better picture 

of the geometrical situation. 

All these eqs. {9} – {12} can be transformed by 

equivalence operations. And it is obvious that it is 

even possible to divide by vectors [5, eq. 23]. To do 

this it is only necessary to construct inverse vectors. 

e.g. the inverse of the hypotenuse c: 

c
 – 1 = 

2
c

c
 {13}

 

The inverse vectors can then either be pre-multiplied 

from the left or post-multiplied from the right. In 

this way the Euclidean Theorems can be solved for 

unknown vectors, e.g. 

m = a
2
 c

 – 1 = 
2

2

c

c a
 {14} 

n = b
2
 c

 – 1 = 
2

2

c

c b
 {15} 

h = a b c
 – 1 = 

2
c

c b a
 {16}

 

As the square of a vector is identical to a scalar, the 

division by a vector is hidden behind the multiplica-

tion by a vector and the division by a scalar. 

5. First example problem 

As an example for this strategy a right-angled trian-

gle is given by the following three points A (20; 15), 

B (0; 0), and C (0; 15) in [6]. 

After finding the Geometric Algebra vectors of hy-

potenuse c and legs a  and b 

a = 15 y 

b = 20 x {17} 

c = 20 x + 15 y 

and theirs squares 

a
2
 = (15 y)

2
 = 225 

b
2
 = (20 x)

2
 = 400 {18} 

c
2
 = (20 x + 15 y)

2
 = 625 

the Pythagorean Theorem can be checked by 

(a + b)
2
 = (15 y + 20 x)

2
 

              = a
2
 + b

2
 = 225 + 400 {19} 

              = c
2
 = 625

 

The vector of hypotenuse segment m can be found 

by applying eq. {14}: 

m = 
2

2

c

a
 c = 

625

225
 (20 x + 15 y) {20} 

                  = 7.2 x + 5.4 y 

And the vector of the second hypotenuse segment n 

n = c – m = 12.8 x + 9.6 y {21} 

can be found by applying eq. {15}: 

n = 
2

2

c

b
 c = 

625

400
 (20 x + 15 y) {22} 

                 = 12.8 x + 9.6 y 

Finally the vector of the altitude h 

h = a – m = – 7.2 x + 9.6 y {23} 

or 

h = n – b = – 7.2 x + 9.6 y {24} 

can be found by applying eq. {16}: 

h = 
2

 

c

ba
 c = 

625

 300 yx
 (20 x + 15 y) 

                 = – 7.2 x + 9.6 y {25} 

These example calculations hopefully show, that the 

first two sentences of Snygg in the introduction of 

his book [7, p. XIII] are completely correct: “Much 

of Clifford algebra is quite simple minded. If this 

fact were generally recognized, Clifford algebra 

would be more widely used as a computational 

tool.” 

And the only problem then is: Geometric Algebra is 

“so simple only a child can do it” [8, p. 1177].  

6. Generalized versions of the Pythagorean and 

Euclidean Theorems 

Similar calculations at general or oblique triangles, 

which do not possess orthogonal sides, can be done 

again by squaring the sum of vectors c = a + b: 

c
2
 = (a + b)

2
 = (a + b) (a + b) {26} 

    = a
2
 + a b + b a + b

2 

But this time the generalized Pythagorean Theorem 

can only be found if the definition of the inner prod-

uct of two vectors a and b with Geometric Algebra 

scalar lengths of a = a and b =b (see [5, p. 

107] or [8, p. 1178]) 

a  b = 
2

1
 (a b + b a) {27} 

          = 2 a b cos  = 2 a b cos  

is taken into account: 

c
2
 = a

2
 + b

2
 + 2 a  b {28}
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This result again is a logical consequence of trans-

forming geometrically motivated variables. We do 

not square scalars, we are squaring vectors now. 

Eq. {28} is the generalized Pythagorean Theorem. It 

can be split into two parts 

(m + n) c = a
2
 + a  b + b

2
 + a  b {29}

 

which constitute the generalized Euclidean Theo-

rems 

m c = a
2
 + a  b {30}

 

and 

n c = b
2
 + a  b {31}

 

And it is shown in [6] that squaring the vector c as 

sum of the two parallel segments c = m + n: 

c
2
 = (m + n)

2
 = m

2
 + 2 m n + n

2
 {32}

 

and solving for m n = n m results in the last general-

ized Euclidean Theorem 

m n = h
2
 + a  b {33}

 

As the outer product of the two side vectors a and b 

(see [5, p. 107] or [8, p. 1178]) 

a  b = 
2

1
 (a b – b a) = h c {34} 

is identical to the oriented area h c of the oblique tri-

angle the canonical decomposition of the Geometric 

Product (see [5, p. 107] or [8, p. 1179]) 

a b = a  b + a  b {35}
 

can be identified straightforwardly with the general-

ized area theorem 

a b = h c + a  b {36}
 

The standard versions and generalized versions of 

these theorems are summarized in fig. 3. The struc-

tural lesson is clear: Just add the inner product of eq. 

{27} and everything will be o.k. 

 

 

 

 

 

 

 

 
 

7. Second example problem 

As an “homework problem” example for applying 

the generalized theorems a general triangle was 

given by the following three points A (0; 0), B (6; 2), 

and C (1; 4) in [6, slide 77]. 

If vector c points from point B to point A (and con-

sequently vector a points from point B to point C, 

vector b points from point C to point A) in contrast 

to [6, slide 78]) the Geometric Algebra vectors a, b, 

and c of the three sides are given by 

a = (1 – 6) x + (4 – 2) y = – 5 x + 2 y 

b = (0 – 1) x + (0 – 4) y = – x – 4 y {37} 

c = (0 – 6) x + (0 – 2) y = – 6 x – 2 y 

They square to 

a
2
 = (– 5 x + 2 y)

2
 = 29 

b
2
 = (– x – 4 y)

2
 = 17 {38} 

c
2
 = (– 6 x – 2 y)

2
 = 40 

and have the following inner product of vectors a 

and b: 

a  b = 5 – 8 = – 3 {39} 

Thus the Pythagorean Theorem can be checked by 

(a + b)
2
 = (– 6 x – 2 y)

2
 

              = a
2
 + b

2
 + 2 a  b = 29 + 17 – 6 

              = c
2
 = 40 {40}

 

The vector segment m can be found by solving eq. 

{30} for m: 

m = 
2

2

c

baa 
 c = 

40

329 
 (– 6 x – 2 y) 

                               = – 3.9 x – 1.3 y {41} 

And the second vector segment n 

n = c – m = – 2.1 x – 0.7 y {42} 

can be found by solving eq. {31} for n: 

n = 
2

2

c

bab 
 c = 

40

317 
 (– 6 x – 2 y) 

                               = – 2.1 x – 0.7 y {43} 

The vector of the altitude h 

h = a – m = – 1.1 x + 3.3 y {44} 

or 

h = n – b = – 1.1 x + 3.3 y {45} 

 

 

 

 

 

 

 

 

 

can be found by solving eq. {36} for h: 

h = 
2

 

c

baba 
 c {46} 

    = 
40

33 22 yx 
 (– 6 x – 2 y) 

    = – 1.1 x + 3.3 y 

And finally eq. {33} can be checked: 

m n = 9.1 = 12.1 – 3 = h
2
 + a  b {47}

 

 

Fig.3: Overview of right-angled and generalized triangle theorems of Pythagoras and Euclid. 
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All this is simple mathematics. It is extremely sim-

ple And it is much simpler compared to many other 

attempts to write down generalizations of the Py-

thagorean and Euclidean Theorems. 

Therefore we should recall he conclusion Parra Serra 

has drawn in [9, p. 820]: “Clifford algebra has at-

tained such a degree of completeness that can be 

claimed it can be explained to the first person you 

meet in the street. There is no reasonable nor solid 

argumentation for denying its inclusion in the high 

school curriculum where it can play the important 

role of introducing and relating many otherwise 

unconnected fields.” 

8. Outlook: Complex conjugation means betray-

ing symmetry 

In previous sections we did a lot of squaring. But of 

course it is not forbidden to compute more powers c
n
 

of higher orders n of the hypotenuse c 

c = m + n = a + b {48}
 

of a right-angled triangle. 

 

1 

1 1 

1 2 1 

1 3 3 1 

1 4 6 4 1 

1 5 10 10 5 1 

1 6 15 20 15 6 1 

1 7 21 35 35 21 7 1 

 

Fig.4: Binomial Coefficients forming the Pascal Triangle. 

Coefficients of terms of commuting quantities like 

m and n form the usual and well-known Pascal Tri-

angle (see fig. 4). 

But coefficients of powers of anti-commuting quan-

tities like the orthogonal legs a and b of a right-

angled triangle show a completely different struc-

ture: 
 

c
0
 =                                     1 

c
1
 =                               1 a + 1 b  

c
2
 =                          1 a

2
 + 0 a b + 1 b

2
 {49} 

c
3
 =                1 a

3
 + 1 a

2
 b + 1 a b

2
 + 1 b

3
 

c
4
 =         1 a

4
 + 0 a

3
 b + 2 a

2
 b

2
 + 0 a b

3
 + 1 b

4
 

c
5
 = 1 a

5
 + 1 a

4
 b + 2 a

3
 b

2
 + 2 a

2
 b

3
 + 1 a b

4
 + 1 b

5
 

 

They form the Pauli Pascal Triangle [10], [11] (see 

fig, 5). 

And there is a clear, inevitable and absolutely irrefu-

table connection between the symmetry of two dif-

ferent quantities and the Pascal pattern of their coef-

ficients, which will emerge. 

 If coefficients form a Pascal triangle, the basic 

building blocks must inevitably have been quan-

tities which commute. 

 And if coefficients form a Pauli Pascal triangle, 

the basic buildings blocks must inevitably have 

been quantities which anti-commute. 

You should tell this your students! 

Now please have a look at the coefficients of differ-

ent powers of a complex number z = x + i y: 

z
n
 = (x + i y)

n
 {50} 

Of course the coefficients form a Pascal Triangle 

(with alternating pairs of negative and positive diag-

onal lines originating from powers of the imaginary 

unit i
n
). This clearly shows that the basic building 

blocks x and i y commute. 

Now we compute powers of higher orders of prod-

ucts of imaginary numbers z = x + iy and complex 

conjugates z* = x – i y. 

This time no Pascal Triangle is formed. Using com-

plex conjugated building blocks inevitably  results  in 

 

1 

1 1 

1 0 1 

1 1 1 1 

1 0 2 0 1 

1 1 2 2 1 1 

1 0 3 0 3 0 1 

1 1 3 3 3 3 1 1 

 

Fig.5: Coefficients of the Pauli Pascal Triangle. 

a pattern which can clearly be identified with the 

Pauli Pascal Triangle of fig. 5: 
 

          z
0
 =                                 1 

          z =                           1 x + 1 iy  

        z*z =                       1 x
2
 + 0 ixy + 1 y

2
 {51} 

     z z* z =               1 x
3
 + 1 ix

2
y + 1 xy

2
 + 1 iy

3
 

  z* z z* z =        1 x
4
 + 0 ix

3
y + 2 x

2
y

2
 + 0 ixy

3
 + 1 y

4
 

z z* z z* z = 1 x
5
 + 1 ix

4
y + 2 x

3
y

2
 + 2 ix

2
y

3
 + 1 xy

4
 + 1 iy

5
 

 

And as the coefficients form the Pauli Pascal Trian-

gle, the underlying symmetry clearly is identical to 

the symmetry of anti-commuting basic building 

blocks. 

Using complex conjugation means: Using a structure 

which is formed of commuting building blocks (x 

and  iy) to model an anti-commuting situation. 

Using complex conjugation thus means cheating: 

You do not see the anti-commuting building blocks, 

but they are there. They are mimicked by additional 

minus signs which have been fraudulently inserted 

via complex conjugation. 
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With complex conjugation we are modeling anti-

commutative structures, which we hide behind ille-

gitimate commutativity. 

Complex conjugation is a dirty mathematical trick. 

Please, do not use this trick. Please be open and 

honest and use directly anti-commutating building 

blocks if you intend to model anti-commutative 

structures. 
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