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Abstract

Light deflection, in particular the gravitational-lens effect in its strong form, is an interesting and
fascinating subject of modern physics and cosmology. Although it is conceptually articulated and
complex, it is fortunately possible to approach this topic through a simplified method and analysis,
involving different concepts of physics and mathematics typical  of the last years of secondary
school and first years of the undergraduate studies. The basic idea is the visualisation of light on
curved paths under the influence of gravity. In fact, by combining optics and general relativity, it is
possible to design plexiglass lenses specifically formulated to reproduce the images of any source,
whose light  is  deflected  by different  types of  celestial  objects.  The work with these  lenses  is
moreover  supported  by  simulations  performed  with  the  software  Geogebra  and  the  help  of
astonishing images  from the best  telescopes.  All  this  makes  gravitational  lensing an excellent
educational  tool  for  teaching  physics  and  mathematics  using  examples  from  astronomy  and
cosmology.

1. Introduction

When light coming from one or more distant sources
passes by a mass distribution positioned between the
source and the observer, the light path is bent by the
gravitational potential of the mass distribution, from
now on called lens. This effect is known as gravita-
tional lensing and the amount of bending was pre-
dicted by Albert  Einstein's  General  Theory  of  Re-
lativity.

The idea arose, however, also in the context of clas-
sical  physics.  This  well  before  Einstein  and  obvi-
ously starting from totally different  conceptual  as-
sumptions,  namely  assuming that  light  consists  of
material particles, using Newtonian gravity and the
Sun as  lens. In  fact,  already Newton hypothesised
this effect  in his book Opticks (1704). Afterwards,
Henry Cavendish, in an unpublished note (1783/84),
and Johann Georg von Soldner, in a published work
from 1801, predicted the amount of the bending of
light, but only half of the value derived by the Gen-
eral  Relativity [Lotze and Simionato, 2021].  Actu-
ally, in his first attempt also Einstein achieved the
half of the correct value, this was in 1911 using the
equivalence principle. Then in 1915, elaborating and
completing his General Theory of Relativity, he cor-
rected  this  result  and  for  the  first  time  the  real
amount of light bending was known [Narayan and
Bartelmann,  2008].  Einstein’s  prediction about  the
deflection of light was proven during the solar ec-
lipse of 29 May 1919 and this was also the first ob-
servation of the gravitational-lens effect which made
Einstein and his theory famous in the entire world
[Lotze and Simionato, 2021].

Einstein was also the first to consider the fact  that
other stars besides the Sun could act as gravitational
lenses and deflect  light  of distant  sources  from its
original path. But he gave no hope to such observa-
tions  for  basically  two  reasons.  In  fact,  he  con-
sidered the necessary alignments between the stars
and the observer highly unlikely and, moreover, the
order of magnitude of such effects was too small to
be  actually  observed  with  the  instruments  of  that
time [Einstein, 1936]. In this respect, it was in effect
the astronomer Fritz Zwicky who in 1937 instead of
stars  suggested to  consider  galaxies,  called  at  that
time nebulae.  Basically,  these  newly (at  that  time)
defined extragalactic objects had two advantages in
the  theoretical  framework  of  gravitational  lensing:
they are much more massive than single stars and
they are extended, therefore the necessary alignment
is not so improbable anymore [Zwicky, 1937]. How-
ever, the real interest in gravitational lensing began
in the early 1960s with independent research by S.
Refsdal, S. Liebes and Yu. G. Klimov and the con-
temporary  discovery  of  quasars  [Schneider  et  al.,
2006].

Nevertheless, it still took another 15 years before the
first gravitational lens system was observed in 1979.
Indeed, Walsh, Carswell  and Weymann discovered
the  first  gravitational  lensing,  the  quasar  QSO
0957+561A,B, nowadays known as the Twin Quasar
[Schneider et al., 2006]. And here began a long his-
tory of observations and discoveries.

2. Light Deflection and Useful Concepts

At this point we have a basic idea of how gravita-
tional lensing works (fig.  1),  however,  before ana-
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lysing this theme more deeply, we need to introduce
some concepts and simplifications used in this art-
icle and understand the geometry of the lens system.

First of all,  for simplicity and to reach our educa-
tional goals without distracting the attention of our
students with intricate calculations, all gravitational
lenses we consider in our models are axially sym-
metric.

Figure 1: Representation of  the gravitational-lens effect
(not to scale) of the system consisting of a distant star, the
Sun and the Earth.  We can see the indicated deflection
angle δ .  Credit:  path2space.com,  elaborated  by  S.
Simionato.

Secondly, it is important to know that the amount of
bending of  the light  path,  which as  we know was
predicted  by  Einstein’s  General  Relativity,  is  ex-
pressed by the deflection angle δ:1

δ(θ)= 4G
c2

M (θ)
θ DL

. (1)

Here the ratio M (θ)/θ D L expresses  how the angle
of deflection is dependent on the mass of the lens
and  on  the  impact  parameter,  namely  the  shortest
distance at which the light ray passes by the lens. In
fact,  M (θ) , according to Newton’s shell theorem,
is the mass within the impact parameter  b, the only
mass that acts gravitationally on the light ray, bend-
ing it [Schneider, 2015]. Instead θD L , as shown in
fig. 2, represents the impact parameter  b in the lens
plane expressed in terms of arc length and under the
small-angle approximation. Approximation that  we
are allowed to use, since the distances involved are
much larger than the size of the lens. For this last
reason, we also consider that the process of deflec-
tion  is  not  continuous,  but  it  happens  in  a  single
point close to the lens. This point, distant b from the
gravitational lens, and the lens itself define the lens
plane. Considering the gravitational lensing happen-
ing in a plane brings the consequence that also the
entire  mass of the lens  has to be projected on the
same plane, as we will see soon.

From fig. 2, which schematically represents the geo-
metry of the system, we also understand very well
that what the observer sees is not the original source,

1 For  the  derivation  of  the  deflection  angle  see  [Lotze  and

Simionato, 2021] and [Lotze, 2020].

but rather images of it deformed in various ways and
in different positions.

Figure 2: Geometry of the general situation of the gravita-
tional-lens effect. The line connecting observer O and lens
L is the starting point for defining the angles that corres-
pond to the position of the source θS and the position of
the image I

1
 on the upper part  of the diagram θ1 .  The

second image I
2
 is on the opposite side of this line. δ

is the angle of deflection and b the impact parameter in the
lens plane.

These deformations include among other effects also
multiple images of the same source, arcs and rings.
In this regard, we have to consider the fact that size
and shape of the source, different mass distributions
for the lens and the relative position of source, lens
and observer affect number, position, size and shape
of the resulting images.  All  this  together  with the
geometry of the system is taken into account by the
lens equation2

θ−θS−δ
DLS

DS

=0 , (2)

whose solution gives  us the information about the
images.  If  now we  introduce  the  deflection  angle
δ (eq.(1)) in eq. (2), we obtain

θ−θS−
4 G

c2

M (θ)
θ

DLS

DL DS

=0 . (3)

Thanks  to  this  equation,  we  are  able  to  describe
every possible configuration and deduce  important
information on the resulting images, the result of the
gravitational lensing process. A special case is rep-
resented by the perfect alignment of observer,  lens
and  source  which  occurs  when θS=0 .  In  most
cases, when facing this situation, the distorted image
of the source is a ring around the lens, the so-called
Einstein ring. This ring remains constant for each in-
dividual  configuration.  Thus,  we  can  express  the
lens equation (eq.(3)) in terms of the Einstein ring
radius θE specific for the considered configuration. 

The Einstein ring radius is expressed from eq.(2) by

2 For  the  derivation  of  the  lens  equation  see  [Lotze  and

Simionato, 2021] and [Lotze, 2020].
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θE=
4 G
c2

M (θE)
θE

DLS

DL D S

. (4)

Everything we have seen so far is applicable to the
real gravitational lens effect that we find in the uni-
verse, but also to that resulting from simulations or
that  can  be  reproduced  in  class  thanks  to  special
lenses.

The next step requires the projection on the plane of
the lens of a mass profile that represents the lens it-
self. This projected mass will then be introduced in-
stead of M (θ) in these equations and the result will
give us  clear  information  about  what  the  observer
sees. At this point it is possible to study many differ-
ent mass distributions for the lens and observe the
corresponding outcomes.

We chose and analysed eight different mass distribu-
tions for the lens:

• Point mass lens

• Plummer sphere lens

• Uniform disk lens

• Singular isothermal sphere (SIS) lens

• Kuzmin disk lens

• SIS with a core lens

• Spiral galaxy lens

• Navarro-Frenk-White (NFW) lens.

Among  these,  the  first  five  have  been  deeply  ex-
plored and also designed and produced as plexiglass
lenses with the aim of using them as an educational
tool in the classroom. In addition, as far as we know,
we  are  the  first  to  have  produced  the  Plummer
sphere and Kuzmin disk lenses. The last three were
not  considered  for  production  as  plexiglass  lenses
because,  after  a  meticulous  comparison  between
them and  the  Kuzmin  disk  lens,  we  discovered  a
high similarity in the behaviour, the resulting images
and the shape of the lenses themselves. Thus, we de-
cided to produce the simplest lens among them with
regard to the equations involved and the realization
by the university laboratory. In the next paragraph
we will discuss two examples of lenses in detail.

3. Different Lenses

Why do we call this effect gravitational-lens effect?
The name comes from the analogy with "real" lenses
we know in optics. In fact, just as lenses deflect light
rays due to their refractive power, in the same way,
in the universe a massive object, thanks to its gravit-
ational attraction, deflects the rays of light that  in a
straight  line  pass  near  it  [Lotze  and  Simionato,
2021].

Our  primary  interest  falls  on  galaxies  as  gravita-
tional lenses. This is because galaxies offer a variety
of shapes and internal  morphologies and these ob-
jects  can  also  be  used  to  trace  the  distribution  of
dark matter. The idea is that a galaxy, being made of

stars,  has "transparent" space between them, there-
fore it makes sense to choose an impact parameter
inside  the  galaxy  and  study the  result  of  the  lens
equation at different radii, always keeping in mind
Newton's shell theorem. Let's see two examples in
detail:  the famous point  mass lens (also known as
"foot of a wineglass" -- we'll see why later) and the
Plummer sphere lens.

3.1 Point Mass Lens

This case represents the lensing effects produced by
gravitational lenses as black holes, massive objects
and even stars. In our case it is used for representing
galaxies  as  lenses  when  observed  from  very  far
away.  So  far  away  that  we  can  consider  them as
points and we are able to study around them the ef-
fects on light coming from background sources. The
main characteristic of this lens is that its mass is in-
dependent of θ and concentrated in a point at its
centre and the mass density is represented by a Dirac
delta function. Thus, we introduce M (θ)=M tot in
equations  (3)  and  (4)  and  expressing  the  result  in
terms of  the  Einstein ring  radius θE (from eq.(4)),
we get

θ−θS=
θE

2

θ . (5)

Solving eq.(5), we obtain the number and position of
produced  images  from  a  background  point  mass
source. We can solve this quadratic equation analyt-
ically, becoming a nice maths practice, but the easi-
est way is to solve it graphically, as we did in fig. 3
thanks to the software Geogebra, and analyse then
different relative positions of the source.

Figure 3: Graphical Geogebra solution of eq.(5) for the
point  mass lens in  the special  case  of θS=0 .  The ob-
server sees a ring of radius θE , the famous Einstein ring,
which is shown in the bottom panel.

For the graphical solution we consider the two equa-
tions f 1(θ)=θ−θS and f 2(θ)=θE

2/θ .  As  we  see
represented in  fig. 3, we start  with the perfect  ob-
server-lens-source  alignment,  that  is θS=0 ,  where
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for reasons of full symmetry we see a ring of radius
θE . Then we continue with θS>0 in  fig. 4, where

the source is considered gradually further and further
away  from the line  joining  observer  and lens  and
where we will always see two images of the source. 

Figure 4: Graphical Geogebra solutions of eq.(5) for the
point mass lens in case of θS>0 . The observer sees two
images,  one  inside  and  one  outside  the  Einstein  radius
θE , as shown in the bottom panel. The further away the

source is from the lens, as seen in projection, the closer the
image will be to the source itself and the other to the lens,
the latter two arrive in extreme cases to merge so that they
cannot be distinguished.

One image is positioned inside θE and the other out-
side. Moreover, the further the source moves away
from the lens, as sees in projection, the closer the in-
ternal image gets to the lens itself, eventually mer-
ging  with  it,  and  the  further  the  external  image
moves away.

The next stage in this process is to consider different
types of source, for instance an extended source, and
to  solve  the  lens  equation  for  each  point  of  the
source in order to obtain the images produced by the
lens.  We did this using Geogebra  for  an extended
disk source and also for a line source. 

Figure 5: Simulation with Geogebra of the solution of the
lens equation for the point mass lens in the case of an ex-
tended disk and a line as sources, indicated with S. The se-
quence  starts with  the  upper  left  panel,  where θS=0 ,
then going right and bottom left, then right again we see
the sources S moving sideways away from the lens L. The
dots represent the produced images of specific points of
the sources and give us an idea of the total images shape.

The images of the sources central point along the θ-axis
are always indicated with θ1 and θ2 .

As for the disk, the lens equation is applied to the
central point and various points of the circular edge,
while  for  the  line,  it  is  applied  to  various  points
along the line. The result for some relative source-
observer positions is shown in fig. 5.

3.2 Plummer Sphere Lens

The  next  case  represents  the  lensing  effects  pro-
duced by galaxies or clusters of stars. The model for
this lens, invented in 1911 [Plummer, 1911], approx-
imates a spherical halo, in fact the mass is distrib-
uted in an infinite sphere with a finite density core
and it falls off as r−5 at large radii. Actually it falls
steeper than in a real galaxy, nevertheless this model
is widely used in N-body simulations of stellar sys-
tems [Sellwood, 2015]. Typical for this lens is the
fact  that  the total  mass  is  reached  at  infinity and
there is a scale radius a which roughly represents the
halo radius, in fact after this radius the gravitational
potential is similar to that of a point mass. Since, as
said, we need to project  the lens mass  on the lens
plane, we consider the mass density and mass radial
profiles in three dimensions first and in two dimen-
sions afterwards. Therefore we get

μ(r )=
3a2 M tot

4 π(r 2+a2)5 /2

→ σ(ρ)=
a2 M tot

π(ρ2+a 2)2
, (6)

where r in the mass density profile μ(r) represents
the distance from the lens centre in space and ρ in
the surface mass density profile σ(ρ) represents this
distance in the lens plane instead.  M tot is the total
mass of the lens reached at infinity. Thus calculating
the mass profile we obtain

M (r )=
r3 M tot

(r 2+a2)3 /2

→ M (ρ)=
ρ2 M tot

ρ2+a2
, (7)

here M (ρ) is  the searched  projected mass that  we
have to use in the lens equation. Indeed, as we did
for the point mass lens, we introduce now the pro-
jected mass from eq.(7) in equations (3) and (4) and
again expressing the result in terms of the Einstein
radius θE (from eq.(4)),3 we obtain

θ−θS=θ
θE

2 + θa
2

θ2+ θa
2 . (8)

3 Notice that ρ=θD L  and a=θa DL .
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Also in this case, solving eq.(8) we obtain the num-
ber and position of produced images from a back-
ground  point  mass  source.  The  analytical  solution
involves a cubic equation, which engages students in
a nice calculation, but again the easiest  solution is
graphical (fig. 6).

Figure 6: Graphical Geogebra solution of eq.(8) for the
Plummer sphere lens in the special case of θS=0 . In this
case the observer sees the Einstein ring of radius θE  and
a central image, as shown in the bottom panel.

For this lens the two equations considered  for  the
graphical solution are f 1(θ)=θ−θS and 

f 2(θ)=θ
θE

2 + θa
2

θ2+ θa
2

.

In fig. 6, the perfect observer-lens-source alignment
is shown, where we not only see a ring of radius θE ,
but  also a  central  point-like image.  Then we con-
tinue with θS>0  in fig. 7, where the source is con-
sidered gradually further and further away from the
line joining observer and lens. This time, depending
on how far away the source is from the lens, we will
see  respectively  three,  two  or  one  image  of  the
source.

Figure 7: Graphical Geogebra solutions of eq.(8) for the
Plummer sphere lens in case of θS>0 . The observer sees
at first three images, two inside and one outside the Ein-
stein radius θE , as shown in the left bottom panel. The
further away the source is, as seen in projection, the closer
one image will be to the source itself. The other two in-
stead move towards each other, until they merge together
into a single image (central panel), then disappear (right
panel).

We can of course apply this procedure to different
kinds of sources, as done before,  and some results
for the extended disk source are shown in fig. 8.

Figure 8: Simulation with Geogebra of the solution of the
lens equation for the Plummer sphere lens in the case of an
extended disk S as source. We can follow the sequence al-
ways  from left  to  right  and  going  then  down.  The  se-
quence  starts  with  the  upper  left  panel,  where θS=0 ,
then we see the source S moving sideways away from the
lens L. The dots represent the produced images of specific
points of the source and give us an idea of the total images
shape.  The images of the source central  point along the
θ-axis  are always indicated with θ1 , θ2  and θ3 .

4. The Plexiglass Lens Shape

An interesting question we can ask ourselves is: how
is  it  possible to  visualize the gravitational-lens ef-
fect? This is the question that the Norwegian astro-
physicist  Refsdal  wanted  to  answer  in  the  1960s,
when still  no  gravitational  lens  had  been  detected
(the  first  extragalactic  detection  was  in  1979 with
the Twin Quasar). So apparently the idea of combin-
ing optics and general relativity with the aim of pro-
ducing glass lenses capable of showing us the effects
of  gravitational  lensing was born.  It  seems indeed
that the first to produce the point mass lens was pre-
cisely Refsdal at the University of Hamburg [Refs-
dal  and Surdej,  1994].  The modern answer to this
question is clear, it is just enough searching through
the stunning photos of the Hubble Space Telescope
(HST) or  other  powerful  telescopes  and  observing
the gravitational lenses that nature offers us. How-
ever, an alternative, which has also proved to be a
useful educational tool in explaining this topic with
an experimental part, is represented by these special
plexiglass  lenses.  The  maximum result  is  actually
obtained by joining these two possibilities.

Obviously, these lenses must have a special profile
to  reproduce  gravitational  lensing  in  a  physically
correct way. So how can we understand what shape
the plexiglass lens must have in order to represent
and simulate the effects of a certain mass distribu-
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tion? For answering this question we need to com-
bine what we know from general relativity and op-
tics. This procedure is not so complex as it seems. In
fact, from experience, it is feasible to perform it with
students of the last years of secondary school, espe-
cially if they are particularly interested in the sub-
ject.  Thus,  referring  to  fig.  9,  we  apply  now this
method and extrapolate the profile for the plexiglass
lenses  representing  a  point  mass  and  a  Plummer
sphere distribution of mass. These lenses will repro-
duce the images we saw in the first part of this art-
icle.

Figure 9: Geometry of the deflection of a light ray travel-
ling through two mediums with different refraction index
n, n1=1  is air, according to Snell's law and introducing
the concept of deflection angle δ .

First of all, one side of our plexiglass lens is flat for
simplicity  and  we have  to  infer  the  shape  for  the
other side. Secondly, our lenses are rotationally sym-
metric, therefore it is enough to calculate the profile
in two dimensions and then rotating it around a cent-
ral axis we get the entire lens. Indeed, this simplifies
our  work  considerably.  The  inclined  black  line  in
fig. 9 represents the tangent line to the surface of the
plexiglass lens in the point P, if we can understand
how the tangent  line changes  for  all  points  of  the
lens, it is possible to find the corresponding function
which  describes  the  shape  of  the  lens.  Basically,
what we need is the deflection angle δ from Gen-
eral Relativity and Snell's law from optics. Let's start
analysing fig. 9 and introducing these concepts. We
know that, when passing near a massive object, the
path of a light ray from a distant source is deflected.
This path is represented by the red arrows in the dia-
gram. The amount of deflection, as we know and as
it is shown in the figure, is represented by the deflec-
tion angle δ expressed by eq.(1). If we now apply
Snell's law to this configuration and make use of the
trigonometric  angle  sum and difference  identities,4

we obtain

n=
sin (α+ δ)

sin α
= cos δ+ cot α sin δ . (9)

From eq.(9),  inserting eq.(1)  for  the angle δ ,  and
from considering the diagram, we see that

4 sin(α±β) = sin αcosβ±sin βcosα .

d y
d x

=−cot α =− n−cos δ
sin δ

and

d y
d x

≈−n−1
δ =− (n−1)c2

4G M ( y)
⋅y , (10)

where δ is  expressed  by y instead  of θ with
y=θ DL and  the  small-angle  approximation  is

used. At this point, solving this differential equation
with  the  desired  mass  distribution  inserted  in  the
place of M(y) gives the profile of the corresponding
lens. Indeed, for mass distributions not too complic-
ated, this differential equation is easily solved separ-
ating the variables and integrating.

4.1 Point Mass Lens

Thus, knowing that the point mass has constant mass
Mtot, eq.(10) becomes

d y
d x

=−
(n−1)c2

4 G M tot

⋅y . (11)

Then solving it for a generic lens, we obtain

y = Ae
−

(n−1)c2

4 G M tot

⋅x

,
(12)

whose exponential function defines the shape of the
lens as in fig. 10 and A is a constant.

Figure  10: Point  mass  plexiglass  lens  profile.  Credit:
T.Köhler.

From  this  particular  shape  comes  also  the  name
"foot of a wineglass" lens. Even though the shape of
a real wine glass foot is not an exponential function,
it  is  still  very similar and even the images it  pro-
duces are in strong resemblance with the ones pro-
duced by this type of lens. Therefore, remembering
we do not know what  kind of mass distribution it
represents and not even if what it represents is real,
we can from a qualitative point of view use the foot
of a wine glass to have a rough, but accessible to
everyone,  simulation  of  this  kind  of  gravitational
lens.

4.2 Plummer Sphere Lens

For this lens we insert the projected mass from eq.
(7) at the place of the mass M(y) in eq.(10), obtain-
ing

d y
d x

=−
(n−1)c2

4 G M tot

y2+a2

y
. (13)

Solving it again for a generic lens, we have
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y = √ A⋅e
−2

(n−1)c2

4 G M tot

⋅x

−a2 ,
(14)

whose shape is shown in  fig. 11 and  A  is again a
constant.

Figure 11: Plummer sphere plexiglass lens profile. Credit:
T. Köhler

5. Experimenting

At this point we can spend some words on how to
use the lenses in the classroom and what possibilities
they  give  us  from an  experimental  point  of  view,
alongside the theoretical explanation. Ultimately, the
plexiglass lenses that reproduce gravitational lensing
effects are suitable to be used in two different con-
figurations:

• It is in fact possible to shine light at the lens,
better if the light rays from the source are col-
limated, and observe the resulting effects on a
screen  behind a shield with a pinhole which
represents the observer.

• Alternatively, we can look at a source through
the lens  using simply our eyes or  a camera.
The source can be anything (a point, a disk, a
word, a picture, etc.) and better if illuminated
with light for a better view.

Figure 12: The two setups that can be used with the plexi-
glass lenses (here the Plummer sphere lens). Upper: Light
is  shined  at  the  lens.  Bottom:  The  observer  looks at  a
source (a black disk) through the lens.

The two setups are shown in fig. 12 and both these
setups are good for working with the lenses,  how-
ever we personally prefer the second one because it
allows  a  great  variety  of  images  to  be  used  as
sources and we are able to easily produce pictures
and videos. This way we can see many effects and
test  the  lenses  with  the  most  different  images  as
sources. It also becomes a fun way to "play" with the

lenses  and  engage  students  without  making  them
lose their attention. Moreover, it is also interesting to
compare the gravitational  lens effects  that  we pro-
duce thanks to the lenses with real ones or even with
the Geogebra simulations. Few examples are in fig-
ures 13, 14, 15 and 16.

Figure 13: Example of Einstein rings.  In the centre the
lensed galaxy "Cosmic  Horseshoe",  on  the left  side  the
Plummer sphere lens in action with a disk source and on
the right side the point mass lens in action with a point
source. Credit for the central image: ESA/Hubble NASA.

Figure  14: Example  of  arcs.  In  the  centre  the  lensed
galaxy SDP.81, on the left side the point mass lens in ac-
tion with a disk source and on the right side a Geogebra
simulation with a disk source. Credit for the central image:
ALMA.

Figure  15: The  Hubble  Ultra  Deep  Field  (Credit:ESA/
Hubble NASA) seen through the point mass lens on the
left. The lensed group of galaxies "Cheshire Cat" on the
right. Credit for the right image: NASA/STScI.

Figure 16: Playing with the lenses. Upper: (left) our fac-
ulty building through the Plummer sphere lens, (right) a

53



Simionato 

portrait of Einstein through the point mass lens. Bottom:
the word "GRAVITY" through the point  mass lens,  in-
spired by [Gott,  1983]. This last picture shows how im-
ages seen through the lenses can also be reversed.

6. Conclusions

These lenses are powerful educational tools to teach
the  phenomenon  of  light  deflection  due  to  weak
gravitational  fields  and  in  particular  gravitational
lensing. They integrate very well the theory with an
experimental part that can also, but not compulsor-
ily, allow to practice some mathematical concepts.

The reasons that have led us to deal with this topic
are many. First of all, it is a fascinating and modern
subject that we often hear about.  It is also interest-
ing to think that what we see in the universe with our
own eyes does not necessarily reflect  the real situ-
ation. This topic also offers the possibility to use a
simplified  model  and  approximations  that  make  it
suitable for students of the last years of secondary
school.  We would  like  also  to  emphasise  the  fact
that all  of  the physical  and mathematical  concepts
involved are absolutely understandable and practic-
able by students at this level and in this specific case
they  are taught  applied  to  a  concrete  example,  a
practice that is known to raise the students' level of
interest and their ability in scientific subjects [Prince
and Felder, 2006]. Not only that, but the use of these
lenses  in  teaching  gives  a  certain added value be-
cause it combines an experimental part with a  sub-
ject  that  frequently  is  treated  in  a  pure  theoretical
way. Therefore, by involving students in these activ-
ities, we make them active learners and not simply
passive listeners,  promoting longer lasting learning
and  the  development  of  important  skills  such  as
problem solving, critical  and creative thinking and
adaptability [Simionato, 2013].
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